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Abstract We report the biochemical characterization in Xeno-
pus oocytes of the Arabidopsis thaliana membrane protein,
STP13, as a high affinity, hexose-specific H+-symporter. Studies
with kinase activators suggest that it is negatively regulated by
phosphorylation. STP13 promoter GFP reporter lines show
GFP expression only in the vascular tissue in emerging petals un-
der non-stressed conditions. Quantitative PCR and the pSTP13-
GFP plants show induction of STP13 in programmed cell death
(PCD) obtained by treatments with the fungal toxin fumonisin
B1 and the pathogen Pseudomonas syringae. A role for STP13
in PCD is supported by microarray data from e.g. plants under-
going senescence and a strong correlation between STP13 tran-
scripts and the PCD phenotype in different accelerated cell death
(acd11) mutants.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Sugars serve as essential sources of energy and carbon, but

are also important signaling molecules modulating light and

hormonal responses in plants [1,2]. Sugar transport and regu-

lation of sugar homeostasis by transporters is essential for the

plant life-cycle as exemplified by severe growth inhibition and

sterility in knockout mutants of the Arabidopsis thaliana su-

crose transporter SUC2 [3]. The importance of regulated sugar

localization is further demonstrated by heterologous expres-

sion of invertases, enzymes degrading sucrose into glucose

and fructose, in different compartments in tobacco [4,5]. Apo-

plastic or vacuolar expression of invertase leads to stunted

growth, development of spontaneous necrotic lesions, and acti-

vation of resistance responses, whereas cytoplasmic overex-

pression produces no visible phenotype.

In Arabidopsis, the disaccharide sucrose is transported by

members of the sucrose carrier family (SUC) [6] and monosac-

charides are transported by members of the sugar transport

protein (STP) family that includes 14 predicted members and

probably by several other of the more than 50 transporters, en-

coded in the Arabidopsis genome, that share significant homol-

ogy to major facilitator superfamily (MFS) monosaccharide
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transporters [7,8]. STP1 [9], STP2 [10], STP3 [11], STP4 [12],

STP6 [13], STP9 [14] and STP11 [15] have been characterized

biochemically and exhibit broad substrate specificity towards

both DD-hexoses and DD-pentoses with Km in the range of 10–

100 lM. Notably, STP6 is hexose-specific and is the only char-

acterized STP that exhibits significant affinity towards fructose.

STPs differ substantially in their developmental, environmental

and spatial expression [16]. For example, STP2 has a specific

role in resorption of glucose released from callose degradation

upon pollen maturation [10].

Several observations suggest that sugar homeostasis and su-

gar transport play important roles in plant defense and PCD,

and three Arabidopsis STPs have been suggested to play a role

in plant defense based on their expression profile. STP4 tran-

scripts are induced upon infection by a range of pathogens

[17,12], STP1 mRNA levels increase upon treatment with the

defense-related plant hormones salicylic acid and methyl jasm-

onate [18,19] and expression of the low affinity transporter

STP3 is induced by wounding [11]. Similarly, the Arabidopsis

sucrose transporters SUC2 and SUC3 are induced upon infec-

tion with the beet cyst nematode Heterodera schachtii [20], and

upon wounding [21], respectively. Putative monosaccharide

transporters of the MFS have been associated with senescence,

as evidenced by induction of Arabidopsis SFP1 in aging leaves

[22], and by induction of the hexose transporters CST2 and

CST3 in Chenopodium rubrum suspension culture cells treated

with plant hormones that regulate senescence [23]. In mam-

mals, there is precedence for glucose starvation and the moni-

toring of glucose transport as an essential part of execution of

PCD [24]. However, the precise link between sugar trans-

port(ers) and PCD remains unclear.

We recently identified STP13 (At5g26340) as a glucose trans-

porter in a functional genomics approach for screening plant

transporter functions by expression cloning in Xenopus oocytes

(Nour-Eldin, H.H., Nørholm, M.H.H. and Halkier, B.A.,

unpublished data). Here, we characterize STP13 biochemically

and show a clear correlation between induction of the STP13

and the appearance of PCD, which suggests a role of this

transporter in PCD.
2. Materials and methods

2.1. PCR and in vitro transcription
STP13 cDNA was amplified with Pwo Polymerase (Roche) from the

EST clone RAFL06-74-007 from Riken BRC [25,26] with the primers
T7 and RAFL 4–6 3 (Table 1) that introduced a 5 0 T7 promoter and a
blished by Elsevier B.V. All rights reserved.
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Table 1
Primers used in this work

Primer Sequence

T7 AATTAACCCTCACTAAAGGGTTGTAATA

CGACTCACTATAGGG

RAFL 4–6 3 TTTTTTTTTTTTTTTTTTTTTTTTTGCTATG

GCCCTTATGGCCGAGCTCT

actinF GGTCGTACTACCGGTATTGTGCT

actinR TGACAATTTCACGCTCTGCT

stp13F TCGAAAGAGGTCGTCTCGAT

stp13R ACATTGCTGGAAAATCTGTAAAGC

STP13PF ATCGCGAGCTCGGAAATCGTTGTAACCCAAAC

STP13PR CTAGTCTAGACCTGAATATCTCTTAGAAGC
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3 0 polyA tail. An aliquot containing 1 lg of PCR product was in vitro
transcribed using the T7 mMessage mMachine kit (Ambion�) accord-
ing to the manufacturer.

2.2. Oocyte preparation and uptake assays
Oocytes were prepared as described previously [27], and subjected to

injection of 50 ng cRNA. The oocytes were incubated for 2–3 days at
17–18 �C, and then assayed for transporter uptake activity. Assays
were performed in saline buffer (90 mM NaCl, 1 mM KCl, 1 mM
CaCl2, 1 mM MgCl2, 5 mM MES) adjusted to pH 5 with TRIS. Oo-
cytes were pre-incubated in assay buffer for 5 min to ensure intracellu-
lar steady state pH [28], and subsequently transferred to 500 ll buffer
containing 0.037GBq [14C]glucose (11.2 GBq/mmol; Amersham) in a
final concentration of 15 lM glucose. After 30 min incubation, the as-
say was stopped by washing the oocytes four times in ice cold buffer.
Oocytes were transferred to scintillation tubes containing 100 ll 10%
SDS and disrupted by vortexing. 2.5 ml EcoScint� scintillation fluid
(National Diagnostics) was added, and radioactivity quantified in a
scintillation counter. Each uptake consisted of at least seven oocytes.
Kinetic parameters were determined using the Sigmaplot software (SY-
STAT). In the kinase modulation studies, a mix of the kinase activa-
tors 8-bromo adenosine 3 0–5 0 cyclic monophosphate (500 lM,
Sigma), forskolin (50 lM, Applichem), 3-isobutyl-1-methylxanthine
(500 lM, Sigma) or the protein kinase A inhibitor 2-(para-bro-
mocinnamoylamino)-ethyl-3-isoquinoline-sulfonamide (H89, 50 lM,
Sigma) was included in the preincubation and uptake buffers.

2.3. Plant growth and real-time PCR analysis
Plants were grown in soil and benzothiodiazole treated as previously

described [29]. Pools of at least 10 whole, 2–3 weeks old plants were
used for each RNA isolation by use of standard protocols (RNAgents
Total RNA, Promega). PCD was artificially induced in Arabidopsis ro-
sette leaves by pressure infiltration of Pseudomonas syringae or 10 lM
of the fungal toxin fumonisin B1 (FB1, Sigma) or by applying a 0.5 ll
Fig. 1. Characterization of STP13 mediated glucose uptake in Xenopus oocyt
radiolabelled glucose, fructose or ribose. After 30 min, oocytes were washed a
uptake in oocytes compared to water-injected controls. (B) Kinetic paramete
software.
10 lM FB1, 0.001% Silwett SL77 droplet. Reverse transcriptase PCR
was performed using the iScript� cDNA Synthesis Kit (Bio-Rad) with
a Bio-Rad iCycler and DyNAmo� SYBR� Green qPCR Kit (Finn-
zymes) according to the manufacturer. After initial denaturation at
95 �C for 3 min, gene products were independently amplified by 45 cy-
cles of: 95 �C, 15 s; 58 �C, 15 s; 72 �C, 15 s, 80 �C, 15 s. To avoid detec-
tion of potential primer dimers and genomic DNA, the primer3
software [30] was used to design primers for STP13 and the endoge-
nous control Actin1 (Table 1) such that for both genes one primer
was intron-spanning and detection was performed at the final 80 �C
step. PCR quality was followed by melting curve analyses and agarose
gel electrophoresis. Each sample was analyzed at least three times. Rel-
ative gene expression of STP13 was normalized by comparison with
actin (At2g37620) and calculated as previously described [31].

2.4. Construction of a STP13 promoter GFP fusion
A 2 kb fragment of the STP13 promoter was amplified from Arabid-

opsis (Col-0) genomic DNA, using primers STP13PF and STP13PR
(Table 1), with Pwo polymerase (Roche). The fragment was subcloned
into pBGFP0 [32] with the restriction enzymes SacI and XbaI (New
England Biolabs) and the construct transformed into Arabidopsis
(Col-0).
3. Results

3.1. Biochemical characterization of STP13 in Xenopus oocytes

Screening of a cDNA library of Arabidopsis transporters in

Xenopus oocytes with a 14C-glucose uptake assay identified

STP13 as a glucose transporter (Nour-Eldin, H.H., Nørholm,

M.H.H. and Halkier, B.A., unpublished data). The gene had

previously been annotated as an STP due to its homology to

other well-characterized STP family members [16].

Biochemical characterization of STP13 cDNA heterolo-

gously expressed in Xenopus oocytes showed that the

recombinant protein mediated glucose uptake following

Michaelis–Menten saturation kinetics with an apparent Km va-

lue of 74 ± 14 lM towards DD-glucose (Fig. 1A and B). Uptake

experiments with 14C-fructose and 13H-ribose showed that

STP13-injected oocytes facilitated the uptake of 14 pmol fruc-

tose in 30 min (Fig. 1A), whereas neither the water-injected

control nor the STP13-injected oocytes facilitated ribose up-

take (Fig. 1A). The substrate specificity of STP13 was further

studied in competition assays using common sugars in 50-fold

excess (Table 2). Glucose uptake was reduced by the hexoses

DD-galactose, DD-mannose, DD-fructose, but not significantly by
es. Oocytes were injected with 50 ng STP13 cRNA and incubated with
nd uptake measured. (A) STP13 mediated glucose-, fructose and ribose
rs of STP13-mediated glucose uptake were determined using Sigmaplot



Table 2
Analysis of STP13-mediated glucose uptake in Xenopus oocytes under
different conditions

Uptake conditions % Glucose uptake

750 lM DD-glucose 10 ± 3.3
750 lM DD-galactose 31 ± 6.9
750 lM DD-mannose 37 ± 10.0
750 lM DD-fructose 32 ± 7.1
750 lM DD-sucrose 91 ± 17.5
750 lM DD-ribose 78 ± 12.0
750 lM DD-xylose 105 ± 24.1
750 lM 3-OMG 13 ± 5.6
750 lM LL-glucose 96 ± 22.9
pH 5 100 ± 11.7
pH 7 6 ± 0.3
200 lM CCCP 22 ± 1.8
400 lM 2,4-DNP 33 ± 1.6
400 lM NaN3 85 ± 19.5
Kinase activator mix 23 ± 3.3
H89 99 ± 8.7

Oocytes expressing STP13 were incubated with 15 lM 14C-labelled
glucose in a saline buffer at pH 5, except where uptake was tested at pH
7. Competing substrates were added in 50-fold excess (750 lM). Pro-
tonophores and sugars were added at the concentrations indicated.
NaN3 was added 30 min prior to assay start to ensure proper depletion
of ATP. After 30 min, the oocytes were washed and the uptake of
glucose measured. Data represents three independent experiments with
standard deviations.

Fig. 2. Analysis of STP13 mRNA levels in plants challenged with
pathogens and the fungal toxin fumonisin B1 (FB1). STP13 transcripts
were quantified by real-time PCR using RNAs extracted from plants
pressure infiltrated with virulent (DC3000) and avirulent (AvrRPM1)
Pseudomonas syringae four days after the treatment, and from plants
treated with FB1 one and two days after the treatment. The data are
expression ratios relative to untreated plants.

Fig. 3. Analysis of STP13 mRNA levels in acd11 genetic backgrounds.
STP13 transcripts were quantified by real-time PCR using RNAs
extracted from wildtype and from different genetic backgrounds of the
acd11 mutant. The data are expression ratios relative to untreated
wildtype plants.
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the pentoses DD-xylose and DD-ribose. In addition, the glucose

analogue 3-O-methyl-glucose significantly reduced glucose up-

take, whereas LL-glucose or the disaccharide sucrose did not.

Transport was abolished at pH 7 as compared to pH 5, and

by the addition of the protonophores carbonylcyanide p-chlor-

ophenyl hydrazone (CCCP) and 2,4-dinitrophenol (2,4-DNP)

(Table 2). Preincubation for 30 min with sodium azide

(NaN3), an inhibitor of ATP synthesis, had no significant effect

on glucose uptake. Together, these data show that STP13 is a

high affinity H+/DD-hexose symporter.

Phosphoproteomics has identified STP13 as a phosphory-

lated membrane protein in vivo [33,34]. A potential regulatory

role of phosphorylation on STP13 activity was studied using

Xenopus oocytes expressing STP13 in the presence of protein

kinase A activators or the protein kinase inhibitor H89 (Table

2). Glucose uptake by native STP13 was reduced 77% in the

presence of kinase activators, whereas the H89 inhibitor had

no significant effect. The data suggest that STP13 activity is

negatively regulated by phosphorylation.

3.2. Microarray and real-time PCR analysis of the correlation of

STP13 expression with programmed cell death

To investigate the physiological role of STP13, global gene

expression data at the NASC website [35] were examined.

STP13 was found to be upregulated by various stress treat-

ments, particular in tissues undergoing PCD. For example, sig-

nificant up-regulation of STP13 was found in cell suspension

cultures in which PCD had been induced [36] and in senescing

leaves [37]. Other microarray data showed strong induction of

STP13 in the Accelerated Cell Death 11 (acd11) mutant that

germinate and develop cotyledons normally, but undergoes

spontaneous PCD and constitutively expresses salicylic acid

dependent defense related genes at the two- to six-leaf stage [29].

Real-time PCR was used to examine the effect of treatments

with the pathogen P. syringae on STP13 expression. STP13

specific primers (Table 1) were designed and tested with a stan-
dard BLAST search against the Arabidopsis genome sequence,

to avoid detection of homologous transporter genes. STP13

mRNA were isolated and quantified from plants treated with

virulent and avirulent P. syringae strains four days after infil-
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tration, when serious cell death symptoms had occurred. Both

the cell death inferred by the virulent and avirulent strain heav-

ily induced STP13 expression to around 100-fold (Fig. 2). Sim-

ilarly, the effect of the PCD-inducing fungal toxin fumonisin

B1 (FB1) [38] on STP13 mRNA levels were examined by pres-

sure infiltrating 10 lM FB1 in Arabidopsis rosette leaves. No

visual death symptoms were observed one day after FB1 appli-

cation (data not shown), but STP13 expression was elevated

approximately 10-fold (Fig. 2). On the second day after FB1

application death symptoms had clearly occurred (data not

shown), and STP13 levels were elevated to approximately

100-fold (Fig. 2). Hence, induction of PCD with both patho-

gens and a PCD-inducing toxin is followed by induction of

STP13 transcription.

We used the genetically well-characterized acd11 mutant as a

PCD model system to further study the correlation of STP13

induction with PCD and defense responses. Quantitative

real-time PCR showed that STP13 is 10-fold upregulated in

acd11 (Fig. 3), which confirms the microarray data [29]. The

double mutants acd11/nahG, acd11/pad4-2 and acd11/eds1-2,

which are repressed to varying degrees in their PCD pheno-

type, were used to correlate the severity of the acd11 PCD-phe-

notype with STP13 expression (Fig. 3). Introduction of nahG,

encoding the bacterial enzyme salicylate hydroxylase [39],

completely suppressed STP13 expression, as it does the

acd11 PCD-phenotype [29], and subsequent application of

the salicylate analog benzothiodiazole (BTH) fully restored

the acd11 phenotype and induced STP13 expression. PAD4

and EDS1 are proteins with an unknown function that are nec-
Fig. 4. Analysis of GFP expression in Arabidopsis transformed with a pSTP1
in the vascular tissue of emerging petals. (B) Dissection of a petal from the wh
Induction of PCD with a 0.5 ll 10 lM droplet of the fungal toxin fumonisin B
with the small 0.5 ll droplet and was taken 24 h after toxin application usin
essary for induction of one type of PCD [40,41]. Mutations in

PAD4 and EDS1 completely suppressed the PCD-phenotype

of acd11 as well as STP13 expression. Compared to acd11/

nahG, both the PCD-phenotype and STP13 expression were

only partially restored by BTH in acd11/pad4-2, whereas nei-

ther the PCD-phenotype nor STP13 expression were restored

by BTH in acd11/eds1-2. Thus, STP13 expression tightly fol-

lows the severity of the PCD-phenotype in different acd11 ge-

netic backgrounds. BTH application did not induce STP13

expression in control tissue from wildtype, nahG, pad4-2 or

eds1-2 backgrounds (data not shown). In addition, introduc-

tion of the ein2-1 and jar1-1 mutations, that affect ethylene

and jasmonate signaling [38], into the acd11 background had

no effect on STP13 expression, but also have no effect on the

acd11 phenotype (data not shown).

3.3. STP13 promoter GFP fusion analysis of STP13 expression

in planta

As an independent method to analyze for a correlation be-

tween STP13 expression and PCD activation, we generated

transgenic plants expressing an STP13 promoter GFP reporter

construct. As cell death is accompanied by the synthesis of a

range of autofluorescent compounds, we included a nuclear

localization signal in the construct to allow us to distinguish

between autofluorescence and the GFP signal. In healthy

pSTP13:GFP lines, nuclear localized GFP was only found in

the vascular tissue of young emerging petals (Fig. 4A and B)

and in senescing leaves (Fig. 4C). However, upon application

of a droplet of the PCD-inducing FB1 [38], fluorescent nuclei
3NLS:GFP construct. (A) Fluorescence from GFP in nuclei from cells
ole flower shown in A. (C) Fluorescence of GFP in a senescing leaf. (D)
1 on one half of an Arabidopsis rosette leaf. The photo covers the area

g an optic filter to omit red chlorophyll autofluorescence.
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appeared within 24 h (Fig. 4D), which was 1–2 days before

dead cells were observed by trypan blue staining (data not

shown). The pattern of pSTP13:GFP expression suggests that

STP13 is involved in PCD, senescence and possibly petal devel-

opment.

3.4. Characterization of two stp13 t-DNA knockout lines

The physiological role of STP13 was further studied using

two stp13 mutant lines (Salk_045494 and Salk_021204) ob-

tained from the SALK T-DNA collection [42]. The T-DNA

insertions generated knockout mutants as evidenced by the ab-

sence of STP13 transcripts using RT-PCR (data not shown).

The morphology of stp13-1 and stp13-2 was closely followed

from germination until senescence. No abnormalities could

be observed when plants were grown under optimal conditions

(data not shown). Stp13-1 was crossed to acd11 to investigate

whether the absence of STP13 influenced PCD in acd11. Try-

pan blue stainings showed that the double mutant acd11/stp13

as well as the FB1-treated stp13 single mutant did not differ

significantly from acd11 and a FB1-treated wildtype, respec-

tively. This suggests that knockout of STP13 is not sufficient

to produce clear phenotypes related to non-stressed growth

or PCD activation, possibly as a consequence of functional

redundance with other sugar transporters. Similarly, no differ-

ence in phenotypes were observed in the response of the stp13

knockouts to pathogens such as P. syringae or the necrotroph

Alternaria brassicicola (data not shown).
4. Discussion

We report the biochemical characterization of the Arabidop-

sis sugar transport protein STP13. In Xenopus oocytes, STP13

mediates glucose uptake that follows saturation kinetics with

an apparent Km value of 74 ± 14 lM. This establishes STP13

as a high affinity Arabidopsis glucose transporter with a Km va-

lue similar to the other characterized members of the STP fam-

ily. In addition, uptake of 14C-fructose, but not 13H-ribose,

combined with competition studies using several hexoses and

pentoses indicate that STP13 has broad substrate specificity to-

wards all tested DD-hexoses, which is agreement with the anno-

tation of STP13 to the STP family.

Out of the 14 members in the Arabidopsis STP family, only

STP1 has been characterized electrophysiologically to be a H+/

monosaccharide symporter [43]. STP13 is 59% identical and

75% similar to STP1 at the amino acid level, and STP13 glu-

cose uptake activity is reduced at high pH and by common

protonophores, but not by the ATP-synthesis inhibitor

NaN3. Combined with the substrate specificity analysis, this

indicates that STP13 is a hexose-specific H+-symporter. The

ability of STP13 to recognize the ketose fructose is a rare prop-

erty, only previously described for STP6 [13]. This is interest-

ing since degradation of the highly abundant disaccharide

sucrose releases both glucose and fructose, and suggests that

STP6 and STP13 play particularly important roles in plant

fructose transport.

Protein phosphorylation appears to be involved in regula-

tion of complex networks in sugar signaling and transport

[44,45]. For example, sucrose transport is inhibited by the pro-

tein phosphatase inhibitor okadaic acid in Beta vulgaris L. [45].

Recently, phosphoproteomics on the Arabidopsis plasma mem-
brane has identified phosphorylation sites in the sucrose trans-

porter SUC5, and in the monosaccharide transporters STP1

and STP13 [33,34]. The latter correlates with our data which

showed that glucose uptake was inhibited by kinase activation

in STP13-expressing oocytes, suggesting that STP13 is nega-

tively regulated by phosphorylation. Further studies are neces-

sary to clarify whether the inhibitory role of phosphorylation

is direct or indirectly acts by lowering the amount of STP13

protein in the membrane.

Several lines of evidence suggest that STP13 plays a role in

PCD. QPCR and pSTP13:GFP analysis of STP13 expression

in senescing plants, in the acd11 mutant, and in plants treated

with P. syringae and the PCD inducer FB1 correlate the

expression of STP13 to the appearance of PCD symptoms.

Microarray data available from NASC [35] suggest that

STP13 is induced by several abiotic treatments such as cold,

salt and osmotic stress. This does not contradict that STP13

plays a specific role in PCD, since abiotic stress is known to in-

duce PCD in plants [46].

The role of glucose in PCD and plant defense is subject to

a continuing debate. It has been suggested that plant trans-

porters may reduce glucose concentrations in the apoplast

to minimize pathogen growth [17]. We observed no obvious

differences between wildtype plants and stp13 knockouts in

their response to different pathogens, which may, however,

be due to redundant sugar transporters, such as e.g. STP1,

STP3, STP4 or the putative monosaccharide transporter

SFP1, that have all previously been implicated in plant de-

fense and/or PCD. Alternatively, transporters have been sug-

gested to provide carbohydrates to tissues with an elevated

energy demand [12]. This energy may be needed to directly

initiate PCD from reactive oxygen species, which are impor-

tant for the spread of PCD in plants, and which require glu-

cose metabolism [47]. In mammals, several studies favor a

contrasting model that links glucose starvation to PCD.

For example, glucose uptake is reduced in human T cells

treated with apoptosis-inducing compounds [48,49], and inhi-

bition of glucose transporter expression triggers apoptosis in

murine blastocyst [50]. In plants, the latter model is sup-

ported by a study in which glucose transport was effectively

inhibited in tobacco cells treated with the elicitor cryptogein

that induces PCD in whole plants. [51]. This inhibition of

glucose transporter activity involved phosphorylation, which

is similar to our findings that protein kinase A activators

effectively inhibit STP13 uptake activity.

In conclusion, our data show that expression of STP13 is

correlated with PCD, which may suggest that sugar transport

plays a role in PCD in plants. Such a link has been found in

mammals, which suggests that sugar homeostasis plays an

important role in PCD across kingdoms. Further investiga-

tions of the physiological role of STP13 in modulating extra-

and intracellular glucose levels are necessary to understand

the fundamental regulatory role of sugar transport in PCD.
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