was an estimated disease total cost increase of 16% for rotavirus and 11% for varicella.

OBJECTIVES: Standard treatment for hepatitis C is peginterferon (PEG-IFN) + RBV with the aim of achieving a sustained-virological-response (SVR), which is widely considered to be a cure. Around 50% of patients infected with G1 do not achieve an SVR but re-treatment with PEG-IFN + RBV is successful in some, especially those with an early-virological-response (HCV-RNA undetectable below week 12 [EVR]). The objective of this analysis was to determine the cost-effectiveness of re-treating previous G1-non-responders to PEG-IFN + RBV.

METHODS: A published Markov-model compared three strategies: PEG-IFN/SRBa + RBV, for 72 weeks (A), 48 weeks (B) or no treatment (C). Efficacy data for (A) and (B) were taken from the REPEAT study, where a difficult-to-treat population of G1-patients with previous non-response to PEG-IFN/RBV was investigated. Rates of EVR were 15% for (A) and 9% for (B); SVR rates: 15% for (A) and 7% for (B); rates for (C) assumed to be zero. Patients not achieving an SVR were assumed to discontinue treatment. A UK health care payer perspective was adopted. Drug and other costs were taken from published sources. A lifetime horizon was chosen. Incremental cost-effectiveness ratios were expressed as cost per quality-adjusted-life-year (QALY). Costs and QALYs were discounted at 3.5% p.a.

RESULTS: The analysis showed that an additional SVR prevented future costs and increased quality-adjusted-life-expectancy. Although (A) caused the highest overall drug costs, total costs were only £606 higher compared to (B) and £1549 compared to (C), reflecting the higher SVR rates and the substantial medical costs for patients without an SVR. The ICER of (A) vs (B) was estimated at £2,012/QALY and £2,988/QALY for (A) vs (C). CONCLUSIONS: Re-treatment with PEG-IFN/SRBa + RBV for 72 weeks is a highly cost-effective treatment option for patients not responding to previous treatment with PEG-IFN + RBV, regardless of comparator, due to reduction of the high medical costs associated with progressive liver disease and the associated QALY gains.

The analysis of vaccine cost is important due to large variance. For European patients only, who can be assumed to be a more homogeneous group and a better comparator. Refers to a comprehensive analysis of German patients, cost- and effectiveness ratio for MICA compared to CASPO a more cost-effective than CASPO.

The analysis shows the cost-effectiveness of MICA as compared to CASPO for the treatment of systemic candida infections in Germany. Both lower costs and higher effectiveness of MICA render MICA as more cost-effective than CASPO.

COST-EFFECTIVENESS OF THE NEW PNEUMOCOCCAL 13-VALENT CONJUGATE VACCINE (PCV13) FOR CHILDHOOD AND ADULT VACCINATION IN THE UK

PERS 1

University of Chicago Medical Center, Chicago, IL, USA, 2Hôpital Beaujon, Clichy, France, 3F. Pinilla, Barcelona, Spain, 4Brown University, School of Medicine, Providence, Rhode Island, USA

OBJECTIVES: To determine the cost-effectiveness of the protocol of the international "Surviving Sepsis Campaign" (SSC) for the treatment of severe sepsis in Spain after the implementation of a multicentre educational program compared with the conventional

RESULTS: The protocol of the international "Surviving Sepsis Campaign" (SSC) for the treatment of severe sepsis in Spain after the implementation of a multicentre educational program compared with the conventional

the analysis. The model’s effectiveness outcome is defined as patients who are successfully treated and are alive. Cost-effectiveness is measured as total costs per patient with respect to effectiveness for each medication arm. In addition, sensitivity analyses were performed to identify cost-effectiveness for different clinical and economic assumptions. The analysis shows that 70% of MICA patients were successfully treated and survived at the end of study compared to 58% of CASPO patients. Furthermore, the costs of a MICA treatment (£37,212) are below the costs of a CASPO treatment (£37,720). Therefore, the cost-effectiveness ratio is lower for MICA (£62,377) than for CASPO (£65,565). This result also holds for all but one of the sensitivity analyses. However, probabilistic sensitivity and subgroup analyses show that differences cannot be considered statistically significant due to large variance. For European patients only, who can be assumed to be a more homogeneous group and a better comparator for German patients, costs- and effectiveness ratio for MICA compared to CASPO a more cost-effective than CASPO.

The analysis shows the cost-effectiveness of MICA as compared to CASPO for the treatment of systemic candida infections in Germany. Both lower costs and higher effectiveness of MICA render MICA as more cost-effective than CASPO.

COST-EFFECTIVENESS OF PEGINTERFERON-ALFA-2A (40KD) AND RIBAVIRIN (RBV) FOR RE-TREATMENT OF HCV GENOTYPE 1 (G1) PATIENTS WHO DID NOT RESPOND TO PREVIOUS HCV TREATMENT: A UK PERSPECTIVE

Jensen DM1, Marcellin P1, Urspruch A1, Papadaki K1, Tonov D1

University of Chicago Medical Center, Chicago, IL, USA, 1Hospital Beaujon, Clichy, France, 2Hoffmann-La Roche Ltd, Basel, Switzerland, 3Roche Products Ltd, Welwyn Garden City, UK

OBJECTIVES: Comprehensive analysis of German patients, cost- and effectiveness ratio for MICA compared to CASPO a more cost-effective than CASPO.

The analysis shows the cost-effectiveness of MICA as compared to CASPO for the treatment of systemic candida infections in Germany. Both lower costs and higher effectiveness of MICA render MICA as more cost-effective than CASPO.

COST-EFFECTIVENESS OF PEGINTERFERON-ALFA-2A (40KD) AND RIBAVIRIN (RBV) FOR RETREATMENT OF HCV GENOTYPE 1 (G1) PATIENTS WHO DID NOT RESPOND TO PREVIOUS HCV TREATMENT: A UK PERSPECTIVE

Jensen DM1, Marcellin P1, Urspruch A1, Papadaki K1, Tonov D1

University of Chicago Medical Center, Chicago, IL, USA, 1Hospital Beaujon, Clichy, France, 2Hoffmann-La Roche Ltd, Basel, Switzerland, 3Roche Products Ltd, Welwyn Garden City, UK

OBJECTIVES: To determine the cost-effectiveness of the protocol of the international "Surviving Sepsis Campaign" (SSC) for the treatment of severe sepsis in Spain after the implementation of a multicentre educational program compared with the conventional

the analysis. The model’s effectiveness outcome is defined as patients who are successfully treated and are alive. Cost-effectiveness is measured as total costs per patient with respect to effectiveness for each medication arm. In addition, sensitivity analyses were performed to identify cost-effectiveness for different clinical and economic assumptions. The analysis shows that 70% of MICA patients were successfully treated and survived at the end of study compared to 58% of CASPO patients. Furthermore, the costs of a MICA treatment (£37,212) are below the costs of a CASPO treatment (£37,720). Therefore, the cost-effectiveness ratio is lower for MICA (£62,377) than for CASPO (£65,565). This result also holds for all but one of the sensitivity analyses. However, probabilistic sensitivity and subgroup analyses show that differences cannot be considered statistically significant due to large variance. For European patients only, who can be assumed to be a more homogeneous group and a better comparator for German patients, costs- and effectiveness ratio for MICA compared to CASPO a more cost-effective than CASPO.

The analysis shows the cost-effectiveness of MICA as compared to CASPO for the treatment of systemic candida infections in Germany. Both lower costs and higher effectiveness of MICA render MICA as more cost-effective than CASPO.

COST-EFFECTIVENESS OF PEGINTERFERON-ALFA-2A (40KD) AND RIBAVIRIN (RBV) FOR RETREATMENT OF HCV GENOTYPE 1 (G1) PATIENTS WHO DID NOT RESPOND TO PREVIOUS HCV TREATMENT: A UK PERSPECTIVE

Jensen DM1, Marcellin P1, Urspruch A1, Papadaki K1, Tonov D1

University of Chicago Medical Center, Chicago, IL, USA, 1Hospital Beaujon, Clichy, France, 2Hoffmann-La Roche Ltd, Basel, Switzerland, 3Roche Products Ltd, Welwyn Garden City, UK

OBJECTIVES: To determine the cost-effectiveness of the protocol of the international "Surviving Sepsis Campaign" (SSC) for the treatment of severe sepsis in Spain after the implementation of a multicentre educational program compared with the conventional

the analysis. The model’s effectiveness outcome is defined as patients who are successfully treated and are alive. Cost-effectiveness is measured as total costs per patient with respect to effectiveness for each medication arm. In addition, sensitivity analyses were performed to identify cost-effectiveness for different clinical and economic assumptions. The analysis shows that 70% of MICA patients were successfully treated and survived at the end of study compared to 58% of CASPO patients. Furthermore, the costs of a MICA treatment (£37,212) are below the costs of a CASPO treatment (£37,720). Therefore, the cost-effectiveness ratio is lower for MICA (£62,377) than for CASPO (£65,565). This result also holds for all but one of the sensitivity analyses. However, probabilistic sensitivity and subgroup analyses show that differences cannot be considered statistically significant due to large variance. For European patients only, who can be assumed to be a more homogeneous group and a better comparator for German patients, costs- and effectiveness ratio for MICA compared to CASPO a more cost-effective than CASPO.

The analysis shows the cost-effectiveness of MICA as compared to CASPO for the treatment of systemic candida infections in Germany. Both lower costs and higher effectiveness of MICA render MICA as more cost-effective than CASPO.

COST-EFFECTIVENESS OF PEGINTERFERON-ALFA-2A (40KD) AND RIBAVIRIN (RBV) FOR RETREATMENT OF HCV GENOTYPE 1 (G1) PATIENTS WHO DID NOT RESPOND TO PREVIOUS HCV TREATMENT: A UK PERSPECTIVE

Jensen DM1, Marcellin P1, Urspruch A1, Papadaki K1, Tonov D1

University of Chicago Medical Center, Chicago, IL, USA, 1Hospital Beaujon, Clichy, France, 2Hoffmann-La Roche Ltd, Basel, Switzerland, 3Roche Products Ltd, Welwyn Garden City, UK

OBJECTIVES: To determine the cost-effectiveness of the protocol of the international "Surviving Sepsis Campaign" (SSC) for the treatment of severe sepsis in Spain after the implementation of a multicentre educational program compared with the conventional

the analysis. The model’s effectiveness outcome is defined as patients who are successfully treated and are alive. Cost-effectiveness is measured as total costs per patient with respect to effectiveness for each medication arm. In addition, sensitivity analyses were performed to identify cost-effectiveness for different clinical and economic assumptions. The analysis shows that 70% of MICA patients were successfully treated and survived at the end of study compared to 58% of CASPO patients. Furthermore, the costs of a MICA treatment (£37,212) are below the costs of a CASPO treatment (£37,720). Therefore, the cost-effectiveness ratio is lower for MICA (£62,377) than for CASPO (£65,565). This result also holds for all but one of the sensitivity analyses. However, probabilistic sensitivity and subgroup analyses show that differences cannot be considered statistically significant due to large variance. For European patients only, who can be assumed to be a more homogeneous group and a better comparator for German patients, costs- and effectiveness ratio for MICA compared to CASPO a more cost-effective than CASPO.

The analysis shows the cost-effectiveness of MICA as compared to CASPO for the treatment of systemic candida infections in Germany. Both lower costs and higher effectiveness of MICA render MICA as more cost-effective than CASPO.