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1. INTRODUCTION 

In this paper, A will denote a bounded linear transformation, which for 
the sake of simplicity will be called an operator, on a complex Hilbert space H 
with inner product (,) and associated norm j/ // . The ratio ((Ag,g)/(g,g)), 
g E H is known as the Rayleigh quotient of A and will be denoted here by 
R(g). The numerical radius of A, that is, the supremum of 1 R(g)] , will be 
denoted by w(A). 

It may be shown that if f is a vector that maximizes the quotients 

so that (Af,f) = h(f,f) where 1 X 1 = w(A), then 

Re(&l)f = 4(iA + hA*)f = 1 h i2f. 

A proof follows from the fact that Re(u) is a self-adjoint operator and ( h ja 
is its norm. The main result of this paper is the observation that this eigen- 
value equation actually characterizes all those, and only those vectors f, 
at which R(g) has a stationary value, and in particular at the supremum of 
I R(g)1 . 

By our method we not only obtain the eigenvalue relation at the maximum 
of / R(g)\ as an obvious consequence, but also we get a number of useful 
results at the said maximum (cf. Theorem 2 and its corollaries). All the results 
which hold at the maximue of / R(g)1 only by virtue of the above-mentioned 
eigenvalue relation also hold at the stationary values of R(g), (Corollaries 
2-4 of Theorem I). 

*Part of the contents of this paper were read at the Fifth Seminar in Analysis 
conducted by MATSCIENCE, Madras, India, from 11 th to 20th March, 1972. 

+ Research was supported by Council of Scientific and Industrial Research, New 
Delhi, India. 

527 
Copyright 0 1974 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82140043?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


528 KIKAN CHANDRA DAS 

Interestingly, it follows that all operators resemble a normal operator in 
some sense at stationary values of their respective Rayleigh quotients (see 
Corollaries 3 and 4 of Theorem 1). This observation was made also in [6], 
It also follows that if an operator A behaves like a normal operator only 
at a vector f for which supremum of j R(g)/ may be attained, that is, if 
A*Af = AA*f, the eigenvalue relations Af = Af and A*f = xf, ) h 1 = w(A) 
hold (Corollary 4 of Theorem 2). Since the requirement of normality of A, 
that is A*Ag = AA*g for all g E H, could be dispensed with, we have in 
effect established existence of eigenvalue of a much larger class of operators. 
A new approach to the spectral theory for compact normal operators, without 
using the property w(A) = (/ A (j , may also be obtained and has been indi- 
cated at the end of Corollary 4 of Theorem 2. 

The properties of an operator A at the supremum of ) R(g)/ may be seen 
from Theorems 1 and 2 and their Corollaries if the supremum is attained. An 
interesting result is given in Theorem 3 when the supremum of [ R(g)/ is not 
attained. This result is a generalization of Theorem 1 of [6] where the result 
was proved for normal operators. 

2. STATIONARY VALWS OF R(g) 

The Rayleigh quotient R(f) may be defined to have a stationary value at f 
if the functional 

w (t) = I(# + t&f + Ml 
0 

(f + %f + @) 
(1) 

of a real variable t is stationary at t = 0 for any arbitrary but fixed g E H. 
Obviously the supremum and infimum of ) R(g)] are also stationary values of 
R(g) if they are attained. On differentiating e+,(t), we obtain after some 
calculations, 

I X I w,‘(O) = Re(g, AAf + MY - 2 I A 12f), (2) 

where h = (Af, f ). From Eq. (2) we may easily see that the following theorem 
holds. 

THEOREM 1. The Rayleeh quotient R(g) is statiomwy at a vector f, if 
and only if, the kgenvalue relation 

Re(u)f = I h I”f (3) 

holds where X = (Af,j). 

We note that (3) must hold at the maximum of 1 R(g)1 . 



STATIONARY VALUES OF RAYLEIGH QUOTIENT 529 

COROLLARY 1. A vector f is an eigemector of a self-adjoint operator A, if 

and only ;f, R(f) is stationary at f. 

In Corollaries 2-5, f will denote a vector for which R(f) is stationary. 

COROLLARY 2. The vectors Af and A*f can be expressed as Af = hf + h 

andA*f df-(A//\& h w ere h is a vector such that (f, h) = 0. 

COROLLARY 3. The eigenvahe relation Af = hf holds, if and only if, 

A*f = Xf. 

COROLLARY 4. The norm of Af and A*f are equal, thut is, j/ Af /[ = [/ A*f (1. 

Corollaries 3 and 4 show how an operator resembles a normal operator at 
the stationary values of its Rayleigh quotient. 

COROLLARY 5. (A2f f) = (Af, f)” implies Af = hf and A*f = If. 

3. SUPREMIJM OF 1 R(g)\ 

We shall now confine our attention to the supremum of j R(g)] and assume 
that the same is attained for a unit vector f .  Considering the second derivative 
of w,(t) at t = 0, we get 

IWAf, g) + WAg, f  )I” + l?m(Af9 d + INAg, f  )I2 + 2WAf, f  1 Re(Ag,g) 

+ 2 WAf, f  > Im(Ag, g> - 2 I h I2 (g, g> - 4 I X I2 Re”(f, g) < 0. (4) 

Putting Af = hf + h and A*f = xf - (x/X) h in (4), with (f, h) = 0 as in 
Corollary 2, we obtain after a lengthy calculation 

I&) VW& g)12 + A2 Re $$f + A, Im $$-f - I X I” d 0, (54 , 3 > 

if h # 0. 
Since we may put ig in place of g, we get 

i& [W&g)12 + 4 Re $$f + A, Im $$$ - 1 h I2 ,< 0. (5b) 
, 3 9 

Obviously since 
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we have 

Ar Re (Ag’ g, + A, Im @Ig’ g, -- 
(&?* d kl d 

1 A I2 < 0. 

Hence the positive term 

, x ,2;g g> CW% dl” in (54 , 

or 

, A ,2tg g) D-W, dl” in (5bL , 

whichever is greater, puts a restriction on the values of ((Ag, g)/(g, g)). 
Combining these results we formulate Theorem 2. 

THEOREM 2. If 

then for any arbitrary but fixed g, the following inequalities hold true. 

, x ,2:g g) [Re(hh, g)12 + AZ Re $$# + A, Im w - I h 1’ G 0, 
> 2 

and 

k3 [Im(M, g)]” + A, Re w + A, Im $$ - I h I2 < 0, 
9 , 7 

where 

h = Af - hf. 

Putting g = Ah, we get 

2(h, h) + A, Re m (Ah’ h, + A, Im (9 

The least possible value of 

,), 
z 

Re fAh, h, (Ah h) 
(h -lhIm---- , (4 4 

is -[ h 7; hence we conclude jl h (I2 < ( h 1’. 
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CoRoLLmY 1. /I h II2 is less than or equal t0 the smaZZer of j h I2 and 
,/ A II2 - / h 12. 

Proof. We have already proved /j h II2 < / h 12. For the second part we 
only note that 

II Af It2 = I A I2 + II h It2 e /I A l12. 

If A is nonnormal, then A need not have any eigenvalue at all at the supre- 
mum of 1 R(g)\ , the quantity (( h [( = // Af - Xf j/ gives a measure of departure 
from the eigenvalue relation. Corollary 1 gives an upper bound for // h (/ . 
Since / A I2 = /I A /I2 - / h 12 implies 1 h I2 = [[A /1”/2, we always have 
II h II2 d II A 11”/2~ 

COROLLARY 2. If  f  is a unit vector for which sup[l(Ag,g)//(g,g)] and 

sup[j/ Ag [l/[lg [I] are attained, then ( h / 2 (1 A 11/d/2. 

Proof. II Afl12 = I X I2 + II h II2 = II A II2 or /I A iI2 < 2 j h I2 by Corollary 1 
of Theorem 2. 

In general / X / > // A /l/2 (see [2, p. 1141). This inequality is improved if 
(I(Ag,g)l/(g,g)) and (11 Ag]l/ljgjl) attain supremum for the same vector f .  

COROLLARY 3. In no case does ((Ah, h)/(h, h)) equal X. 

Proof. If ((Ah, h)/(h, h)) = A, we easily see from (4) that (h, h) = 0. 

COROLLARY 4. If  AA*f = A*Af, then Af = hf and A*f = if. 

Proof. From the relations Af = Xf + h and A*f = Af - (X/h) h, we get 
A*Af=jXj2f--h+A*h and AA*f = i h j2 f  + Ah - (X/h) Ah. 
Hence, XAh + hA*h = 2 1 h I2 h or ((Ah, h)/(h, h)) = h, since 1 X / is the 
supremum of j R(g)] . So, by Corollary 3, h = 0, and hence the result follows. 

This shows that if the operator is normal only at the supremum of / R(g)1 
then also A has an eigenvalue A, j X 1 = w(A). We can now develop in the 
usual manner the spectral theorem for a compact normal operator (cf. [7]). 
The spectral theorem for compact self-adjoint operators is based on the 
property that w(A) = // A j( , whose proof is elementary. The spectral 
theorem for compact normal operators also rests on the same property. 
Halmos observed long ago [I, p. 11 I] that if an elementary proof of the above 
property could be found, the spectral theorem for normal operators would be 
immensely simplified. Bernau and Smithies gave in [3] an elementary proof 
of it. The method just indicated for the development of spectral theory for a 
compact normal operator is also elementary and completely different from 
the other approaches in that we do not make use of the property that 
w(A) = (/ A /I for all normal operators. 
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We have till now dealt with cases where sup[((Ag, g)//(g, g)], g E H is 
attained. Now we shall examine what happens if the supremum is not attained. 
Let {fn} be a sequence of vectors with unit norm, i.e., /If% I( = 1, such that 
I(Afn ,f,Jj + w(A). Since the unit sphere in H is weakly compact, it is 
always possible to get a subsequence {fn,> of (fn} such that {fn,} weakly 
converges to f and Wf, , fn,)l converges. We assume that such a choice has 
already been made, that is, {fn} weakly converges to f. 

Let (Afn , fn) - A. C onsider now the operator 2 1 h I2 1- AA - AA*. 
It is easy to see that it is a positive operator and as (Afn , fJ + A,; 
(2 1 h Izf. - uf,, - hA*f,, , f,J + 0. Therefore, by a property of positive1 
operators we have 

2 I h I”fr, - AAf,, - hA*f,, -+ 0. 

If f  # 0, then 

2 I h I2 (f>f) = %Af,f) + h(A*f,f), 

or 

I A I2 (f5f) = WufTf)), 

or (4 f  )/(f, f) = 4 since 

Hence we have Theorem 3. 

THEOREM 3. Let {fn} be a weakly convergent sequence such that {(Af,, , f,J} 
converges and I(Af% , f,J + w(A). I f  the weak limit f  is nonzero, then the 
supremum of 1 R(g)( is attained for the vector f,  I f  the supremum is not attained, 
tken all such sequences must tend weakly to zero. 
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