View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

JOURNAL OF APPROXIMATION THEORY 42, 107-137 (1984)

Approximation Theorems for
Double Orthogonal Series

F. Moricz

Bolyai Institute, University of Szeged, Szeged, Hungary and
Department of Mathematics, Indiana University,
Bioomington, Indiana 47405, U.SA.

Communicated by Paul G. Nevai
Received July 18, 1983; revised March 14, 1984

Let {@,(x): i, k=1,2,..} be a double orthonormal system on a positive measure
space (X, #,u) and {a,]} a double sequence of real numbers for which
Y©, Y% ai <co. Then the sum f(x) of the double orthogonal series

© S a,pu(x) exists in the sense of L’-metric. If, in addition,
SR Y'%® al k(i k)< oo with an appropriate double sequence {x(i,k)} of
positive numbers, then a rate of approximation to f(x) can be concluded by the
rectangular partial sums $,,(x) =27, 2 k-, @ufu(x), by the first arithmetic
means of the rectangular partial sums o,,,(x)=(1/mn) 37 3" %_; s,(x), by the
first arithmetic means of the square partial sums o,(x) = (1/r) 375 _, se(x), etc. The
so-called strong approximation to f(x) by s,,,(x) is also studied.

€ 1984 Academic Press, Inc.

1. INTRODUCTION

Let (X,.#,u) be an arbitrary positive measure space and {§,(x):i,
k=1,2,..} an orthonormal system (abbreviated ONS) on X. We will
consider the double orthogonal series

[18
e

A Oin(X), (L.1)

I
=~
{l

where {a,,:i, k=1, 2,..} is a double sequence of real numbers (coefficients)
for which

aj < . (1.2)

18
T8

By the Riesz—Fischer theorem there exists a function f(x)€L’=
L*(X,.#,u) such that the series (1.1) is the Fourier series of f(x) with
respect to the system {¢,(x)}. In particular, the rectangular partial sums

m n
Smnl)= 2" D @y bulx) (myn=1,2,.),
i=1 k=1
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converge to f(x) in the L*-metric:

[ [sua¥) = £(0))2du(x)> 0 as min{m, n} > co.

Here and in the sequel the integrals are taken over the entire space X.
By the extension of the Rademacher—Mensov theorem (see, e.g., {1, 9]), if

i i ay[log(i + 1)]*[log(k + 1)]* < o, (1.3)

then the rectangular partial sums s,,,(x) regularly converge a.e., a fortiori
converge in Pringsheim’s sense to f{(x) a.e., and there exists a function
F(x) € L* such that

SuUp |$,,.(x)| < F(x), ae.
mn>1

In this paper the logarithms are to the base 2. As for the notion of regular
convergence, see |7 and 10], and for convergence in Pringsheim’s sense see,
e.g., [14, p. 303; or 10].

Denote by o,,(x) the first arithmetic means of the rectangular partial
sums:

Umn(x) -

i zk(x)

i ( - 1) (1 - k; 1 ) A (x) (m,n=1,2,.).

1
mn
m
By the extension of the Mensov—Kaczmarz theorem if

2 [log log(i + 3)]*[log log(k + 3)]* < oo, (1.4)

||[\/‘8

then the (C, 1, 1)-means o,,,(x) regularly converge a.c., a fortiori converge in
Pringsheim’s sense to f(x) a.e., and there exists a function f(x) € L* such
that

Sup |0,.(x) < F(x), ae.
mr21

This extension was firstly stated by Fedulov [5]. Unfortunately, his proof
contains two essential defects. Later on, Csernyak [4] restated this theorem,
but he corrected only the first defect in Fedulov’s proof. A complete proof
was given by the present author in [12].
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We will consider the arithmetic means of the rectangular partial sums with
respect to only m:

Trn() = Tpu(X) =

m

= i Zl (l—i— 1) @ Pin(x),

and those with respect to only n:

1 & A k—1
@) =— Y =Y Y (- audulr)  (mn=12.)
[Py i—1 k=1 n
These means are called the (C, 1,0) and (C,0, 1)-means of series (1.1),
respectively.

2. MAIN RESULTS: APPROXIMATION BY RECTANGULAR PARTIAL
SuMs AND THEIR MEANS

First we make the following convention. Given a double sequence { f,,,(x)}
of functions in L* and a double sequence {A(m, n)} of positive numbers, we
write

Sun(X)=0,{A(m, n)}, ae. as min{m, n} -» oo (2.1)

(or max{m, n} - o),

{(L’;(:);—))—» 0, ae. as min{m, n} -
(or max{m, n} - o),
and, in addition, there exists a function F(x) € L* such that

sup L)

P T, ) K F(x), ae.

Here m ranges over either O, 1,..., or 1, 2,...; and so does n. Furthermore, we
agree to omit the expression “as min{m,n} - 0™ in (2.1). Also, in o,
estimates containing both m and »n as free parameters we mean that
min{m, n} - co, unless it is specified otherwise. A similar meaning is
assigned to the symbol

Su(®) =o0.{A(m)}, ae.  as m— o,
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where {f,,(x)} is a sequence of functions in L? and {A(m)} is a sequence of
positive numbers, both defined either for m=0, 1,..., or for m =1, 2,.... The
specification “as m — co” is also omitted if m is the only free parameter
involved.

In Section1 we have mentioned that conditions (1.3) and (1.4) are
sufficient for the a.e. convergence of s,,,(x) and 0,,,(x) to f(x), respectively.
Now the main point is that if we require somewhat more than (1.3) and
(1.4), then we can even state an approximation rate for the deviations
SmnlX) — f(x) and o,,(x)— f(x), respectively. A part of the theorems
obtained can be considered the extensions of the two theorems of Tandori
(13] from single orthogonal series to double ones.

In the sequel the double sequence {A(m, n)} will be specified as

Am, n)=max{i,(m),A,(n)} (mn=12,.;4(1=4()=1), (22)

where {A,(m): m=1,2,..} and {i,(n): n=1,2,.} are nondecreasing
sequences of positive numbers tending to co.

THEOREM 1. If

i aj[log(i + 1)]*[log(k + 1)]*max{4,(i), A,(k)}]* < 0, (2.3)

k=1

i=

—

then
1

1
€. 2.4
S LmiD  Lerny ¢ @Y

Sma(X) —f(X) =0

We note that the right-hand side of conclusion (2.4) can be equivalently
rewritten as o, {max{1/A,(m + 1), 1/A,(n + 1)}}, a.e.

The next theorem provides an approximation rate when a double subse-
quence of the rectangular partial sums is considered, instead of the whole
sequence.

THEOREM 2. Let {i,: p=1,2,..} and {k;: q=1,2,..} be two strictly
increasing sequences of positive integers. If

>y S

X [max{A,(i,), Ao(k)}]* <o (G =ko=0), (2.5)

a%k) [log(p + 1)]*[log(g + 1))

then

1 L

o) ‘
S,k (X)—S(x) =0, ) + R a.e. 2.6)
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This theorem is of special interest in the cases where i, =27, k,=¢ and
i, =27, k, =27, respectively. (See Part 1 in Sects. 6 and 7.)

THEOREM 3. If

A,(2m) < CA(m) with C<2 formzmg, 2.7
42(2n) = O{4,(n)}, (2.8)
and
i i a? [log log(i + 3)]*[log(k + 1)]*[max{4,(i), 4,(k)}]* < oo, (2.9)
i=1 k=1
then

TunX) — f(x) =0, SIS + ae. (2.10)

Ay(m) Ay
Here and in the sequel, by C we denote positive constants not necessarily
the same at each occurrence. We note that, under (2.7), condition (2.5) in

the special case i, =2” and k, =g is equivalent to (2.9).

THEOREM 4. If condition (2.7) is satisfied,

1,(2n) < C,(n) withC < 2 forn>n,, (2.11)
and

S i al,[log log(i + 3)]*[log log(k + 3)]?

=1 k=1

X [max{d, (), 2,(k)}]* < oo, (2.12)

then

(@) —f(X)=0 s;JrL( a.e. (2.13)

" * Am) "~ AV

It is clear that, under (2.7) and (2.11), condition (2.5) for i,=2” and
k,= 27 is equivalent to (2.12). If we assume that m and n tend restrictedly
to o0, i.e., there exists a constant 8 > 1 such that 8~  n/m < 6, then we can
achieve essentially the same rate of approximation as in (2.13) under a
weaker assumption.
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THEOREM 5. If condition (2.7) is satisfied and

i . log log(max{i, k} + 3)]* A3(max{i, k}) < o0,  (2.14)

||[\/18

then for every 8 > 1,

o EX |G (X)) — f(x) =0, —(_)\ , ae. (2.15)

It is a simple observation that

o) =)= S 3 [ =15

The next theorem reveals that the average of the deviations s,,(x) — f(x) is of
o {1/A,(m)} in (2.15), not because of the cancellation of positive and
negative terms, but because the pairs (i, k) for which |s, (x) — f(x) is not
small are sparse, at least in the case where the ratio /i is bounded both from
below and from above.

THEOREM 6. If conditions (2.7) and (2.14) are satisfied and {m/A (m)}
is nondecreasing, then for every 8> 1,

m ei 1/2

> Yl ~ @

1
— ,a.e. (2.16)
mt = Ty

By Y% o u we mean that the summation is extended over those integers &
for which 8- < k< 8i.

Remark 1. Condition (2.7) is satisfied, e.g., if A,(m)=m* with
0<a<1ori,(m)=m*[log(m+ 1)]® with 0 a< 1 and > 0.

Remark 2. Following Alexits [3], the property expressed in (2.16) can
be called a strong approximation to f(x) by the rectangular partial sums. In
particular, via the Cauchy inequality {2.16) implies

i

1 Z i 1
m ,;1 :%_li |si(x) — f(x) = o, ’ —ll(m)é’

Remark 3. By slightly modifying the proof of Theorem 6, one can
conclude the following somewhat stronger statement: If condition (2.14) is
satisfied,

A4, 2m) < CA(m)  with C<y\/2 for m>m, (2.17)
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and {m/A%(m)} is nondecreasing, then for every 6> 1
R
i

(1
Il m i=1

i 1/2

S @ OF | =0 )] ae

k =1 m)

3. APPROXIMATION BY SPECIAL PARTIAL SUMS AND THEIR MEANS

We fix a single sequence Q = {Q,: r = 1, 2,...} of finite sets in N” = {(i, k) :
i,k=1,2,.} such that

Q,c0,c-, and U ,=
The sums

s(Q;x)= Z @y P (x) (r=12,..)

(i,k)€Q,

can be also regarded as a certain kind of partial sums of series (1.1). The
following two special cases are well known:

0, ={LKk)EN :,k=1,2,.,r}
provides the square partial sums, while
={GHK)ENL P+ KL (r=1,2,.),

provides the spherical partial sums of series (1.1).
Denote by a,(Q; x) the first arithmetic means of the s,(Q; x):

05 = 3 5,(05%)

_ % (lﬂp—l

r ) (1K)€Q,\T,_y

aik¢ik(x) (r = 19 299 QO = Q)

The one-parameter versions of Theorems 1, 2, 3, and 6 read as follow. In

these theorems {4,(r): r=1,2,..} is a nondecreasing sequence of positive
numbers tending to 0.

THEOREM 1’. If

ool
‘1

2 ( a?k) llog(r + 1)]* 41(r) < o0, 3.
r=1 ‘\(i,k)eQ,\Q,_,
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then

) — fi) =0, |
S,.(Q,.X) f(x)—ox ? Al(r‘i‘ 1) y a.e

For the square partial sums, (3.1) is equivalent to the condition

i az[log(max{i, k} + 1)]* Ai(max{i, k}) < co.

“M8

THEOREM 2'. Let {r,: p=1,2,..} be a strictly increasing sequence of
positive integers. If

i ( )} a?k) (log(p + 1)]* Ai(r,) < (ro=0, 0y =),

p (iuk)GQrp\Qrp,l

(3.2)
then
5, (@ x)— f(x)=0, | ———1,
(033) = 06) =0, |
In the special case where r, = 2” and
A4(2r) = O{Ay(r)},

(3.2) goes over to the condition

Lo o]

> ( D a,?,() [log log(r + 3)]* A3(r) < . (3.3)

r=1 ‘(i,k)eQ,\Q,_,

Specialized further, in the case of square partial sums (3.3) is equivalent to
condition (2.14).

THEOREM 4'. If conditions (2.7) and (3.3) are satisfied, then

or(Q; x) _f(x) =0y

(4,(r)

THEOREM 6'. If conditions (2.17) and (3.3) are satisfied and {r/A}(r)} is
nondecreasing, then

1/2

1S 2o, V1
1 X (@0 SR =0, |1

The last theorem expresses a strong approximation to f(x) by the s _(@Q; x),
in a particular case by the square partial sums.
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4, AUXILIARY RESULTS ON NUMERICAL SEQUENCES

Given a double sequence {A(m, n): m,n=1,2,..} of numbers, we write

A, A(m, n) = A(m, n) —A(m + 1, n),
A Alm, n) = A(m,n) —A(m,n + 1),
A, A(m,n)=A(m,n)—A(m + 1,n) —Am,n+ 1)+ A(m+ L,n+ 1)
We say that {A(m,n)} is nonincreasing if both 4,,A(m,n)>0 and
Ay A(m, n) >0, while {A(m, n)} is nondecreasing if both 4,,4(m,n) <0 and

Ay, A(m, n) <O for all m and n. Furthermore, {4(m, n)} is said to be convex
if 4,,A(m, n) >0 for all m and n.

Lemma 1. If {A,(m): m=12,.} and {A(n): n=12..} are
nondecreasing sequences of positive numbers and {A(m, n)} is defined by
(2.2), then {1/A(m, n)} is nonincreasing and convex.

Proof. 1t is clear that {1/A(m, n)} is nonincreasing. We will prove that it
is convex. To this effect, let a pair (m, n) of positive integers be given.
Without loss of generality, we may assume A,(m)>A,(n). Then, by
definition A(m, n)=A,(m) and A(m + 1, n)=A4,(m + 1).

We distinguish two cases: either

(a) A(myn+ 1)=A,(m)>A (n+1)or
(b) Alm,n+ 1)=24(n+ 1) > 4,(m).
In case (a), by definition A(m + 1,n+ 1) =A,(m + 1), consequently

1
4, ———=0.
" A(m, n)
In case (b), there are two subcases: either
b)) Am+Lan+1)=4(m+1)>2AHn+1)or
(b)) Am+1l,n+1)=24n+1)>4,(m+1).
In case (b,), by definition and property (b),

1 1 1
4 = _
DT ) LerD

while in case (b,), by the monotony of {i,(m)},

1 1 1
A = —_ >0.
U Am) hm i D
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LeMMA 2. If {A(m,n)} is a nondecreasing sequence of positive numbers

Jor which {1/A(m, n)} is convex and the condition
Z Z 2 [log(i + 1)]*[log(k + 1)]* A*(i, k) < o© (4.1)

i=1 k=1
is satisfied, then there exists a nondecreasing sequence {1*(m, n)} of positive

) sfied,
numbers for which {1/A*(m, n)} is convex,
A(m, n)
- - 4.2
T om ) 0 as max{m,n}— oo, 4.2)
. 4.3)

and
> agllog(i+ 1)]*[log(k + D]*[A*(i, k)]* < o0

T8

k=1
Proof. By (4.1), there exists a strictly increasing sequence {m,} of

il
—

positive numbers such that
1
(p=12,..).

2 2 2 llog(i + 1)]*[log(k + 1)]* A2(i, k)<l—)~

i=1 k=1
max{i,k)>m,

Define
A, kY= A3, k) for Lk=1,2,..,m,—1;
m, <max{i, k} <m, (p=2,3,..).

= pA(i, k) for
The fulfillment of (4.2) and (4.3) are obvious. To prove that {1/4*(i, k)

convex, we distinguish four cases
max{i, k} < m,. Then, by assumption,

Case (a).
1 1
4 =4 >0
ArG k) T T AG k)
Case (b). m,<max{i,k} <m,, ,—1 for some p>1. Then, by
definition,
| 1 1
4y = =—d, ~———>0.
ARG k) p TV AGK)T
Case (c). max{ik}=m,, ,—1, but min{ik}< -1 If i=
m,,, — 1, say, then
1 1 1 1 1
A4
M men "7 pr IR LR
1 1 1 1
4 >0.
R N e R EaW ke
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Case (d). i=k=m,, ,— 1. Then

1 1 1 1 1 1 )
ot A% k) pAik) p+1 (l(i+1,k)+l(i,k+1) Ai+1,k+1)
1 1 1

- A >0. §
126G R T o+ DAG K

LEMMA 3. If {A,(m)} is a nondecreasing sequence of positive numbers
for which condition (2.7) is satisfied, then

(i) A—I’Zn—)—»oo, as m- oo, (4.4)
(ii) iigm)zohj;)( (p=0,1,.), (4.5)
(i) %2 T 3 lll(l,)g (i=1,2.) (4.6)
(iv) gp 112(22:) - ; ’122(22:) f (p=0, 1,..) @.7)
) ; n(lm) oglfz)s (i=1,2,.). 4.8)

Proof. Here we drop the one subscript on A,(m).
(i) By (2.7),
A(2Pmy) < CPA(m,) (p=0,1,..;C<2),

whence

2Pm, ( 2 )" mg

A2°my) ~ \C/ Amg)

- 0 as p— .
In the case where 2° 'm, < m < 2”m,, we suffice to take into account the
inequality

m 27" 'm,

)~ A(2Pmy)’

(ii) Let 2™ > m,. Then for every m and p such that m;, <m < p,
A7) CPTMAZ™),



118 F. MORICZ

and by (2.7),
p.gm 2 20
< )
,,,;,,,1 A2™) T 2~C A(27)

(iii) Let 27 i< 27", Then by (ii) and (2.7),

i p  29+l-1
£ L<i,, )3 o
I = /l(m) 2 g=0 i=29 },(M)
L2 2 1| 2 1
<7 2960 70 7)) %g

(iv) Let 2™ > m,. Then for every pand m, m, < p<
A(2™M L CMPA(27).
Consequently, by (2.7),
©AH2™y AMRP) & [CP\™T 4 A2
> <SG X T) e

m=p m=p

(v) Let 22 i< 2”*". Then by (iv) and (2.7),
oo /1 (m) w  29+1-1 /1 (m)

\ZZ

m=i m=29
© 2 (2q+1) 12(2p+1) /12(1')
= 224 203 2242 =0 j—7( 1
q=p !

S. PROOFS OF THEOREMS 1 AND 2

Proof of Theorem 1. First we apply Lemmas 1 and 2, then the extended
Rademacher~Mensov theorem to the double orthogonal series

Z kZ ayA* (i, k) ¢ (x),

resulting in a function F(x) € L? such that

sE)| = i Zn az A* (i k) ¢u(x) ] < F(x), ae. mn=12.) (&1



APPROXIMATION THEOREMS 119

We represent the difference f(x) — s,,,(x) figuring in (2.4) as follows

£G)— ,,m(x)w@m i +§ g +ZZ e

=A() +A5ﬁ2(x) +4,0(x), say. (5.2)

Applying a double Abel transformation (see [6 or 11}) yields

B0 =Y ¥ a0 g

i=1 k=n+1
m—1 joe] 1
=y Al sy, —=
N Tl Z Mo 356 19
! 1 sx.(x)
- *(x)d4 — ma .
= Sm(x) 10 /1*(1,”+ 1) l*(m,n+ l)

On account of (5.1) and the convexity of {1/A*(i, k)1,

1 (! ! 1
|A G (0)| < F(x) | (A*(l,n +1) - A¥(m,n + l)) + A¥(m,n+ 1)

N 1 1 1
(l*(l,n PSR ET— ) W EEN
2F(x)

=m, a.e., (5.3)

independently of m.
Similarly, independently of n,

2F(x)
AR X)) € 5—t—. 4
AW < T (54)
Finally, applying again a double Abel transformation,
AW < S ! S o 1
x)= sk, —— sx )4y ————
(%) i=§+l k§+1 W)y A*(i, k) k=§+l %), A¥(m+ 1,k)
& 1 sk (x)
_ * A _ mn
i=§+l Sm(x) 10 l*(l’,n'{" 1) l*(m‘l‘ 1’n+ l)a
whence
2F
A9 (x)| < 6 e (5.5)

A¥(m+1,n+1)



F. MORICZ

120
Putting (5.2)—(5.5) together, we find
L
, a..
$

1
Fmt L) AR Lat D)

|F) = $,ua((¥)] < 4F(x) }
i

By (2.2) and (4.2), this implies the wanted inequality (2.4).

Proof of Theorem 2. We set
1/2
(Prg=1,2,5iy=k,=0)

ip kq

k 2

Qpg = 2 Z ik
i=ip 1+1 k=kg_1+1
and
iP kll
: *
> Y apdulx) if af#0,
; * _

if af,=0.

(X)) =—5
pq i=ip_1+1 k=k;_;+1

=i,k
It is obvious that {¢(x): p,g=1,2,..} is an ONS and by (2.5),

> 3 (g llog(p + DI floga + DI maxid, () k) < o

q

S )~ S0 = Y akext) — f(x)

Thus, the application of Theorem 1 yields

t=1
1

| 1
N . , ae.
{ Ay 40) Ar(kgi1)

r=1

=0

This is (2.6) to be proved. §

6. PROOF OF THEOREM 3
integer p>0. (For m=1 we have

Let 2P <m<2”"! with an
(6.1)

T, a(x) = 5,,(x).) Then clearly
Tun(%) = S(X) = [52,,2(¥) = [(%)]
+ [Tlp,n(x) - SZIJ‘n(x)] + [Tmn(x) - TZP,n(x)]’

Accordingly, the proof of (2.10) is split into three parts.
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Part 1. By Theorem2 (in the special case i,=2” and k,6=g),
condition (2.9) implies

S1pa(X) — f(x)=0, T(IZW + ﬁ , a.e. (6.2)
Part 2. We will prove that, under the condition
i Iﬁ aj [log(k + 1)]? A%(i) < oo, 6.3)
i=1 k=1
we have
51;;1) |S250 () — T35 (X)) = 0, ;I,_(%Eé , a.e. as p— oo. (6.4)

The proof of (6.4) is done in two steps, while using the representation

2r .
nog

S =)= Y Y Sl andu)  (pn=12.) (65)

i=

Step 1. First we treat the special case where n =29 (¢ =0, 1,...) and
prove

1
———1, ae. - . (6.6
.07 a.e as p-oo. (6.6)

Sup |Szp,24(x) — Ty, 24(X)| = 0,
2>0

To this end, by the Cauchy inequality and (6.5),

q 2P 27 .

9 i—1

|52p,2a(x) — Typ,24(X)| < \_ 2 2 T audul(x)
r=0 | iTh kesriyr 2

1/2 q 1 1/2

N
< 2y

a 2 Yoi—1 2
Yer |y S e

P
r=0 =2 k=2r-141 2

H

with the agreement that by 2! we mean O in this paper. Taking into account
that the last factor on the right does not exceed {n2/6}'%, we can conclude
that

2,027 [SUP |52p,za(x) - sz,za(x)l]
g0

p 0 2P 2r i—1 2y 172
< S erraen| ¥ Slas|]
V6 = =2 =1 2

6.7
Setting 6.7

0w 2p 2r - 2y 172
F@=] Y Y eraen| Y S rase| |

p=1r=0 i=2 k=2r-141

640/42/2-2
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we have to show that F,(x) € L”. Indeed, by (4.7) and (6.3),

rrrreny sy 4D

2p
i=2 k=2r-141 2

Ms

[P )= Y

A
—
~
I
o

[v'e] [eo] 2p (i_ 1)2 R -
<Y X Y 55 dilleg 4k17 4}(27)

p=1 k=1 i=2

o] [oe) 2 P
=Y Y (- 1ailogspr Y 2D

i=2 k=1 piarsi 2
=0{1} X X ajillog 4k]* 41(0) < 0. (6.8)

Hence B. Levi’s theorem implies (6.6) via (6.7).
Step 2. Let 27 <n<2"! with some ¢ > 1. Then by (6.5),

szp,n(x) - TZD,n(x) = [szp 2q(x) — Tap, zq(x)]

+ Z Z lk ¢lk(x)

i=2 k=29+1
whence
2#<nr}2)2(q+1 |s2p'"(x) - TZP,ﬂ(x)| < |s2p,2a(x) - sz,zq(x)l + M“)(x)a (69)
where
n
M (x)= ¥
( ) 2q<n<2q+l IZ:Z P ;+1 lk¢ik( )

We are going to prove that, under condition (6.3),

M(l)(x) =0,

1
/11(2") as max{p,q}— . (6.10)

To this effect, we apply the Rademacher-Mensov inequality (see, e.g., [2,
p- 79; or 8, Theorem 3]) to obtain

2p 29+1 1)2
| IMR00) du) < [log 27412 3 Y ak.
i=2 k=2a+1
Setting
1/2

Ew=!3 S npenymeemr

p=1 g=1
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we can obtain, in the same manner as in (6.8)
) SERSIPE 2o (~1)2
[Fi@du< Y Y ae)log2t' Py Y
p=1 g=1 i=2 k=29+1
2p ( )2
Z a; [log 2k]* 22(2°) < 0.

8

Now (6.10) follows from B. Levi’s theorem. Combining (6.6), (6.9), and

(6.10), we get (6.4).
Part 3. We will prove that, under condition (6.3)
as p-ooo. (6.11)

a.e.,

1
T\ X) — X)) =0, \———
32’; 2p<r22)§p+l | mn( ) rZP,n( )| X Al(zp) ’

Taking into account that
m—1 n(x)| =A‘(;:,)()C),

2041
2P<r}nli)§li+l IT’""(X) - szv"(x)| < m:;wl |Tmn(x) T
(6.12)
we will prove somewhat more, namely,
sup A5 (x) = o, 1 as p- oo. (6.13)
A(27) )

nxt
We carry out the proof again in two steps, using the representation

Tmn(x) Tm—1, n(x) = 122 ];\—“1 W ,k¢,k(X) (m = 2, 3,.n= 1, 2,)
(6.14)

First we verify (6.13) in the special case n = 27, i.e

Step 3.
as p- oo. (6.15)

1
RN

sup 4. (x)=o,
>1

To achieve this goal, we use (6.14) and the Cauchy inequality

AW 2{? \q \'—n‘ %: i—1
<< S| S alx
Ao m=241 /=0 | (T2 k=1141 m(m— 1) 1) %uxfulx)
7 2p+1 q m 23172
< NN m(r 4+ 1)? [ D V ¢, (x)] E .
h \/g m=2b+1 =0 T2 k=1r141 m(m ) AP
(6.16)
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This inequality suggests defining

Fy(x)= ; Z Z m(r + 1) 13(m)

© 2r i 2y 172
X [ =2 k= 22:1“ m(m — 1) 1k¢lk(x)] g )
By (4.8) and (6.3),

2 SR 2 (-1
fF;(x)dﬂ(x)= 2 D m(r+1)213(m) Z Z —— _a,
m=2r=0 i=2 k=214 M (m— 1)
® o m 2r 3
<X XYY alllog 4k Aim)
m=2r=0i=2 k=2r-141 m
«© [o9] m 12
=2 2 D —5ajliog 4k|* 1¥(m)
m=2 k=1 i=2 m’
jeo] e8] 2
=3 Y rajflogak]t ¥ A0
i=2 k=1 — om’
=0{1} 3 3 alllog 4k]* A}(0) < 0. (6.17)

Hence B. Levi’s theorem implies (6.15) through (6.16).
Step 4. We proceed similarly to Step 2. By (6.14),

2p+1

za<nr}2)2(q+1 A;":’)(x) <A(4)Q(X) + 22; 1 Mﬁ:;(x)’ (6'18)
m=2pr+
where
M(Z) _ o “ i—
(x) 2q<n<zq+1 Z =;+1 m(m 1) Ik¢zk(x)

(m=2,3,.;9=1,2,.).
Applying the Cauchy inequality:

28+1 2p+1 1/2
> mpw<| ¥ omgwr] . @)
m=2P4+1 m=2p+1

then the Rademacher—Mensov inequality separately for each fixed m:

JMERWP di <llog 2 3 g

29+1 22

m
<Y > #afk[log 2k)*.
i=2

k=2a+1
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Setting

1/2

F=| Y Y mimME@P|

we can get, in the same way as in (6.17),

2q+1 2

[Foaw< T ¥ 3 3 - rakliog 24]* 4im)

a}[log 2k]* A}(m) < co.

Hence B. Levi’s theorem implies, through (6.19),

2p+1

sup > MP(x)=o,

q20 m=2r,41

as p— oo. (6.20)

1
PR )

Putting (6.15), (6.18), and (6.20) together, we find (6.13) to be proved.
Finally, (2.10) follows from (6.1), (6.2), (6.4), and (6.11). 1§

7. PROOF OF THEOREM 4
We start with the identity

Omn(X) — f(x) = [Szp,zq(x) = )] + (025, 2d(X) = $35,24(%)]
+ [0, 2X) = 025,260 ] + [025,2(X) = G35 24(x)]

+ [0 palx) — Gm,z,,(x) — O, 0(X) + Uzp,zq(x)]> (1.1)

where 22 < m < 27*"! and 29 < n < 29", p and g being nonnegative integers.
Accordingly, the proof is accomplished in five parts.

Part 1. In the special case i, = 27 and k, =27 Theorem 2 states that,
under condition (2.12),

1 1
$20,24(X) — f(X) =0, 72" + a2 (7.2)
Part 2. We prove that
1
$25,24(X) — 03p,24(X) = 0, + m , a.€ (7.3)
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To this goal, we use the representation

S3p,24(X) — O3, 24(X)
o ( k—l_(i—l)(k—l

- 2 Z 29 2p24

i=1 k=1
= [$25,24(X) — Tglp)za(x)] + [$25,24%) — T(zzp)zq(x)]
S —iszkfi)a,-m,-k(x). (14)

i=2 k=2

) augus

Thus, the proof of (7.2) is divided into three steps.

Step 1. First we are going to prove that if

3 3 ajflog log(k + 3)] A41(f) < o, (7.5)
i=1 k=1
then
1
sup |s x) — ¢ -, a.t. a - . (7.6
q>p0| 2p,2a( )— 20, 20(x)' A‘(2p) a s P ( )

This statement is a simple consequence of (6.4). In fact, setting

S 2r 8 1/2
aizks (r = 0, 1,...),

and

2r

Bu(x) = ~1 > apdulx) if a@,#0,

ir k=2r-141

= ¢i,2r(x) if a,=0;

we obtain a new ONS {§,(x): i=1,2,.; r=0, 1,...}. By (7.5),

i (log(r + 2)]% 234(i) < oo,

”M8

i.e., condition (6.3) is fulfilled. Thus, by (6.4),

sup 'izp‘q(x) T(zt)q(x)l =0 as p-—» o0, (77)

q>0

1
R ENeD) 2 ae
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where

~ir$ir(x)

Mn

$20,4(%) = Tapo(x) =

~
It
o

L 61 0) = $30.2400) — T ).

HMN HM
ﬂM:‘

That is, (7.7) is equivalent to (7.6) to be proved.
In the same way one can deduce that if

Step 2.
> Y alfloglog(i +3))? 3(k) < oo, (1.8)
i=1 k=1

then
1
SUP |85, ,4(x) — t52,dx) =0, | —={,ae. as g— oo 7.9
p)% | 2 ,2( ) 22,2 ( )| xz(zq) q ( )
Step 3. We show that under the condition
" Y af max{di(i), AX(k)} < oo, (7.10)
i=1 k=1
we have
»oX (i—-1Dk-1
A;fz)(x): Z Z ( 2( 7 ‘) ay Pulx)
i=2 k=2 272
—o 3min j_ L 1
o { 4,27) 4,290 1
a.ce. as max{p,q}—-> . (7.11)
Indeed, setting
[e] oo] 1/2
F)=1Y ¥ HRME@PE|
p=1 g=1 &
we get by (4.7),
: & B =) k=1
[Py duw) = Y. Z peny » EEUE-D
p=1 ¢g=1 i=2 k=2 2 2
1

2227
5 QZW

feo) fe o]
=3 3 (i—1)*k—1)aj 57
D203} M q:292 k

i=2 k=2
oo}
12

i=2 k

ar Ad(i) < .

2

I|
M8
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Hence B. Levi’s theorem implies

Oy — |
A/ (x)=o0, ” (2”) as max{p,q}— o,
which is the first half of statement (7.11). The second half can be proved
analogously.

Collecting (7.6), (7.9), and (7.11) we find (7.3).

Part 3. We will prove that under condition (7.5)

Sl;]g 2P<r2< 2p+1 |a'" 2(X) = az,,,z.,(x)l =0

1
AP
a.e. as p— 0. (7.12)

We even prove a bit more; under (7.5),

2p+1

sup Z |G, 26(X) — Oy 1 2dX) =0,

420 m=2r41

as p—o oo (7.13)

1
Lery e

(cf. (6.12) and (6.13)). Using the representation

Opn(X) = Oy o(X) = Z Z '~ (1 - k; : ) a;Pi(x)

ooy mim—1)
(m=23,.5n=1,2..), (7.14)

and taking (6.5) into account, we can write

0m,2¢l(x) - am—l,zq(x) = [Tm 2fl(x) T 1,2q(x)]

n X Dk 1)
sz kZz m(m—l)2q Ay Pi(x):
Hence
2p+1
2 10m26%) = O 2d(¥) S AHa(X) + 455 (), (7.15)
m=2r+1

where 4 ) (x) was defined in (6.12) (now n = 2%) and

A;?(x)z Z i Z 'g'j—x_ki;—;;laik¢ik(x) .

meTri1 | i kT2 m(m—

We divide the proof of (7.13) into two steps.
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Step 4. Using the same “contraction” technique as in Step | above,
from estimate (6.13) one can deduce that, under condition (7.5),

1
sup A (x)=0, | —==1, as p— oo. 7.16
013 p.2d(X) 7.07) P (7.16)
Step 5. We will check that, under condition (7.10)
AP (x) =0, {min |1 L: S a.e. as max{p,q}— oo. (7.17)
e ' L A,(27) " 4,20 Y ’ ' '
In fact, by the Cauchy inequality,
2p+1 m 2‘i —1)(k—1) 2’]/2
490! N m|y v UZDEZD g o]
g (X) i m [,"‘z = “mm—1)2° A Pu(x) \
Setting
[eo] PO m 23 l—l)(k—l) 2,1/2
=13 Vmﬂm[\S—L————m@m} ,
Fex) 3r;fz a=1 1(m) == omm—1)2¢ KT \

by (4.8) and (7.10),
” (i—1)>k-1)7 ,

\ lm q i
- ) )1:21(:2 m( —1)*2?

jmwwm=§

I
Qo
=
4
g
Q
=
~
iy
=
A\
8

-
il
N
=~
i
N

Hence B. Levi’s theorem implies the one half of (7.17). The other half can be
proved similarly. Combining (7.15)-(7.17) yields (7.13).

Part 4. The companion statement to (7.12) reads as follows: Under

condition (7.8),
(7.18)

as g— oo.

1
4,29

ISJI;;O) 2‘?<n;112)2(q+1 Iozp’"(x) o Ozp’zq(x)l = Ox
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Part 5. Finally, we prove that, under condition (7.8),

(@]
A (x) - 2p<m<2p+l 2q<nnl<2q+l |om"(x) m zq(X) - 02"’"()‘) + Uzp,zq(X)|

1

1
4,(27) 7 4,(29) as max{p,q}-o0. (7.19)

The proof is based on the following estimation:

2p+1 29+1

A;JZI)(x)< Z Z lomn(x)——om—l,n(x)_am,n—l(x)+0m—1,n—1(x)l

m=2p+1 n=294+1

2p+1 2q+1

Z Z mn[amn(x)_Um—l,n(x)_om,n—l(x)

+0m—l,n~1(x)]2}1/2 (720)
2p+1 2g+1 m n ;. 1 k— 2 1/2
[Z Z u X ) aik¢ik(x)J g .

> mn
m=2p+1 n=2a41 o2 izymm—1)n(n—1)

Now we define

2,172

|

re=| S 3 milen [$ 3 — 0D a0

o isaymim—1)n(n—1)

A simple computation gives, by (4.8) and (7.10),

0 @ (—1k—1
2 _ 2 .
[ Fi dutx)= 3 . rndim) ;:2 ;2 pr gy e g S
[oo] oo} m n -2k2
Z Z Z Z mn’ aj Ai(m)
m=2 n=2 i=2 k=
oo} o5} [oo] /12(H1) 02 1
= i*k*a? ! =
iZZ k=2 i mZ:i m’ n=k n’

It remains to apply B. Levi’s theorem in order to obtain the part
0,{1/2,(27)} in (7.19). The proof of the part o,{1/4,(27)} is quite similar.

Collecting (7.1)-(7.3), (7.12), (7.18), and (7.19) we obtain (2.13) to be
proved. |
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8. PROOFS OF THE THEOREMS IN SECTION 3

We set
1/2
ﬁ,=% a (r=1, 2,..; Qy = @),
(i'k)EQr\Qr—l
and
y 1 N . —
pl)=— 2 ayPu(x) if a,#0,

Ar (1,0€Q, N0y
=¢,(x) withsome (i, k)€ Q\Q,_, if a,=0.

It is clear that {g,(x): r =1, 2,...} is an ONS and conditions (3.1}-(3.3) turn
into the following ones:

[ee)

> azllog(r + 1)]*A}(r) < oo,

Sl ( Z 53) [log(p + 1)]* A3(r,) < oo,

and

> a2[log log(r + 3)]? A3(r) < co.

r=1

Thus, we can apply the two theorems of Tandori [13] in order to conclude
Theorems 1’ and 4’. Theorem 2’ can be deduced from Theorem 1’ in the
same way as Theorem 2 is deduced from Theorem 1 in Section 5. It remains
to prove Theorem 6'.

To this effect, let {y;(x): i=1,2,...} be an (ordinary) ONS and consider
the single orthogonal series

S b @)

where {b;: i =1,2,...} is a sequence of real numbers with }_ b7 < co. By the
Riesz—Fischer theorem there exists a function g(x) € L? such that the partial
sums

Sp(x) = i biyix) m=1,2,..),
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of series (8.1) converge to g(x) in L*-metric:
[ [sa00) = 2@)] du(x) >0 as m> oo,
Denote by o,,(x) the first arithmetic means of the partial sums:

on(X)=—> s(x)= S (l —-E;l—l) biwx)  (m=1,2..).

1
pa—
m ;= i=1

The following theorem seems to be new.

THEOREM 7. If conditions (2.17) and
> biflog log(i + 3)]* A3(}) < = (8.2)
i=1

are satisfied and {m/A%(m)} is nondecreasing, then

1/2

=o0, , a.e (8.3)

3 159~ 200

1
Ay(m)

After these preliminaries, Theorem 6’ can be deduced from Theorem 7 in
the same manner as Theorems 1’ and 4’ are deduced from the corresponding
theorems of [13].

Proof of Theorem 7. We begin with the obvious inequality

1 R "
X 50— P | < o Y I —oio)
1/2
S o - | @

On the one hand, by (8.2) we can apply |13, Theorem 2] resulting in

Op(x)— g(x) =0, , a.e. (8.5)

1
Ay(m)

We note that in the Tandori theorem in question a stronger requirement is
imposed on the sequence {A,(m)} than (2.17), namely

A (m?) = O{d,(m)} (m=1,2,.).

But an analysis of his proof reveals that even condition (2.7) is actually
enough.
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Due to (2.17), {A3(m)} satisfies condition (2.7). By (4.4), (4.6), and (8.5)
one can conclude that

g

On the other hand, letting

m 1/2
S [o/0)— ge)?

1
-—(, a.€
Ai(m)

(8.6)

[ee]

© l 1/2
> 2 ) - oI

the termwise integration gives

Fy(x) =

[ F3) dut) = ‘fn’") >0 5

a0 12 oo‘
- Y B o S i < o,

i=

i

'l’8 ﬁMg

It
~

5

where we used (4.8) and (8.2). By B. Levi’s theorem Fy(x) € L?. We can
apply the well known Kronecker lemma (see
{ .

, e.g, [2,p.72]) since
m/A}(m)} is nondecreasing by assumption and tends to oo by (4.4). As a
result we get
1 & 1Y
=Sl -l =0 1o

To sum up, (8.4), (8.6), and (8.7) result in (8.3) to be proved. |}

(8.7)

9. PrROOFS OF THEOREMS 5 AND 6
Proof of Theorem 5.

It resembles the proof of Theorem 4. Therefore we
only sketch the proof. We again use identity (7.1), this time with p=g¢q

Part 1. Theorem?2’ in the special case Q,={( k)EN:
i,k=1,2,.,r} (square partial sums) and r, = 27 states that, under condition
(2.14),

Sap,20(x) — f(x) =0, T (2,,) 9.1
Part 2. If

18
T8

al Ai(max{i, k}) < oo, 9.2)
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then

1
@7y e

Szp.zp(x) - Gzp,zp(x) =0, (9.3)

Indeed, setting

1/2

>

Folx)= Z Af(zp)[szp,zp(x) - Uzp,zp(x)]2

by (7.4), (4.7), and (9.2) one can show that F,(x) € L>. Applying B. Levi’s
theorem yields (9.3).

Part 3. If (9.2) is satisfied, then for every 8 > 1

M“L(x)— . 12p<m<ozp+1 lo O, 20(X) — O3p,20(X)]

1
2,27 9.4
X % l](zp) a.¢ ( )
It is clear that
MS,Z(X) < 971215123'(&2” l Gm,zp(x) — Gzp.zp(x)l
+ 2P<2l<ezp+1 |0m 20(X) = 025, 25()|
= M%) + Mh(x), ©.5)

say. For instance, we treat M{';(x) in detail. By the Cauchy inequality

g2p+1

MZS.:)(X) < Z IUm.ZH(x) —Op_ 1,2p(x)|
m=2r+1
02p+1 1/2
@0—1) X [0 2o¥) ~ 0y 2(%)]
m=254+1

Using (7.14), (4.7), and (9.2) one can check that

1/2

Fu = | 3 BeMa@E] el

whence B. Levi’s theorem implies

MSy(x)=o0,

1
h(2)
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The same estimate can be deduced for M}'5(x). This completes the proof
of (9.4).

Part 4. The symmetric counterpart of (9.4) reads as follows: If (9.2)
is satisfied, then for every 8> 1

, a.e. (9.6)

e-ngﬁ(ezw |020,0(X) = 025, 2/(X)| = 0

1
4,(2%)

Pgrt 5. Under (9.2), for every 8> 1,

2p<r};ll<)§p+l 8‘121712';32921’*'1 | omn(x) - Gm,zp(x) - oZF,n(x) + UZP,ZP(x)l

1

) € ae. 9.7)

= Ox )
In fact, it is enough to estimate

(6) — — —
My (x)=, max = max [0, (x) = 0p2(X) = 02,(X) + 02,x)

(cf. (9.5)). Introducing

Faw=| S 2enmewr]

=

and using an estimate similar to (7.20) (this time p = g), one can conclude
F,,(x) € L*. and (9.7). Putting (9.1), (9.3), (9.4), (9.6), and (9.7) together,
we find (2.15). |

A~

Proof of Theorem 6. It will be done in two parts.

Part 1. Due to the monotony of {m/i,(m)} and (4.6),

1 i 1
— ¥ =0 =1,2,..).
o 270 =C | T C )
Consequently, by Theorem 5,
1 m1 8i ) 1/2
o 2 S [owt) — /)
i=1 k=6-1i
| R i 172 1
=l—s = —, a.. 9.8
o 2o m)u o\ Ty 2 ©:8)
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Part 2. We will prove that if (9.2) is satisfied and {m/A,(m)} is
nondecreasing, then for every 6> 1,

Qb

i

SL m B 2( 1/2 _ \ 1 '
1 Z_] k:%:-li [si(x) — 0,(x)] | =0 T a.e. 9.9)

This can be verified by showing

o] ,12 911 1/2
FlZ(x)z ; Z 1(’:1) Z [Sm"(X)—O'mn(X)]Z: ELZ

m=1 M n=0-1m

To this end, one has to use a representation analogous to (7.4), then (4.8)
and (9.2).
So, the series

) i%(’:l ‘?zm [Smn(x) - Gmn(x)]2

1 m n=0-1m

e

converges a.e. One can apply the Kronecker lemma, since m/A,(m)— oo as
m— oo in a nondecreasing way, and obtain (9.9). Combining (9.8) and
(9.9), we get (2.16) to be proved. 1
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