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Abstract 

This paper provides further insight into the usefulness of smartphones and dedicated GPS devices for collecting current travel 
survey data. GPS and accelerometer time series for 33 European research project PEACOX study participants are available for 
analysis; these were tracked simultaneously with smartphones and dedicated devices for 8 weeks. Meaningful diaries can be 
extracted from both data sources. However, if high resolution data is needed, results suggest that dedicated GPS devices are still 
relevant; they have no battery issues, meaning that more data is recorded and that data quality is more stable. 
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1. Introduction and related work 

In transportation research, GPS traces are used, along with other data sources, to construct travel diaries. This 
data is primarily collected using dedicated GPS devices that respondents must carry with them during the tracking 
period. Smartphones are a promising source for GPS data (see e.g. Gould (2013)), as they have been equipped with 
good-quality GPS, accelerometer and other potentially useful sensor functionality during the last years and, as 
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opposed to dedicated devices, are often anyway carried by participants. A recent review of GPS-based travel studies 
and the required processing tools is given in Shen and Stopher (2014), who list representative studies using 
dedicated devices from 14 different countries, as well as four smartphone studies. The first GPS studies were 
undertaken in the late 1990s (Wagner, 1997). GPS devices were at first attached to cars. Later on, hand-held devices 
were used to capture all modes of travel (Wolf, 2004). Initial solutions for mobile phones were implemented in the 
mid-2000s (Asakura and Hato, 2004; Ohmori et al., 2006). By now, the smartphone-based travel data collection is 
growing rapidly, as evidenced by several new applications implemented over the last few years by the research 
community (Nitsche et al. (2014), Quantified Traveler (Jariyasunant et al., 2012), UbiActive (Fan et al., 2013), 
Future Mobility Survey (Cottrill et al., 2013), CONNECT of the MOVE project (Vlassenroot et al., 2015), 
SmarTrAC (Fan et al., 2015), SITTS (Safi et al., 2015)). Already, commercial tools designed to be used in different 
mobility studies are implemented, e.g., rMOVE (Resource Systems Group (RSG), 2015) and Studio Mobilita (2015) 
(used in Becker et al. (2015)). 

A clear advantage of smartphones is the large number of potential participants who do not have to be provided 
with devices. Further, smartphones are less likely to be left at home than dedicated GPS devices and the possibility 
to provide immediate feedback, e.g., on emissions, can increase the willingness to participate for longer time periods 
(Jariyasunant et al., 2012). But, using smartphones as a survey tool - in addition to normal usage - also implies an 
important challenge: battery life. Another difficulty for survey use of smartphones is a large variety of different 
operating systems, brands and types, with antennas of differing quality that must be covered. 

The goal of this paper is to provide further insight into the current usability of smartphones and dedicated GPS 
devices for collecting travel data. Data quality and usage of the two device types are compared, as are travel diaries 
generated from the two data sources. GPS and accelerometer time series of 33 study participants are available; these 
were tracked simultaneously with smartphones and dedicated devices for 8 weeks. The data was collected as part of 
the PEACOX project (www.project-peacox.eu), where a personalised journey planner application for smartphones to 
encourage ecological behaviour was developed. In the app, position data is collected to generate travel diaries; this is 
then used to personalise route suggestions. In this paper, data collected in the second field trial of the app (Vienna 
and Dublin from August to October 2014) is analysed. 

The paper is structured as follows. First, smartphone applications used in the PEACOX project (journey planning 
app, as well as a prompted recall app) are presented. In the next section, the field trial is described. Section 4 outlines 
differences in travel diary construction for the different device types. In Section 5, results are reported, including 
quantitative analysis, as well as users’ subjective perceptions. An interpretation of results and an outlook on 
continuing work concludes. 

2. Study context: the PEACOX project and applications 

PEACOX focuses primarily on the potential influence of the journey planning application, including its 
persuasive elements and how they affect users’ travel behaviour and attitudes towards mobility. As part of this effort, 
GPS and accelerometer data was collected to inform users about past travel behaviour and CO2 emissions. The 
application is a prototype and was tested in field trials, enabling us to enhance the data with questionnaires, a 
prompted recall tool and by giving participants dedicated GPS loggers (MobiTest GSL). In the following the journey 
planning, as the prompted recall applications are also introduced. 

2.1. Journey planning app 

The PEACOX journey planning app allows the user to perform a multi-modal search for a route tailored to the 
user’s individual preferences and behaviour patterns. In general, it works like a common journey planner; an origin 
and a destination are specified and possible routes are then suggested. When routes are requested in PEACOX, 
available alternatives are enhanced with emission information (Alam and McNabola, 2012). The enriched results are 
then ranked and personalised by the recommender engine (Bothos et al., 2012). Recommendations are partially 
based on the trip history gathered from recorded GPS and accelerometer data. Selected eco-friendly route options are 
promoted by adding a persuasive message (Fig. 1(a)). Other persuasive elements were implemented: challenges 
where users competed against each other, as well as comparing themselves on emissions rankings and, finally, a 
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user’s own improvement, represented by a growing or shrinking tree. These and other potential persuasion strategies 
are discussed in Prost et al. (2013b). Implementation details of this android application can be found in Artukovic et 
al. (2013). 

2.2. Prompted recall app 

A prompted recall tool allows participants to review collected trip history and provide manual corrections. 
Normally, these tools are web-based, as shown in Auld et al. (2009) and as, e.g., implemented by Montini et al. 
(2013) for a GPS-based survey in Zurich. In this context, however, like the journey planner, the prompted recall tool 
is developed for smartphones. For the field trial, a clearly laid out and user-friendly interface was developed, 
consisting of a map with GPS tracks and a prefilled list of transport modes and activity types representing the diaries 
(Fig. 1(b)). Each day could be selected from the menu, the activity type and transport mode could be changed given 
predefined lists and, for each day, a comment can then be left. Changing departure and arrival times was not allowed 
and instead of deleting activities or stages participants could select ’no trip’ or ’no activity’. If no data was available, 
users could check the box ’I stayed home all day’. Unfortunately, it became clear only after the field trial that, in the 
list of days not yet corrected, the only days included were those where some data was available; most days without 
data were not confirmed by users. 

The app uses and shows very private data and is therefore login protected; login is the same as for the PEACOX 
journey planner. Overall, users stated that they were pleased with the handling of the trip diary app. They described 
it as easy to use and user-friendly. At least one user also found the app interesting for private use to check on the 
routes travelled during a day. 

 
a  b  

Fig. 1. PEACOX applications; (a) journey planner: routes with CO2 information and persuasive message; (b) prompted recall: map and diary list. 
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3. Field trial 

In 2013, the first version of the trip planning application was tested in an initial field trial in Vienna (Prost et al., 
2013a). The second field trial was conducted in 2014, from August 11th to October 4th in Vienna, Austria and in 
Dublin, Ireland, where the trial started one week later. 

A total of 37 test users (20 in Vienna, 17 in Dublin) participated in the field trial and tested the application on 
their own smartphones for eight consecutive weeks. The application accessed smartphone built-in sensors and 
logged their GPS as well as accelerometer data. Additionally, participants were equipped with a dedicated high-
precision GPS positioning and logging device. As part of the trial, users were also asked to manually monitor their 
logged data (based on the smartphone GPS), using the prompted recall diary and to provide corrections to validate 
the automatically generated travel diaries. As an incentive, participants received 150 euros financial compensation 
after completion of the survey. 

3.1. Participants 

Participants were recruited from a database of people interested in taking part in usability and user experience 
studies, by open calls for participation (promoted in university lectures) and through university mailing lists. 
Prospective participants had to fill in a screening questionnaire and could only be recruited when they fulfilled the 
following predefined criteria: age 18 or older, living and working, or studying, in the test area (Vienna, respectively 
Dublin metropolitan area), a smartphone (running Android OS 4.0 or newer) for at least three months, including an 
associated data plan with a minimum of 500 MB per month and, during the eight weeks of trial, no planned absence 
for more than one week (e.g. holiday outside of the study regions). 

Overall, recruitment aimed at including a balanced representation of relevant mobility types (car users, cyclists, 
pedestrians, users of public transport), as well as demographic characteristics such as sex and education. This 
recruiting strategy resulted in the sample described in Table 1. 

   Table 1. Characteristics of participants. 

Age Average age 33, oldest participant 69 and the youngest 19 

Sex 14 female, 23 male 

Occupation 16 participants employed, 12 students, 4 unemployed or retired, 3 self-employed and 2 on 
parental leave 

Main transportation means 6 users mainly use car or motorbike, 6 use bicycles, 11 public transport, 5 walking and 9 
did not define 

Usage of journey planning app 8 participants had never used a journey planning app prior to the study, 29 had 

 
GPS data is available for 33 of the 37 participants, where for one person only smartphone and for another person 

only device data is usable.  

3.2. Procedure 

After agreeing to take part in the trial, participants were invited to an introductory workshop instructing the users 
on the trial procedure, explaining the functionality and handling of the devices and apps and how participants were 
expected to use them. Participants were instructed to: carry the devices around at all times, turn on smartphone GPS 
sensor (to enable logging) and regularly charge the devices.  

During the field trial, after about three and six weeks of usage, qualitative in-depth interviews about app usage - 
as well as experiences and their influence on transport mode decisions - were conducted with most users. Some 
participants were not reachable. At the end of the trial, participants were invited to focus groups to concentrate on 
collecting and reflecting on users’ experiences during the trials. 

Beside these face-to-face interactions with the participants, online questionnaires were also sent three times 
during the trial: at the beginning, in the middle and at the end. The questionnaires focused on demographic data, 
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mobility behaviour and attitudes towards different transportation means and environmental issues. The second and 
third questionnaire also included questions on usage and experience with the apps. 

3.3. Data collection 

As described above two different approaches to data collection were used. The dedicated GPS was a MobiTest 
GSL device (MGE DATA, 2012); GPS data was collected with 1 Hz and accelerometer data with a frequency of 
10 Hz. Data was stored locally on the device; after the end of the trials, when participants handed back the devices, 
the data was downloaded and made accessible for analysis. For smartphone data, as participants used their own 
devices, the sample consists of a variety of models, mainly Samsung devices, as shown in Table 2. Position data was 
collected in the background by the PEACOX app. GPS data was collected with a frequency of 1 Hz and uploaded to 
the server every minute. Accelerometer data was specified to use the sensor’s standard frequency which is usually 
set to 5 Hz; data was uploaded every 70 seconds. Dedicated programming of the app ensured that the logging 
process was not stopped by the Android Task management, and that all available location information sources (GPS 
and WiFi network) were used for acquiring position information. 

                    Table 2. Smartphone types used in field trial. 

Smartphone type Number of devices 

Samsung Galaxy S3 7 

Samsung Galaxy S2 6 

Motorola Moto G 3 

Samsung Galaxy Nexus 2 2 

Samsung Galaxy Nexus 4 2 

Samsung Galaxy S3 mini 2 

Sony Xperia Z1 2 

Samsung Galaxy Note 2 1 

Samsung Galaxy S4 1 

Samsung Galaxy S4 mini 1 

Alcatel One Touch 4030x 1 

Huawei Ascend Y330 1 

LG Nexus 5 1 

LG P760 Optimus L9 1 

UTime U100 1 

Vodafone 875 Smart mini 1 

Not reported 4 
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4. Travel diary generation 

To process GPS and accelerometer data the software package POSDAP (2012) is used. The three most relevant 
steps when creating travel diaries are: 

 
1. Cleaning of raw data: GPS points are filtered when too few satellites are accessible or accuracy measures are 

bad. 
2. Identification of activities and trips: mainly based on point clouds, signal gaps and changes in the 

accelerometer signal if mode is changed to, or from, walk. 
3. Identification of transport mode and activity type: done using either a fuzzy rule or a random forest classifier. 
 
Routine configuration was calibrated on data collected with the same dedicated GPS loggers used in this survey 

(MobiTest GSL). The training data was collected in and around Zurich, for up to one week, by 150 different people 
(Montini et al., 2013). 

In the following, differences in processing are described for the three travel diary types: (1) uncorrected diaries 
from smartphone data, (2) corrected diaries from smartphone data and (3) uncorrected diaries from dedicated device 
data. For all types in the subsequent analysis, stages were deleted if they were based on accelerometer only; that is, 
without any GPS point being part of that stage, as it turned out that most of those were unrealistic. 

4.1. Uncorrected diaries from smartphones 

The uncorrected diaries evaluated in this paper, created every night during the field trial, are the ones actually 
presented to the participants. 

A random forest classifier for activity type identification is learned new every day, incorporating three data 
sources: (1) the data set collected in Zurich (around 7000 observations), (2) data collected in the first field trial (425 
observations) and (3) all data collected and corrected during the second field trial. Using the freshly corrected data 
necessitates daily updating of the activity type classifier. As shown in Montini et al. (2014), distance to home and 
work locations are important, but the PEACOX system does not know these locations, thus both locations must be 
learned as fast as possible. If corrected data is available, the locations most often annotated as home and as work are 
saved for that person. Otherwise, if GPS data was collected, but no corrections were available, a classifier not using 
distance to home and work was used to classify all activities. Locations predicted to be home and work are then used 
to extract an approximation of these two locations. Using these approximations, distance to home and work can be 
calculated and classification is run again, using a classifier that takes advantage of these distances. 

After two thirds of the field trial (day 39 after start in Vienna), configuration of the processing routines was 
changed, because many stages were detected within point clouds. Hence, detection of point clusters was relaxed 
(radius for clouds increased from 10 to 35 meters) and the duration criteria were increased (minimum stage duration 
3 minutes instead of 1 minute). Trip purpose detection stopped working due to an error when loading the freshly 
corrected data into a new classifier. Trip detection was rerun for the affected days (day 22 to 41). 

At first, mode detection was implemented as fuzzy rule system. For the last third of the field trial period it was 
replaced by a random forest classifier. This classifier apart from considering the commonly used speed and 
accelerometer variables also included knowledge of self-reported mode shares. 

4.2. Corrected diaries from smartphones 

Corrected diaries are heavily based on the uncorrected ones, as users were not allowed to change start and end 
times, or add new activities. But users could add the flags ’no activity’ and ’no trip’; thus stages are merged if ’no 
activity’ occurred between; accordingly, activities are also merged. Further, transport mode and trip purpose 
corrections by participants are considered. For this paper, no further corrections were made by the researchers. 
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4.3. Uncorrected diaries from dedicated devices 

Data collected by dedicated devices is processed all in one run, after the field trial. Processing used the first few 
weeks of the field trial’s configuration. For trip purpose and mode detection, random forest classifiers were learned 
from the Zurich training data. 

5. Results 

Results of the field trials are organised as follows. In the first two subsections, data generated by and measures 
derived from both smartphones and dedicated devices are analysed. The following two questions about differences 
between the devices are tested: 

1. Is the data quality of dedicated devices better and more stable than that of smartphones? 
2. Are more days covered by smartphones because they are not often forgotten at home? 
The first question is analysed looking at frequency of raw data. The second question is initially analysed by 

looking at daily levels of factors, but then more in depth, by investigating differences in the specific diaries. Third, 
users’ usage and assessments of the trip diary app are presented. Trip purpose evaluation and transport mode 
detection based on users’ changes are discussed. To conclude, user feedback on battery life is reported. 

It is important to remember that all users’ comments relate to data collected with their smartphones, as they had 
no access to data from dedicated devices during the field trial. 

5.1. Data quality of raw data 

To get a first proxy for data quality, GPS data sampling frequency is used. Both device types are specified to use 
a sampling frequency of one GPS point per second. The sampling frequency is computed for all detected stages 
(movement segments) after cleaning of invalid GPS points. In Fig. 2, the average sampling is shown per user, 
ordered by smartphone sampling rate. For smartphones, the sampling is generally lower than that of the GPS device 
and between smartphones, bigger differences in sampling rates are observed than between GPS devices. This 
confirms our assumption and is not surprising, but the different frequencies must be considered when configuring 
GPS track segmentation routines. Types of smartphones used most in the study are also highlighted in Fig. 2, 
indicating that sampling frequencies also differ within smartphone types. However, due to the small number of data 
points, it is unclear whether the differences are similar to the dedicated devices or greater. 

 
Fig. 2. Average GPS point frequency for detected stages for both devices carried simultaneously. 

 
 



234   Lara Montini et al.  /  Transportation Research Procedia   11  ( 2015 )  227 – 241 

5.2. Comparison generated travel diaries from smartphone and dedicated device data 

To compare usability of dedicated devices and smartphones for mobility studies, detected movement duration is 
chosen over the number of trips. The problem with number of trips as a comparison mode is that it relies on both trip 
segmentation and activity type detection, as stages are merged into trips if a mode transfer point is detected between 
them. Summing up the duration, on the other hand, should result in similar total durations, even if activities are not 
correctly classified or if the number of stages differs. 

To get a general impression of the collected data amount, Fig. 3 shows the number of days for which movement 
was detected with both devices, with one device or with no device, for each user. First, on many days, no movement 
was detected at all (yellow). Approximately half the Vienna users did not move, for up to of 10 days, which is above 
expectations for an 8-week-field-trial, but not too much. In any case, there is definitely movement not captured by 
any of the devices. Interestingly, more movement is captured with dedicated devices; 312 days versus 227 days that 
were captured only by smartphones - this contradicts the assumption that smartphones cover more days. User 
feedback indicates that some days were not logged, even though the app was turned on; at least three users realised 
that full days of data were missing. In general, smartphones were probably not forgotten at home, but the app was 
turned off to save battery. Restarting the app when moving again can easily be forgotten. At least two users 
remembered that they left the GPS device in the car at some point.  

Fig. 3. Daily detected duration per person. 
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Fig. 3 also shows that the quantity of collected data differs for the two cities, possibly because: first, some of the 
Vienna users had already participated in the first field trial and knew what to expect and may also have had a special 
interest in the topic. Second, the main survey team was located in Vienna, possibly inducing more commitment in 
users living there. And third: users from Dublin were younger. 

To get into more detail, Fig. 4 shows summed up movement durations for all days on the right and an out-take of 
daily movement patterns on the right for three sample users. On the left, movement detected by smartphones, 
corrected movement (considering ’no trip’, ’no activity’ flags), as well as duration detected using dedicated devices 
data are shown. Further, colour indicates whether a user corrected the diary or not and also if s/he flagged ’stayed 
home’. It can be seen that no one flagged ’stayed home’, probably because of an error in the trip diary due to which 
days with no GPS data were not listed under ’days to be reviewed’. In addition, almost no one made corrections 
during the last week and even though they were advised to make corrections the next day, most corrections were 
made after a week, with some only at the end of the field trial. On the right side of Fig. 4, daily movement patterns 
extracted from dedicated devices are shown on top in violet and in blue, below, from smartphone data. Ideally, the 
two colours would match perfectly. 

Details of the user with most days covered - with both devices - are depicted in Fig. 4(a). On the left, it is clear, 
that the person collected data almost every day and also confirmed it using the trip diary. But there is also some 
evidence that not all corrections are correct; e.g. on day 32, the participant claims undetected movement of around 9 
hours; probably, an activity was wrongfully marked as ’no activity’. The movement patterns on the right show trips 
in the early morning around 07:00 on most weekdays and a trip home between 16:00 and 17:00. The patterns of 
smartphones and dedicated devices are similar; but, for example, the morning trip in this outtake is covered 12 times 
by the dedicated device and only seven times by the smartphone. In addition, there are still several shorter 
movements, perhaps erroneously detected, using smartphone data. This example is supported by above average data 
quality and quantity, as well as diary matching. 

Fig. 4(b) shows a user with relatively sparse data on all aspects. Of the 8 weeks, little more than 3 weeks are 
covered by data as shown on the left. It is also clear that the trip diary was only used for corrections at the beginning. 
The first three weeks depicted on the right show no work pattern, or any other pattern. 

In several cases, too much movement was detected by smartphones, which was a reason for the configuration 
change mentioned in Section 4. A good example of this is the participant’s data shown in Fig. 4(c), where the 
positive effect of changes is visible; movement detected for smartphone drops clearly after day 39 and is then similar 
to the dedicated device. The unrealistic movement durations are also clearly shown on the right, days 33 to 38, 
which were not the most extreme, according to the figure on the left. But it must also be noted that, for some users, 
the original configuration was satisfactory (e.g. Fig. 4(a)) and, for other users, the change in configuration had no 
clear effect. 

To compare detected daily movement, coverage criteria is introduced. Coverage c is defined here as the 
percentage of a stage detected with one device that is also covered by the other device. That is: when suffix s1 is a 
stage detected by device 1 and d2 is device 2 and move is movement detected by the given device during the given 
stage and dur is the duration of a stage, coverage is given as: 

          (1) 

For example, if a stages of device 1 s1 is surrounded by a stage of device 2 s2 (which is twice as long), 
cs1,d2 = 100 % and cs2,d1 = 50 %. For every participant, Fig. 5 shows - for both devices - the share of stages that 
overlaps with stages of the other device (cross symbols), as well as mean coverage of the overlapping stages (filled 
symbols). To compare the quality of the devices and not whether participants remembered using both (not always 
the case, as shown previously), analysis is done only for days where both devices registered movement as specified 
in Fig. 3. The sample users presented there are also highlighted in Fig. 5 and the order of participants is determined 
by the sum of all four shown criteria. 
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(a) User with highest share of days with data 
  

(b) A user with relatively sparse data 
  

(c) A user where configuration change (day 39) slightly improved movement detection 
  

Fig. 4. Cumulated detected daily movement and sample of movements during the day for three selected users. Sundays highlighted in grey. 
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Stages detected from smartphone data tend to be longer; dedicated device stages are thus often completely 
surrounded, resulting in 100 % coverage for the GPS device and less than that for the smartphone stages. This shows 
in the higher values of mean coverage for the device stages. Smartphone stages are still mostly covered over 80 % on 
average. These are rather high and promising numbers; more problematic is, that many stages do not overlap at all. 
The range of values is rather high, varying between slightly less than 20 % and somewhat more than 80 %. Detecting 
too much movement is positive, as it can probably be improved by personalised configurations. 

Fig. 5. Mean coverage of overlapping stages and share of overlapping stages. Only days where both devices were active (Fig. 3). 

5.3. Evaluation of trip purpose and activity type detection 

In total, 10415 stages were detected based on smartphone data presented to participants. Users made corrections 
in 41 % of all cases. There is, however, evidence that even more corrections would have been necessary. First, only 
51 % of the days were confirmed by users. Second, 24 % of all stages were corrected to be no trips at all, and of 
those 67 % are stages detected as bike. Even when removing all ’no trip’-stages, the remaining bike share of 28.7 % 
seems too high, even though the study encourages ecological behaviour. And third, for these corrected diaries the 
share of stages marked with mode ’unknown’ is still 8.2 %. The remaining reported mode shares are 39.7 % 
walking, 13.7 % car, 5.7 % bus or tram, 0.9 % rail and 2.8 % metro. 

As explained in Section 4, trip segmentation was reconfigured during the trial due to problems with short stages 
detected within point clouds. Users noticed these problems and reported that this generally happened in situations 
where they were not moving at all; they complained that the many short segments were cumbersome to fix manually. 
At least one user reported that the system detected a lot of quick interchanges between different modes within a few 
minutes, including public transport. The configuration changes of both trip segmentation and mode detection had a 
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positive effect. Slightly fewer stages were classified as ’no trip’ (22 % compared to 25 % before). Overall, the share 
of correctly identified modes increased from a very low 55 % to 73 %. 

Users’ assessments of trip mode and purpose detection quality varied. Four users reported that they had no, or 
almost no, wrong trips, four others estimated a share of around 50 % to 75 % correct modes and activity types. 
Another four stated that the travel diary was inaccurate and they had much to fix. Users’ assessments correspond 
well with corrections they made, as shown in Fig. 6, where detection accuracies are shown per user, ordered by the 
share of correctly detected transport modes. Six users have 100 % accuracy, which indicates that no corrections were 
made. It is clear that activity type detection performed better than mode detection, which was either more influenced 
by the quality of the segmentation, or that participants tend to correct modes, but not activities. 

Even though numerical activity-type detection performed better than mode detection, it was not perceived very 
well by users when asked about it: probably highly influenced by the three-week interruption where the classifier did 
not run. Overall, less than 20 % of all activities were corrected by users. Activity type detection accuracy was 
compared before and after configuration changes; no major differences could be found and therefore the following 
results cover the complete survey period. Of all corrections, 5 % are declared as ’no activity’. After removing those 
and merging activities with ’no trip’ in between, the following shares are reported: 26.2 % at home, 27.7 % leisure 
activities, 15.6 % mode transfers, 12.0 % work or education, 10.7 % shopping, 1.2 % business activities, 0.9 % 
picking up someone and 5.7 % unspecified stops. 

Travel diaries extracted from the dedicated devices have 7 % more activities compared to the corrected 
smartphone diaries, which is sensible as more days are covered by dedicated devices. The main difference is the 
share of activity type detected: over 4 times as many mode transfer points and approximately half as many home, 
work and leisure activities. 

Fig. 6. Detection accuracy per user (based on corrections of smartphone-based diary). 

5.4. Battery drain issues 

A common and known issue with constant GPS logging is a considerable drain on the smartphone’s battery. 
Accelerometer logging, on the other hand uses much less power (Ben Abdesslem et al., 2009) and is usually not an 
issue. To reduce impact on battery life, a scheduling mechanism was implemented that stopped any logging activity 
between 22:00 at night and 06:00 the next morning. However, several users reported that this did not work and that 
they had to turn the logging off manually at night. 

In the introductory workshop, participants were advised to keep GPS antenna, the Google location services, WiFi 
and the PEACOX sensor logging on, whenever possible. Concerns about battery life were already being discussed, 
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and leading to the consensus that turning off logging when not moving for some time, e.g., at home, is acceptable. 
Several users did so; however, at times logging had to be turned off to avoid an empty battery. 

In the beginning, participants were also advised to carry a charger at all times and recharge whenever possible in 
the office (many users did that), or in the car (which was not always sufficient, depending on the length of trips). 
Two users even bought a second battery or a mobile charging device. 

As expected, battery life was a problem (except for 4 users who specifically said otherwise), especially on the go, 
or outdoors without charging options. Several described it as quick and noticeable, one claimed that constant 
charging was needed; at least one user dropped out of the study because of these problems. 

6. Conclusion and outlook 

As expected, sampling frequencies of smartphones are lower and more diverse than for the same dedicated GPS 
device. Diversity between phones, as well as usage by participants, is also shown with the share of overlapping 
stages (Fig. 5); this varies between 20 % and 80 %. In general, data quality collected with smartphones is sufficient, 
for example, to detect routes. Observation indicated that as much, or even more, movement is detected; missing data 
is not the problem. But if different smartphones are used, calibration of detection routines is a major challenge, 
particularly, when collecting information about short routes is important (often one of the reasons using GPS in 
travel surveys). In that case, from a researcher’s perspective, it is better to detect more and let users delete the 
wrongly detected trips and activities, which is much easier than adding trips. Following that reasoning, it might even 
be an option to detect ’no trip’ and ’no activity’. This was actually done in this field trial; activity type classifier was 
learned on the actual field trial data, which includes these options. 

The unexpectedly large differences in generated stages and activities made it almost impossible to compare the 
diaries on a fine-grained level considering detected transport modes and activity types. On an aggregated level, the 
type of activities detected for the dedicated device diaries are very different: four times as many mode transfer points 
and approximately half as many home, work and leisure activities. 

For most users, more data is collected with dedicated devices, it is more likely that they will be taken along. On 
the other hand, users may carry their smartphones, but do not turn on the app. This is partly due to the heavy use of 
battery during high frequency data logging, which also renders such applications impractical beyond a dedicated 
study setup. For the sake of the study (and the financial compensation) users were willing to accept annoyances like 
carrying a charger with them and the occasional flat battery. However, for large-scale, long-term data collection, it is 
very unlikely users would be willing to compromise. Because of these issues - at the moment - if high resolution data 
is needed, dedicated devices are still relevant, as they last several days without charging, also thanks to a sleep mode 
of the used devices. It is expected, that battery life issues will be solved in the near future by better batteries, as well 
as optimisation of energy consumption and intelligent logging schemes. 

Observation also indicated, that when users correct diaries, uncertainties remain about whether all incidents are 
corrected. On one hand, many entries are not confirmed at all; on the other hand, trip entries are confirmed as being 
corrected, where, obviously, too much movement was detected. For mode and activity type detection, several users 
made no changes at all, which is very suspicious. Thus, it is often obligatory that data is processed again, or cleaned 
manually after the end of the survey. The problem indicators mentioned above can be used as starting points to 
indicate where cleaning is necessary. 

Despite issues with the quantity of corrections, implementation of this task as smartphone application instead of a 
(paper) diary was successful; users found the application easy to use. However, depending on data quality, this can 
impose additional workload to fix many false detections of trips or activities. While users expressed interest in 
reviewing their trips to learn about their own mobility habits, they have high expectations about quality of detection. 
So as not to discourage user activity in correcting detections, it must be carefully considered how much workload 
burden is put on users. In any case, an easy-to-use user interface is essential. Further, users should be actively 
triggered, or reminded, to regularly correct trips and changes. 

The difference between cities in, for example, number of days with movement data, showed that even with 
passive collection methods of high resolution data, significant personal contact and effort by survey organisers are 
needed to ensure high-quality and comprehensive generated travel diaries. 
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Here, we described issues with GPS data processing when collected data was assumed to be the same in terms of 
specification, but different due to devices or people. Processing methods and data analysis, on the other hand, were 
identical. Given these preconditions, the extracted travel diaries are not the same. Future work includes configuration 
personalisation, as well as analysis of whether the method used is too sensitive about data specifications. Issues with 
mode and trip purpose detection, e.g. overrepresented cycling stages, will be investigated as well; does the problem 
stem from a previous erroneous detected stage, or does the mode detection itself need to be improved? It would also 
be most interesting to discover whether other processing methods yield the same results, or if they are more stable. 
Sharing issues about GPS data privacy and commercially-used processing routines, or the need for expert knowledge 
to apply the routines efficiently should be tackled. 
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