
Comput. Math. Applic. Vol. 13, No. 8, pp. 687-709, 1987 0097-4943/87 $3.00+0.00 
Printed in Great Britain. All rights reserved Copyright © 1987 Pergamon Journals Ltd 

A S Y M P T O T I C  B E H A V I O U R  O F  T H E  P E R T U R B A T I O N  

O F  A G I V E N  M E A N  F L O W  

F. BROSSIER 
Laboratoire Logiciels, Analyse Num~rique, Statistiques, Institut National des Sciences Appliqu6es, 

20, avenue des Buttes de Co,sines, 35043 Rennes, France 

(Received 12 November 1986) 

Communicated by E. Y. Rodin 

Abstract--We consider an oceanic domain included in R 3, in which there exist, at initial time, a current 
field V 0 and a temperature field 00. Perturbations V and 0 of  the velocity and the temperature are induced 
by a perturbation of  the mean wind-stress. V and 0 have to satisfy a non-linear problem of  Navier-Stokes 
type. We prove the existence of  the solution, for the variational problem, and give some results about 
uniqueness and regularity. In order to study the asymptotic behaviour of  the perturbation, we introduce 
some operators, deduced from the Stokes operator. Their properties allow us to make a priori estimations, 
and to prove that, under some assumptions, the perturbations V(t) and O(t) remain bounded as t--,oo. 
With stronger assumptions about the initial data, we can prove that the perturbation tends to 0 as t --* oo, 
and that the solution of  the variational problem is a strong solution for every t E [0, oo[. 

N O T A T I O N  

x, y, z = The cartesian coordinates, forming a right-handed set, in which x, y are measured in the horizontal plane of  the 
undisturbed sea surface (0x towards the East, 0y towards the North and 0z vertically ascendant) 

V = The current velocity 
p ---- Pressure 
0 = Temperature 

Pm= A mean value of  the density over all the domain 
V 0 = The current velocity at initial time 

P0, 00 = Pressure and temperature at initial time 
F = (0, 0, 2co sin 0)  = The Coriolis stress 
~o -- Rate of  rotation of  the earth 

-- Latitude 
G = (0, 0 , - g )  = The gravity stress 
T = The wind-stress 
v = The eddy viscosity coefficient 

v ' =  The eddy diffusivity coefficient 
n = The unit outward vector normal to the boundary 

V = V t + Vn; V t = tangential component  of  the velocity, Vn = normal component of  the velocity 
V = (v~, v~, v3) 

(x, y, z) - (xl, x2, x3) 
0 

D i - - ~ x  i, i = i , 3 .  

V = The gradient operator \COx cOy t~z] -= (Dr' D2, D3) 

a = v . v =  En~ 
i z l  

3 

[V.V] = The operator ~, viD~ 

1. I N T R O D U C T I O N  

We have undertaken this study in order to make precise some results obtained in previous works 
about equatorial waves [1, 2]. Our purpose was then to investigate the effects of a mean circulation, 
with vertical and latitudinal shear, on the equatorial oceanic waves. To this end, we have developed 
a numerical model to calculate the perturbation of a given mean flow. The excited waves were 
obtained by Fourier analysis of the perturbation of the velocity. We have dealt with two initial 
situations, characteristic of the circulation in the equatorial Atlantic during the summer and the 
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winter. One important feature displayed by this study is the existence of  unstable waves, in the 
meaning that their amplitude increases as a function of time. This instability is dependent upon 
the characteristics of the mean circulation. For  example, with an initial circulation corresponding 
to the summer in the equatorial Atlantic, we get an unstable westward propagating wave of  
24-day period. This wave is no longer present with an initial mean flow corresponding to the winter, 
and characterized by weaker westward currents. These results have been corroborated by recent 
observations in situ. 

The fact that oceanic waves could be stable or unstable, depending on the characteristics of  the 
mean circulation, induced us to consider the problem of  the stability of  a given initial flow. To 
this end, we went back to the problem of the perturbation of a mean circulation, introduced to 
modelize waves, in order to study its asymptotic behaviour. 

Let fl  be a bounded oceanic domain, included in •3. We assume that there exist in fl, at initial 
time, a current field V 0 and a temperature field 00. A perturbation of  the wind-stress induces a 
perturbation of  the mean circulation. We are going to study its behaviour as time t ~ oo. Velocity 
of  the current has to satisfy Navier-Stokes equations, to which is added a linear term resulting 
from Coriolis stress. The equation satisfied by temperature is of  transport-diffusion type. We prove, 
for this non-linear problem, the existence of  a solution in proper functional spaces. The uniqueness 
can be proved only for a more regular solution, but then we cannot assure the existence. 

To study the stability, we introduce some operators deduced from the Stokes operator. These 
operators generate strongly continuous semi-groups, which allows us to write a weak solution of  
the problem. We have located the eigenvalues of  these operators; they are situated inside a 
parabolic curve drawn in the complex plane. 

We show that the perturbations of  velocity and temperature remain bounded for every time t, 
provided that the eigenvalues have positive real parts and under some assumptions about the inital 
circulation and the perturbation of  the wind-stress. With stronger assumptions, we can prove that 
the perturbation tends to 0 as time t ~ oo. 

2. G E N E R A L  A S S U M P T I O N S  AND E Q U A T I O N S  

The equations governing the circulation in an oceanic domain included in R 3 are the 
Navier-Stokes equations, to which is added a term resulting from the Coriolis stress. Temperature 
is governed by a transport-diffusion equation. So, velocity V(x, y, z; t), pressure p(x, y, z; t) and 
temperature O(x, y, z; t) have to satisfy the following equations: 

+ tv v jv  ^ v-v v v ,  _-T + G  

div V = 0 

0 +  [V. V)0 - v'A0 = 0, 
t~t 

0) 

(2) 

(3) 

in f~ x [0, T]. 
In equation (1), T represents the wind-stress which will be considered as a body-force. 
The physical problem we are dealing with is the problem of  equatorial waves developed in 

Ref. [2]. We assume that at the initial time, induced by a mean wind-stress T 0, there exists in 
a stationary flow characterized by a velocity V0(x, y, z), a pressure po(x, y, z) and a temperature 
Oo(X, y, z). In order to study the stability of  this stationary solution, we are going to calculate the 
perturbations V'(x, y, z; t), p '(x, y, z; t),/9'(x, y, z; t) of  velocity, pressure and temperature induced 
by a perturbation T'( t )  of  the wind-stress. 

The mean situation (V0, 00) is given. The values of  current and temperature must be characteristic 
of  an equatorial domain. Two cases can occur, these values, resulting from physical observations, 
either verify the linearized equations, or are solutions of  the complete, non-linear, stationary 
problem. 
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In these two cases, equations satisfied by the perturbations V', p '  and O' can be written: 

~ O~-~-+[Vo'V]V' +[V"V]Vo+[V"V]V'+F ^ V ' - v A V '  + I v p ' = f ( t  ) (4) 
Pm 

~ d i v  V' = 0 (5) 

L~t¢30' + [Vo. VI0, + [V' "Vl0 o + [V"VI0' - v'AO'= dp, (6) 

in f~ x [0, T]. 
If  (Vo, 0o) satisfies the linearized stationary problem, 

f(t) = T'(t) - [Vo-V]Vo; q~ = -[Vo.V]0o + v'AOo. 

If (Vo, 0o) is the solution of the non-linear stationary problem, 

f ( t )  = T ' ( t ) ;  ~b = 0 .  

At initial time t = 0, the mean flow is not modified: 

Vi(x, y, z; 0 )=0 (7) 

0 (x, y, z; 0) = 0. (8) 

The oceanic domain we want to study is an equatorial band, lying from 10°S to 10°N, limited 
by eastern and western boundaries, and of constant depth H. 

On this equatorial band, we neglect curvature of the earth. So, the domain is parallelepipedic. 
Let ~ be the open set obtained from this oceanic domain by regularizing vertical edges, in order 

to suppress possible singularities in the corners. F = F 'U  F" is the boundary of the open set ~,  
F '  designating the bottom of the studied layer, F" the union of the sea surface and the lateral 
boundaries. We suppose that velocity vanishes on F ' .  On F", velocity is supposed to be tangential 
to the boundary, and its derivative is supposed to be zero. 

We also assume that perturbation of the temperature vanishes on F. Then, the boundary 
conditions on F can be written 

F = F't3F" 

0"=0 on 

V' = 0 on 

V ' . n  = 0  and 

N.B .  

F (9) 

F '  (10) 

0 (V~)=0  on F". (11) 
On 

Hereafter, the notation ", ' , "  for the perturbation of the mean situation will be omitted. 

3. EXISTENCE AND R E G U L A R I T Y  OF THE PERTURBATION 

We will denote HI (~)=  [Hl(fl)] 3, L2(~)= [L2(~)] 3, (U, V)= SnU'V d~  is the scalar product in 
L2(t~), I U I =  (U, U) 1/2 is the norm in D_2(fl) [[ q l the norm in L:(~)], It U II is the norm in H'(fl) [H q ]1 
the norm in H~(fl)] and [U] = (grad U, grad U) ~/~ the semi-norm in W(fl). 

We introduce the following functional spaces: 

og = {U ~ ~(f~)/div U = O} 

H = {U ~ 0_2(~)/div U = 0, U" n = 0 on F } 

V = { U e W ( f 0 / d i v U = 0 ,  U ' n = 0  on F", U = 0  on F'}, 

where 
V' = the dual space of V,  

H = identical  to its dual space H' 

and 

V = a c losed subset o f  W(f l ) ,  e n d o w e d  with  the n o r m  o f  H ~. 

C.A.M.W.A. I MS--C 
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f2 is an open set of R 3 of class q¢0.1. The outward vector normal to the boundary n is therefore 
defined almost everywhere on F. On V, the semi-norm [ ] is a norm equivalent to the norm of 
H':II II. 

Thus, there is one constant C such that 

CIIVII~<[V]~<IIVII, V V e V .  (12) 

We know that L2(t)) = H t~ H J-. Let P be the orthogonal projector in U(f2) onto the space H. For 
U, V, W in HJ(t)), we define 

3 

a(V, W) = (grad V, grad W) = ~ (D,V, D~W), 
i= l  

and 

d(V, W) = (F ^ V, W) 

Likewise, for p and q in H~(f2), we set 
3 

a~(p, q) = (grad p, grad q) = ~, (D,p, D~q) 
i=1 

and 

b,(V,p,q):([V'V]p,q): i=, ~" ft~ vi(Dip)q dO. 

To get the perturbations V, 0 of the velocity and the temperature, we have to solve equations 
(4)-(6) in t) x [0, T], with the initial conditions (7) and (8) and the boundary conditions (9)-(11). 

The variational formulation of this problem is the following (Problem I): 

V0+V, Oo~HJ(D), f+L:(0, T; [2(~)) and tp +L2(f~) being given, 

we seek V ~ L:(0, T; V) and 0 ~ L2(0, T; H~(f~)), satisfying 

d 
(v, w) + va(V, W) + b(Vo, V, W) + b(V, Vo, W) + b(V, V, W) 

+ d(V, W ) =  (f, W), V W e V ,  (13) 

d 
Problem I ~(O'q)+v'a~(O'q)+bl(V°'O'q)+b](V'O°'q) 

+bt(V,O,q)=(g~,q), Vq~H~(n), 

V(x, y, z; 0) = 0, 

O(x, y, z; O) = O. 

(14) 

(15) 

(16) 

Remark 3.I 
Using a classical result from TEMAM, we can prove that, after modification on a set of measure 

zero, V is a continuous function from [0, T] into V' and 0 a continuous function from [0, T] into 
H-t(t)) .  This result gives sense to initial conditions (15) and (16). 

Proposition 3.1 
• a and d are two bilinear continuous forms on V x V. 
• al is a bilinear continuous form on H0'(t)) x H~(t)). 
• a is coercive on V x V, al is coercive on H~(f2) x H~(fL). 
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Indeed: 

and 

la(V,W)l=l(gradV, gradW)J~<JJVlllJWll, VV and W e V ,  

la~(p,q)l=l(gradp, gradq)l ~< lip II Ilqll, Vp and q ~H~(f~), 

Id(V,W)l - - I (F^V,W)l~ lFl l lVl l l lWl[ ,  VV and WEV, 

a(V,V)=[V]~>~C211Vl l2 ,  V V e V  (idem. fora l ) .  

Proposition 3.2 

• b is a trilinear continuous form on V x V x V, b~ is a trilinear continuous form on 
v x H~(~) × Ho~(~). 

• For every U, V and W E V, p and q e H~(f~), there is one constant C'  such that: 

Ib(U, V, W)I ~< C'  IIUll t,[IV II,, IIW It t,; 

Ib,(U,p,q)l <<. C' IIUII t, llP I1,, IIq ILL,. 

• b ( U , V , V ) = 0 ,  VU and V e V ,  

b~(U,q,q)=O, V U e V ,  qeH~(fl) .  

• b (U, V, W) = - b (U, W, V), VU, V , W ¢ V ,  

b~(U,p ,q )=-b l (U ,q ,p ) ,  VU@V, Vp, qeH0m(f~). 

Lemma 3.1 

For every function v e H~(fl) (fl being a sufficiently regular open set in R3), there is one constant 
C" such that 

II v II L,(a) ~< C" II v II ~;(n)lvl[/,~,). 
Proofs for Propositions 3.1 and 3.2, as well as for Lemma 3.1, are given in Ref. [2]. 

Proposition 3.3 

The variational Problem I has at least one solution: 

I 
V e L2(O, T; V) 

0 e L~(0, T; H~(f~)). 

Moreover, V ~ fl:(0, T; H) and 0 ~ L~(0, T; L2(fl)). V is weakly continuous from [0, T] into H, 
0 weakly continuous from [0, T] into L~(fl). 

Proof. We set 

a(V, W) = va(V, W) + b(V0, V, W) + b(V, V0, W) + d(V, W), 

~,(0, q) = v" a,(O, q) + b, (Vo, 0, q) 

and 

n(V, q) = bl(V, 00, q). 

Equations (13) and (14) can be written 

d 
d t ( V ' W ) + ~ ( V ' W ) + b ( V ' V ' W ) = ( f ' W ) '  V W e V ,  

d 
d-t (0, q) + t~ (0, q) + n(V, q) + b~ (V, 0, q) = (~b, q), V q e Hi(t)) .  

We are going to prove the existence of  the solution, using the Galerkin method. Let 

w~ . . . . .  w . . . . .  be a free and total sequence in V, 

(17) 

(18) 
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and 

q , , . . . ,  qm,..- be a free and total sequence in H0~(f~). 

For each fixed integer m, let V,, be the subspace of V generated by w, . . . . .  wm and Hm the 
subspace of H0~(l'~) generated by q, . . . . .  qm. 

We define an approximate solution of Problem I by 

V,,= ~ gim(t)wi, 0,.= ~ ~jm(t)qy. 
i = l  j = l  

V,, and 0,, satisfying the equations 

d 
(Vm, wk) + a(V,,, wk) + b(V,,, V~, wk) = (f, wk), k = 1 , . . . ,  m, (19) 

d 
dt (Ore' qk) + a, (Ore. qk) + n(V,., qk) 

+bl(V, , ,O, , ,qk)=($ ,qk) ,  k = l . . . . .  m, (20) 

V,,(x, y, z; 0) = 0, (21) 

O,,(x, y, z; 0) = 0. (22) 

Functions go,(t), gym(t) are scalar functions defined on [0, T]. They have to check a non-linear 
differential system, which has a maximal solution on [0, T]. 

To get the convergence of the approximate solution (V,,, 0m), we have to use the following 
lemmas. 

Lemma 3.2 

• The sequence V,,(t) is bounded in n_z(0, T; V) and in 0_°°(0, T; H). 
• The sequence Ore(t) is bounded in L2(0, T; H0~(ll)) and in L°~(0, T; L2(f~)). 

Lemma 3.3 
• The sequence V'( t )  is bounded in 0_'(0, T; V'). 
• The sequence O',.(t) is bounded in Ll(0, T; H-t(fl)). 

d d 
Notation: V~,( t )=~V,, ( t ) ;  O',,(t)=-~ttO,,(t). 

We now define the following functional spaces: 

ag = {V ~ Q_2(O, T; V); V' ~ U(O, T; V')}; 

~, = {0 ~ L2(0, r; Hi(n)); 0'~L'(0,  T; H-'(n))}.  

The injection of ~ (respectively ~l )  into 0_2(0, T; H) [resp. into L2(O, T; L2(t'l)] is compact [3]. 
We have proved (Lemmas 3.2 and 3.3) that the sequence Vm is bounded in ~,  the sequence 0,, 

bounded in ad~. 
Therefore, we have got the following convergence results 

- - I t  is possible to extract from (Vm, 0m) a subsequence (Vm,,0,.,) which converges 
towards (V*, 0") in R/(0, T; H) × L2(0, T; L2(f~)) strongly. 

- -On the other hand (cf. Lemma 3.2) (Vm', 0,,,) converges towards (V*, 0") in 0_2(0, 
T; V) × L2(0, T; Hi0(il)) weakly and in 0_°°(0, T; H) x L®(0, T; L2(fl)) weak-star. 

We have now to verify that (V*, 0") satisfy equations (13)-(16). Let ~b(t) be a scalar function 
on [0, T], of class ~' ,  and such that ~O(T) = 0. We multiply equations (19) and (20) by ~,(t) and 
integrate between 0 and T. 
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There is no problem for passing to the limit in the linear terms. In the non-linear terms, we apply 
the following result [3]: 

Lemma 3.4 

If (Vm,0m) converges towards (V, 0) in Q3(O,T;V) xL2(O,T;H~(Q)) weakly and in 
~_2(0, T; ~) x L2(0, T; L2(fl)) strongly, then 

f0 b(Vm(t), Vm(t), W(t)) dt converges towards b(V(t), V(t), W(t)) dt, 

V W ~ ((~1(~'~ X [0, 2['])) 3, 

and 

~0 r b~ (V~(t), O,,(t), q(t)) dt converges towards fo rb, (V(t), 0(t), dt, q(t)) 

V q E W~(f~ x [0, T]). 

Thus, we get that (V*, 0") satisfy equations (13) and (14) in the distribution sense on [0, T]. It 
is now easy to prove that initial conditions V*(0)= 0, 0"(0)= 0 are verified. 

We have proved the existence of at least one solution (V, 0) for Problem I, satisfying 

V ~ L2(O, T; W)fl Q_~(O, T; H) 

0 ~ L2(0, T; HI(D))f3 L ~(0, T; L2(fl)). 

We have proved moreover, that V is almost everywhere equal to a continuous function from 
[0, T] into V', and 0 almost everywhere equal to a continuous function from [0, T] into H-'(t'l). 

This implies, using a result proved by TEMAM, that V is weakly continuous from [0, T] into 
H and 0 weakly continuous from [0, T] into L2([I), that is to say that 

V W e H, the application: t --, (V(t), W) is continuous; 

V q e L'([I), the application: t ~(O(t), q) is continuous. 

The uniqueness of the solution cannot be obtained in these functional spaces. In the following 
proposition, we prove that a more regular solution is unique if it exists, but this time we cannot 
assure the existence. 

Proposition 3.4 

There is at most one solution of Problem I, such that 

" V ~ L2(0, T; ~/) N ~_~(0, T; H) 

V E 0_s(0, T; ~4(~"~)) 

0 ~ L2(0, T; H~(fl))f3 L~(0, T; L2(f~)) 

0 e La(0, T; L4(f~)). 

V is then continuous from [0, T] into H, 0 continuous from [0, T] into L2([I). 
Proof. If V e Ls(0, T; 0_4(t))), 0 e Ls(0, T; t4(f~)),  we have the following result: 

V E 0_2(0, 

0 ~ U(0, 

This implies that V (resp. 0) is almost 
H [resp. into L2(D)]. 

T; V), V' ~ U_2(0, T; V'), 

T; H~(f~)), 0' e L2(0, T; H-t(fl)). 

everywhere equal to a continuous function from [0, T] into 

Let us suppose now that there are two solution (V], 0~) and (V2, 02) satisfying the assumptions 
of Proposition 3.4. Set 

D=V2-Vl,  ~'=02-0t. 
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(D, 7) have to verify the equations 

f !  [DI 2 + 2a(D, D) = 2b(D, D, V2) 

1~ 12 + 2al (~,)') + 2n(D, ~) = 2b(D, ),, 02). 

Equation (23) can also be written 

d [D]2 + 2v[D]2 = 2b(D, D, V2 + V0). 
dt 

Thus, we get the inequality 

where 

d 
dt [D(t)[2 + 2vC: [1D(t)1[ 2 ~< 2[b(D(t), D(t), V* (t))[, 

(23) 

(24) 

V*(t) = V2(t  ) -Jr- Vo; 

2 Ib(D, D, V~')I ~< 2C' II D(t) 11L,~a)II D(/) II II Vff' (t) 11 t,(a) 

<~ 2C'C" II D(t)II 7/41D(t)l ,/4 I[ V* (t)II t,~,). 

Let us apply now Young's inequality. We can prove that there is one constant C., such that 

d --dt [D(t)12 ~< C. I D(t) 12 II V* (t) II 8t,~n). (25) 

Vo is given in V, independent of time; V2(t ) • 0_8(0, T; L4(fl)). 
Thus, the function t ~ II V* (t) II ~,~n) can be integrated, and from inequality (25) we can deduce 

d 2 1 dz)}~< ~ {[D(t)l exp ( -  ~-~ f~ II V* (Q 11 ~,(a) 0. (26) 

Integrating relation (26), we obtain, since D(0)= 0, that 

la(t)12 ~< o, v t e [o ,  TI. 

So, we have Vl = V2. 
Let us prove now that 0, = 02.7 = 02 - 0, has to satisfy equation (24) but, since D = 0, we have 

d d 
dt [T(t)[2 + 2~i, (7, y) = 0 = ~ [7(t)l 2 + 2v'[~(t)] 2. 

d 
dt ly(t)12 ¢- 2v'C2 II ~(t)112 ~< 0. 

I~,(t)12 ~< 0, v t E[0, T]. 

This implies 

Integrating this inequality, we get 

So, we have 0m = 0:. 

4. THE OPERATORS .'~ AND -41 

We have defined the two bilinear forms 

~(V, W) = va(V, W) + b(Vo, V, W) + b(V, Vo, W) + d(V, W) 

and 

~, (0, q) = v'a, (0, q) + b I (Vo, 0, q). 
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Let .,1 and .~, be the operators associated with these forms. P being the orthogonal projector 
in U.2(fl) onto H, we have 

.4V = vAV + LV; .,~O = v'AIO + MO, 

where 

AV = - P A V ;  LV = P([V0.V]V + [V.V]V0 + F ^ V) 

AlO = -AO; MO =[V0.V]O. 

L being a linear continuous application from V onto H, there is one constant C1, such that 

ILU[ ~< C~ IlUll • (27) 

Using the previous notations, V and O, solutions of  Problem I have to satisfy the following 
differential equations: 

and 

where 

and 

N.B. 

d_VV + .4V = ]~(t) 
dt 

V(0) = 0 
in H 

(28) 

(29) 

dO + 2~ 1 0 g(t)  
dt 

0 (0) = 0 
in L2(Q), 

(30) 

(31) 

~(t) = P(f(t)  - [V-V]V) 

g( t )  = ~b - IV-V]0 o - IV-V]0. 

Hereafter, fit) will denote the orthogonal projection of  fit) onto H(P(f(t))). 
The domain of  the operator A is defined by 

( 
D ( ~ )  = ~V • H2(Q)n V; 

The domain of  the operator .4~ is defined by 

~ n ( V , ) = 0  o n r "  . 

D (.4,) = H~o(fl) • H2(Q) = D (A,). 

V 0 and 00 are given. They are real values. 
Hereafter, functional spaces H, V, H01 (Q) and L 2(Q), will be considered as complex spaces. 

Proposition 4.1 

• The operator ,,~ is V-coercive. 
• The operator ,,T~ is V-elliptic. 

Indeed, applying properties of  the trilinear forms b and b~, we get 

Re(ff(U,U))~>K, IIUII2--K2IUI 2, V U e V ,  

and 

Re(ff~(q, q)) I>/(3 II q II 5, V q • H0~(Q), 

where K~, Ks and K3 are positive constants. 

Corollary 4.1 

• For y E R, y ~< -K2 ,  the operator A - yI is V-elliptic. 
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• ( . 4 -  ~,I) is an isomorphism from D(,4) onto H. 
• D(.4) is dense in V and in H. 
• The operator (,4 - ~ I ) ,  and hence the operator .4 are closed operators. 

Corollary 4.2 
• The operator -'11 is an isomorphism from D(.'ll) onto L2(t2) 
• D(.41) is dense in H0t(t2) and in L2(f~) 
• The operator ,4~ is closed. 

Proposition 4.2 
The operator - . 4  (resp. - Al ) generates in H [resp. in L 2(t2)] a strongly continuous semi-group, 

denoted by exp( - t.~) [resp. e x p ( -  t.4~ )]. 
Proof. Proposition 4.2 is a corollary from the Hille-Yoshida theorem. The operator .'~ is 

unbounded, closed in ~;  its domain D(A) is dense in H. 
For 7 ~< -K2 ,  the operator ,4 - 71 is an isomorphism from D(,4) onto H, and we can prove that, 

for y ~ ~, ~ < - C~/4, we have 

1 
[I (,4" - y I ) - I  II H ~ ~ ~ c ~ "  (32)  

4 

[We set C2 = C~/Cx/~, C and C, being the positive constants introduced in expressions (12) and 
(27).] 

All the assumptions of the Hille-Yoshida theorem are satisfied by the operator ,4. Then - , 4  
generates a strongly continuous semi-group in H, denoted by exp( - t .4 ) ,  and satisfying 

I/C2 t)  (33) [1 exp(-- t.4)II ~< exp[k- ~- . 

A similar proof  is valid for the operator .4~, and we get the estimation 

[1 exp(-- t,4t ) I[ ~< exp(-- v 'C~t). (34) 

Proposition 4.3 
The eigenvalues 2 of  the operator .4 (2 = 7 + i#), are located inside the parabolic curve of  the 

equation 
2 1 = ~ ~ -  c~. (35) 

Proposition 4.4 
• Let 2 ~ C, 2 = ?  +i/~. 
• For every fixed 7(~ e R), we have 

when / ~ - - * + ~ .  

Proposition 4.5 
The eigenvalues 21 of  .4~ are real values, and such that 

0 <  v'C2<~2,. 

Proofs for Propositions 4.3--4.5 may be found in Ref. [2]. 

5. THE L I N E A R I Z E D  P R O B L E M  

If we neglect the non-linear terms, V and 0 have to satisfy the following differential equations: 

~ -  + ~ v  = f(t)  (36) 
in H 

V(O) = 0 (37) 
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and 

where 

and 

I d--~ t + At O = g( t ) (38) 

"l  in L 2(f~) 
0(0) = 0 (39) 

f(t) = P(f(t)) 

g(t) = ~b -- [V'V]00. 

According to Proposition 4.2, weak solutions of  the differential equations (36) and (37) can be 
written 

I 
t 

V(t) = e x p ( -  r.,l)f(t - z) dr. 
do 

(40) 

Weak solutions of  the differential equations (38) and (39) are given by 

O(t) = fo e x p ( -  r.~t)g(t - z) dz. (41) 

Proposition 5.1 
If all the eigenvalues of  the operator ~i have positive real parts, then 

;o II V(t) II 2 ~< C6 e x p ( -  2V'z)l f(t - z)l 2 dr, (42) 

where C6 is a positive constant and V' a real number satisfying 0 < 7' < Re(2) for every 2 eigenvalue 
of  2.  

In order to prove inequality (42), we need the following two lemmas. 

Lemma 5.1 
For 0 <  t ~< 1, 

(C3 = positive constant). 

Proof." 

II e x p ( -  t.4)IL 2 ~v ~< C3 (43) 
t 

II e x p ( -  t,,l)V* JL. 
II e x p ( -  t.4) I[ H ~V = sup 

V'~ .  (V*f  

V = exp(-- t.4)V* is a weak solution of  the differential problem 

V(0) = V*. (45) 

Then, applying properties (12) and (27), we get the inequality 

d [exp( -  C2t)iVl 2] + vC 2 e x p ( -  C2t)II V II 2 ~< 0. (46) 
dt 

Integrating inequality (46) between 0 and t, with respect to the initial condition (45), we can prove 
that 

I~ IIV(r)ll2d~ ~< exp(C2) IV*l 2, for 0 ~< t ~< 1. (47) 
vC 2 
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From equation (44), we also obtain the inequality 

1 
IIV(t)ll2<<.-~-~exp(½C~)llV(t')lF 2, for O<~t'<t ~< 1. (48) 

Integrate now inequality (48) between 0 and t. According to inequality (47), there is one constant 
C3, such that 

trlV(t)ll2<~ f31V*l 2, for 0~<t~<l .  

Since V ( t ) =  e x p ( - t 2 )  V*, this implies the property (43). 

Lemma 5.2 
If all the eigenvalues of  2 have positive real parts, and if 7 is a real number satisfying 

0 < 7 < Re(2) for every 2 eigenvalue of  2,  then 

]l exp(-- tA) II . .  H ~< C4 e x p ( -  70 (49) 

(C4 = positive constant). 
Proof." for t > 0, e x p ( - t 2 )  can be represented by 

- 1 f~+io, 
e x p ( -  t2) (2  - 21)- i d2, exp( - t2 )  = o,.o~lim ~ ~r _ ,o, 

w h e r e 2 ~ C ,  2 = 7 + i v ; y ~ R i s  f i x e d , / ~ R a n d  -o9~</~< +co. 
Integrating by parts, we get 

[ 1 e x p ( - y t )  1 e x p ( - t 2 )  = limo 2in t {[2 - (Y + ico)I] -l e x p ( -  icot) - [2 - (7 - ico)l]-' exp(icot)} 

exp(-Tt)  1 ~ ÷~o exp( - im) [2  - ( 7  + iv)/] -2 da. + 
t 2n .J_ o~ 

We apply the result of  Proposition 4.4, and we get that 

1 exp( -T t )  IlIA - ( 7  +i/~)I]-'l12d/~. II e x p ( -  tA)II. ~ .  ~ 2re t ® 

The value of the integral is finite. Therefore there is one constant Ca, such that 

I l e x p ( - t 2 ) l l , . .  ~< C4 exp( -Tt )  < k  exp(-Tt) ,  for t I> 1. 
t 

The inequality is still true for 0 ~< t ~< 1. to show it, we apply estimation (33). 

Proof of Proposition 5.1 
The weak solutions of equations (36) and (37) can be written 

V(t) = f~ e x p ( - r 2 ) f ( t  - z) dr, 

For t > 1, we set 

;0 f: Vl(t)= e x p ( - r 2 ) f ( t - O d r  and V2(t)= exp(-rA)f(t--r)dr. 

Majoration of II V~ (t)Jl 2. From equation (36), we get the estimation 

d 
d--t ([V]2 e x p ( -  C2,t)) <~ lv If[2 exp( - C~t). 

After integration, this implies that, for 0 ~< t ~< 1, 

[JV(t)ll2 = exp[-(t-z)A]f(r)dr If(r) dr. (5o) 
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This majoration is still true for t = 1. Therefore, 

exp(C ) [' 
IlVl(t)ll2"< ~ Jo [ f ( t - z )12dz .  

Majoration of IIV2(t)ll 2. For t >  1, 

e x p ( -  t:i) = exp ( - .~ ) ,  e x p [ -  (t - 1).,i] 

and 

II exp( - t.4) II. -v  ~< II exp( - 2 )  II. - v I[ exp[ - (t - 1).4] II. - . .  

We apply now the results of Lemma 5.1 and 5.2. So, we have for t >i 1, 

II e x p ( -  t.,I)II . - v  ~< Cs exp ( -T t )  [C5 = x/~3 C4 exp(y)] 

and 

699 

(51) 

f' IIV2(t)ll= e x p ( - z . 4 ) f ( t - z ) d z  ~<C5 e x p ( - T T ) l f ( t - r ) l d ~ .  

Let Y' be a real number satisfying 0 < 7 ' <  7, and set fi = 7 - Y ' .  We get 

f: iiV2(t)l12<<c3ceXp(27 ' ) 2  e x p ( -  27'r)  I f(t - r)  12 dr. (52) 
2~ 

Majoration (51) for Vl(t)  can also be written 

exp(C~) f~ 
IIV,(t)ll2~< ~-~ exp(27') e x p ( - 2 7 ' r ) l f ( t - r ) 1 2 d z  ( 0 < 7 ' < 7 ) .  

We have set V ( t ) = V t ( t  ) + V2(t), for t > 1. Therefore, there is one constant (76, such that 

II V(t)II 5 ~ C6 .f~ exp(-- 2y'r) lf( t  -- ~)12 dz. 

It is easy to see that this majoration is still true for t ~< 1. We can then apply estimation (50). 

Proposition 5.2 
The solution O(t) of the differential equations (38) and (39) satisfies the following estimation: 

f0 IlO(t)ll2<<. C6 exp(-27r)lg(t-z)12dt,  (53) 

where C~ is a positive constant and y a real number, such that 0 < 7 < v'C2. This proposition can 
be proved just as Proposition 5.1. 

6. STABILITY OF THE N O N - L I N E A R  P R O B L E M  

We come back now to the complete non-linear problem. V and 0 have to satisfy the differential 
equations (28)-(31). 

Proposition 6.1 
If all the eigenvalues of the operator .4 have positive real parts, then 

II V(t) IIz + v f f  IAV(r)l z dr,.< C,0 f/,~(T)[ = dr (54) 

and moreover, 

II V(t)II : + v exp[--2y(t  -- r ) ] lAV(z)l  2 dr ~< C,0 exp[-- 2?(t -- r)]l~(r)l 2 dr, (55) 

where C~o is a positive constant, and 7 a real number such that 0 < 7 < Re(2) for every eigenvalue 
2 of the operator .4. 
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Proof. From equation (28), we get the estimation 

d 2 
d~ [V]2 + v IAVI 2 ~< 2C~v IlV 112 + -v I]'12 

and, after integration, 

; ; c [V(t)]2 + v iAV(r)12dr ~<2C~__ iiV(r)ll2d r + 2  i]`(r)12dr" 
v v d 0  

We apply now the result proved in Proposition 5.1. 

;o II V(t)I[ 2 ~< 6'6 e x p ( -  2~,r)l]'(t - r)12 dr, 

which implies the two estimations 

;o ; t C6 I]`(OI 2 dr. l] V(r)112 dr ~< 

and 

(56) 

(57) 

t 
l 

IJV(t)ll2< c6 1?(OI2dr. (58) 
do 

From expressions (56)-(58), we can conclude that there is one constant C,0, such that 

f/ f' IlV(t)rl2+v IAV(r)12dr~<C~0 I]`(OI2dr. 
dO 

This estimation can be improved in order to get expression (55). V satisfying the differential 
equation (28), we set W = exp(yt)V, where 7 is a real number such that 0 < 7 < Re(2) for every 
eigenvalue 2 of  A. W is solution of  the differential equation 

d W + (.,1 - yI)W = exp(~t)]'(t). 
dt 

Set A * = .4 - 7L f*(t) = exp(yt)]`(t). 

All the eigenvalues of  the operator A * have positive real parts. Hence, we can apply relation 
(54) 

fo ;o ]lW(t)l]2 + v IAW(OI2dr  ~<C30 If*(r)12 dr, 

which can also be written 

fo f IIV(t)lf2+v exp[ -27 ( t  -7 ) ] lAV(r )12dr  <~C,o exp [ -2y ( t  -7)]l]`(OI2dr.  
do 

Proposition 6.2 
O(t) Satisfies the following estimations: 

;o fo I[O(t)ll2+v" IAt0(r)12dr ~< C(o [~(z')12 dz " (59) 

and moreover, 

fo fo II0(t) l l2+v ' e x p [ - 2 y ( t - r ) ] l A , 0 ( r ) 1 2 d r ~ < C ; 0  e x p [ - 2 7 ( t - O ] l ~ ( O I 2 d r ,  (60) 

where C;o is a positive constant and y a real number such that 0 < ? < v' C 2. 
The proof  is the same as that of  the previous proposition, taking into account estimation (53) 

obtained in Proposition 5.2. 
As we said in Section 2, the mean situation (V0, 00) is given. These values either verify the 

linearized equations, or are solutions of  the complete non-linear stationary problem. We are now 
going to study these two cases separately in order to get stability results. 
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6. I. Linearized Stationary Problem 

The perturbation (V, 0) has to satisfy the differential equations (28)-(31) where: 

•(t) = f(t) -- P([V'V]V); g(t)  = 4> - [V'V]00 - IV.V]0; 

f(t) = e(T( t )  - [V0"V]V0); 4> = -[V0-V]00 + v'A00; 

T(t) is the perturbation of the wind-stress. 

Proposition 6.3 
If  all the eigenvalues of the operator .4 have positive real parts, and if f(t) remains small enough, 

sC)  
I f(t) 12 ~< K < k--C-~12 ° 

then, V(t) and O(t) remain bounded as t--> oo, and we get the following estimations: 

II V(t)II ~' ~< K, < kCto ~ 3 (61) 

and 

II 0 (t) II 2 ~< c~ 14> 12 + c ;  Ki. (62) 

[C~ and C~ are positive constants, y is a real number such that 0 < y < inf(Re(2),v' C ~) for every 
eigenvalue 2 of J[.] 

To prove this proposition, we have to use the following three lemmas. 

Lemma 6.114] 
If  ~(t) is a measurable function satisfying 

0t(t) ~< A + ~ F(~t, z) dz, 

I 

where F is a function continuous in ~, Lipschitz continuous in ct, monotone increasing in ct, and 
A is a constant, then 

fl(t) satisfies the differential equation 

Lemma 6.2 
For every V ~ D (A), 

or(t) <~ fl(t), 

d t  = F(fl ,  t )  

1~ (0)  = .4. 

IBVl 2~<klIvlI31Avl  

where k is a positive constant, and BV = P([V.V]V). 
Proof. Applying H61der's inequality, we can prove that 

f.r,,r  '' IBVl 2= IP([V'VlV)I 2 ~< IlVll~o> x IV] x (D, vs) 2 dx . 
I_ i , j  _l 

According to the Sobolev inclusion theorem, there is one constant kl, such that 

II V II t,(,~) ~< kl II V II .,(n) 
and 

ffo[  1 (DilJj) 2 d x }  '/6 ~< k2 ~,.j II Divjll <<. k2 II V II .~.) 

[we still apply inequality (64)]. 

(63) 

(64) 
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We have the following estimation: 

IBVI 2 ~< k2k211VIl~, IIVI[H:. (65) 

The operator A = - P A  is a self-adjoint, V-elliptic operator, of  domain D(A) c H2(f~). A is an 
isomorphism from D(A) onto H. There is one constant k3, such that 

[IVll,= ~< k31ZVl, VVED(A) .  (66) 

Let us apply estimation (66) in inequality (65). There is one constant k such that 

IBV[ 2 ~< k [IVl[ 3 IAvI .  (63) 

Lemma 6.3 
For every 0 e D(AI), 

IB,(V, 0)12 ~< k' l[Vll  2 II0 [I IA,OI, (67) 

where k '  is a positive constant and B,(V, 0 ) =  IV.V]0. 
Proof. Applying H61der's inequality, we can prove that 

I Bl (V, 0)12 ~< II V [I ~,(a)II/9 I[ I[ V0 II L6. 

According to estimation (64), we get 

IB,(V,/9)12<<.k~llVII 211/9 II IIV/9 II 

~< k~llVl[ 2 ll/9 II 1[/9 lira. 

The operator A~ is such that, V 0 e D(A~)= H0~(II)DH2(fl), there is one constant k; ,  such that 

110 [I.2 <~ k;Ih~/91. 

Thus, there is one constant k' ,  such that 

IB,(V, 0)12~<k'llVll 211/9 II IA~0I, V/9 ~O(Zl). (67) 

Proof of Proposition 6.3 
V(t) Is solution of  the differential problem (28, 29) and we can apply estimation (55) proved in 

Proposition 6.1. 
Since ]'(t) = f(t) - BV, we get that 

I]'(t)l: ~< 21f(t)l: + 2k IAVl IP V II 3, 

by applying Lemma 6.2. Then, estimation (55) implies the following inequality: 

k2C2 fo' fo iiV(t)ll2 ~ lo e x p [ - 2 7 ( t  - ~)] IIV(~) 1[6dv +2C~o e x p [ - 2 7 ( t  - O]l f (Q[2 dv. 
Y 

We assume that f(t) remains bounded for every t, let 

If(t)12 ~< K. 

We have then the relation 

II V(t)If 2 exp(27t) ~< 

Set 

fo' k2C~° It V(~)II 6 exp(27z) dz + 2KGo exp(27z) dz. 
V 

~(t) = II V(t)II 2 exp(27t), 

• (t) <. I t (k2C2o~t3(z)exp(-47z)+ 2KC,o exp(27z)) dz. 
j o \  V 
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We can apply Lemma 6.1, and get the following estimation: cr(t) < B(t), /I(t) satisfying the 
differential equation 

dB k2C:o 3 
- = - B 
dt v 

exp( - 4yt) f 2KC10 exp(2Yt) 

I /3(O) = 0. 

Set j?(t) = exp(2Yt) $(t)* $(t) is a solution of the following differential problem: 

+2KC,, 

and $(t)>O for t>O. 

The function 

(69) 

W)=- k’F:“$’ - 2y* + 2KC,o 

is a local Lipschitz function. The differential equation (68) has thus, one and only one solution. 
The differential problem (68, 69) makes sense only if the function G(I,+) has positive roots, that 

is to say for 

$(t), the solution of the differential problem (68, 69), then remains bounded by K,, satisfying 

J; 2Y 
%z$ 5 J 

and #(c)-*K, when t -+a. 
For 

we have proved that 

J 2Y 
IIV(t)I12<K <kC 3’ 

J 
(61) 

IO 

We are going to prove now estimation (62) for I( O(t) 11 2. O(t) is solution of the differential 
problem (30, 31) and we can apply estimation (60), proved in Proposition 6.2, 

((0(t)]12+v’ ‘exp[-2y(t -t)J(A,8(~)]2dr <CC;, ‘exp[-2y(t -r)]&!(r)]‘dt. 
s 0 s 0 

In order to get also estimation (55), we assume that y < inf(v’C2, Re(l)), for every eigenvalue 
A of A”. We can choose the constants Cl0 and C;, in order to have 

We set NV = ~-v]O,. N is a continuous linear operator from H#2) onto L2(a). Hence, there 
is one constant C;, such that 

lNVlGCC;lIVll, (70) 

d(t)=+ -[vqeo-pqe + -w-B,(v,e). 
Applying estimations (67) and (70), we get 

i~(t)i2~3i~i2+3c;2iIvii2+3kIivi12iieiiiA1ei 

~31~12+3C;2K,+3kK,IIeIIIA,el, 
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since estimation (61) has been proved. 
Oh. 2/",,2 g.r2 

3kC'loKi I[ 0 I[ IA101 ~< v'lAi 012 "4 "" "~ 10"~l 
4V' 

Relation (60) can then be written 

;o IlO(t)lle<~3e~o(l~12+e;eK~) exp[ -27( t  - ~ ) ] d ~  

9k2Ci2°K~ f /  
-~ 4v" 

and since 

IIO II 2 

II 0(~)I[ 2 exp[-- 27(t - z)] dz 

Kl <k--~l 0 

f[ O(t) II 2 exp(27t) ~<. 7 f[ 0(~)l[ exp(27Q + 3C;o(I 4~ 12 + C~2K~) exp(27Q d~. 
dO 

Set ~ ( t ) =  IlO(t)llZexp(27t). We can apply Lemma 6.1, and get the following estimation: 
~(t)  ~< 2(0,  2(t) satisfying the differential equation 

f d2 3 dt = -2 72 + 3 C~o(I d~ l 2 + C~2K, )exp(27t) 

,~(o) = o .  

Set 2 ( t ) =  exp(2?t) 6(t), 6(t) satisfying the differential problem 

f d6 -?-6 +3C;o(Idpl2+C;2Kl) dt 2 

6 (0) = O. 

We have, 

6, E 6 ( 0 =  C'---2°(1~12+C~2K,) 1 - e x p  - ~ t  . 

This implies the following estimation, valid for every t: 

l[ 0(t)I12 ~< 6C~0 (l~b 12 + C'I2KI). 
7 

Hence, there are two constants C~ and C;,  such that 

II 0(t)l[2 ~< C~[~b 12 + C~K,. (62) 

Proposition 6.4 
Under the assumptions of Proposition 6.3, the solution (V, 0) of  the differential problem 

(28)--(31) is a strong solution on [0, T], that is to say 

V te [0 ,  T], V( t )~O(.4)  and O(t)eD(.4~). 

On the other hand, 

V e if(0, T; V) and 0 E ~¢(0, T; H~(f~)). 

Proof We denote by (2i) the eigenvalues of the operator A : 0 ~< 21 ~< • • • ~< 2; • .. 
There is one orthonormal basis in H: w~ . . . . .  wi . . . . .  where wi is an eigenvector associated to 

the eigenvalue 2~. We define an approximate solution for equation (28) by setting 

V m = ~ gim(t)Wi, 
i ~ !  
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Vm ~ D(A) and Vm satisfies the differential equation 

I dVm 
+AVm=L( t )  

v ~ ( 0 )  o, 

where 

L ( t ) = f ( t ) - B V m .  

The assumptions of Proposition 6.3 being satisfied, we get the estimation 

I[Vm(t) l[2~Kl, V t ~ [0, oo[. 

We can also apply estimation (54) proved in Proposition 6.1 

fo f IlVm(t)ll2 + v IAVm(z)12 dz ~<Clo I~m(Z)12 dz. 
J0 

Taking into account estimation (63) proved in Lemma 6.2, this implies 

;o (fo f: ) IAVm(z)[2dz ~<4 Cl° ]f(Ql2dx nt-k 2C1° ][Vm(Qll6dz , 
v v 

Since 

we get 

If(t)12~<K and IlVm(t)ll2~<K~, Vt~[0, T], 

705 

V t e [0, T]. 

fo r 4Cl° ( - ~  ) [AVm(z)12dz<<. T K +k  2 K~ . 

The sequence Vm(t) is bounded in 0_2(0, T; D(A)). We can extract a subsequence which converges 
towards V(t) in 0_2(0, T; D (A)) weakly. V(t) satisfies the differential problem (28, 29), V(t)E D(A) 
and satisfies the estimations 

and 

f0r [AV(z)': dr < ~ 4 ~ T ( K + k 2 ~ - ~ K ~ )  

IIV(t)ll2 ~ K~, V t ~ [0, T]. 

We can easily prove that V' = dV/dt ~ g_2(0, T; H). Since V E n2(0, T; D(A)), we can conclude, 
according to a result from Lions-Magenes, that 

V ~ c¢(0, T; V). 

The same proof is valid for O(t). 

6.2 Non-linear Stationary Problem 
The perturbations V, 0 of velocity and temperature always have to satisfy the differential 

equations (28-31) but this time the right terms are given by 

i '(t) = e ( f ( t ) )  - P ( [V .V]V) ,  g ( t )  = - [ v . v ] 0 0 -  I v . v ] 0 ,  f ( t )  = T( t ) .  

We assume that the perturbation of the wind-stress T(t) acts only during some time interval 
[0, T], and remains bounded: 

}'T(t), for 0 ~ t ~ < T  (Tfinite) 
f(t) 

~0, for t > T .  

If(t)12 ~< K, ¥ t ~ [0, T]. 

C.A,M.W.A. 13/8--D 
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Proposition 6.5 

If all the eigenvalues of the operator .,1 have positive real parts, and if the following estimation 
is satisfied: 

If(t)12exp(2yT) ~< k---~20, V t el0, T] (71) 

[~, is a real number such that 0 < 7 < inf(Re 2, v'C 2) for every eigenvalue 2 of ,4], then, II V(t) II 
and II O(t)II 2 tend to 0 as t ~  ~ .  

Proof. We apply, as for the proof of Proposition 6.3, estimation (55). So we have 

f0 I[V(t)[]2<~ C2°k2 exp[ -2? ( t  - z)]ll V(z) II 6dr +2C,0 exp[-2) ,( t  - z)]lf(Ql: dr  
Y 

C~o k2 fo' ~< exp[ -27( t  -~)]lJV(z)ll6d~ +2KC~o exp (27T) -  exp(-27t) .  
1 

v 27 

We can apply Lemma 6.1. So we get the following estimation: IIV(t)j12exp(27t)~< fl(t), fl(t) 
being solution of the differential equation 

f dfl ,,3ex " 4 t" 
k2C~o 

p t -  

fl(0) = K exp(2~,T) C~0 = A. 
7 

Set f l ( t )=  exp(27t) if(t), ~k(t) is solution of the differential problem 

dip = k2C~o 
dt v d/3 - 2),~k 

(0 )  = A .  

The solution of this differential equation is given by 

~( t )  = 

provided that 

A e x p ( -  27t) 
2 k2C~o )1/2' 

1 - A [1 - exp(-47t)l  

3 

< 2 V k ~  " K 2 exp(47 T) ~0 

We get for I[ V(t)If 2 the estimation 

C~0 
II V(t)[12 ~< K exp(2),T) '{, 

Hence, there is one constant D, such that 

exp ( -2? t )  

1 k2C~o K2 exp(4?T)[1 - exp(-4~,t)]} 1/2" 
2 vy 3 

PI V(t)[I 2 ~< D exp(-- 2yt). 

The estimation of  II O(t)J[ 2 is obtained using relation (60). ~b = 0, therefore 

Ig(t)J 2 ~< 2C~ 2 II V(t)II 2 + 2k II V(t)II 2 II 0 II IA~ 0J. 

We get from relation (60) the estimation 

L' IrO(t)fl2<~2C~oC; 2 exp[ -27( t  --~)]IIV(~)II2dT 

k 2C~ ~' exp [ -  27 (t - ~)] II V(T) f[ 4 If 0 (3) II 2 dr, + v---r- j0 

(72) 

(73) 
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i.e. using expression (73), 

' fl f' IlO(t)ll2<~2CloC~ D exp(-27t)  d~ + v-- ,]o exp(-2~t)llO(z)ll~exp(-27Qdz" 

t t t2 p t  b.2f"~2 lrl 2/,~, W e  have Set C4 = 2CloCi D, ,~5 =,~ ,-.lo,-, i- • 

fo I[O(t)ll2exp(2yt)<<. [C'4+C'5110(z)llZexp(-27x)]dT. 

Applying the result of Lemma 6.1, we get the following estimation: II O(t) II 2 exp(27t) ~< 2(t), 2 (0  
being the solution of the differential equation 

-~ = C; + C;2 exp(-4yt  ) 

,~(0) = 0 .  

The solution of this differential equation is given by 

;0 { C~ - e x p ( - 4 y Q ] } d z  2(t) = C~ exp -~-~ [exp(-47t) 

~< C~ exp t. 

Hence, there is one constant D', such that 

II O(t)II = ~< D't exp(-27t) .  (74) 
Proposition 6.6 

Under the assumptions of Proposition 6.5, the solution (V, 0) of the differential problem 
(28)-(31) is a strong solution on [0, + oo[. 

Proof. The design of the proof is similar to that of Proposition 6.4. We define an approximate 
solution Vme D(A), Vm satisfying the differential equation 

V,, + AV.  + BV. = f(t) 

. V m ( O )  = O. 

Estimations (54) and (63) imply that 

i:lAV"('Ql2d'c<~4C'°Ii:lf(z)]2d'r+kZCl°f:HV"(T)ll6d'c 1 v 

We have assumed that 

If(t)12 ~< K, V t ~[0, T] 

f ( t ) = 0 ,  for t > T .  

On the other hand, according to Proposition 6.5, we have the estimation 

II Vm(t)I12 ~< D exp(-2yt) ,  V t ~ [0, + ~[. 

This implies 

f0 IAVm(QI: dr <~4Q°KT-~ [1 - exp(-6~t)], e[0, 
4kZC~oD 3 

Vt + oo[. 
V v26~ 

The sequence Vm(t ) is therefore bounded in g_2(0, t;D(A)). We can extract a subsequence 
converging towards V(t) in Q_z(0, t; D(A)) weakly. V(t) satisfies the differential problem (28, 29), 
V(t) e D(A) and V(t) is such that 

f0' [1 - exp(-6),t)], ~[0, +oo[, IaV(z)12dx <~4 Ct°KT+2 v2 
k2C2o D 3 ¥ t 

v 3y 
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and 

IIV(t)l f2<Dexp(-27t),  V t e [ 0 , + o o [ .  

We can easily prove that, V t ~ [0, oo[, 

V' dV = --~ ~ L2(0, t; H). 

Since V ~ L2(0, t;D(,4)), we can conclude that V ~ cg(0, t; V). 
The same proof is valid for O(t). 

7. C O N C L U S I O N  

We have obtained, in this paper, some theoretical results for the perturbation of a given mean 
flow. This problem was introduced in order to modelize equatorial waves [2]. The oceanic domain 
t) is an open set included in R 3. At initial time, induced by a mean wind-stress, there exist in f~ 
a velocity field V 0 and a temperature field 00. We are going to calculate the perturbations V and 
0 of the velocity and the temperature induced by a perturbation of the mean wind-stress. The values 
of the initial situation V0, 00 are given. They must be characteristic of the circulation in an 
equatorial oceanic domain and these values, resulting from physical observations, either verify the 
linearized equations, or are solution of the complete non-linear stationary problem. In these two 
cases, the perturbations V and 0 have to satisfy the same equations: an equation of Navier-Stokes 
type for V and of transport-diffusion type for 0. Only the right members are different. We prove 
that this non-linear problem has always one solution, in proper functional spaces. The method used 
is the Galerkin method. We get some a priori estimations which imply weak convergence for the 
approximate solution. Strong convergence is necessary for passing to the limit in the non-linear 
terms. To get this result, we apply a theorem of compactness [3]. Then, we give some results about 
regularity and uniqueness of the solution: we prove that a more regular solution is unique, but then, 
the existence of the solution cannot be assured. 

These results about existence, uniqueness and regularity of the perturbation being proved, our 
purpose is to study the stability of  the given initial situation V0, 00, and, therefore, to determine 
under what condition the perturbations V(t) and O(t) remain bounded as time t ~ ~ .  To this end, 
we generalize a method introduced by Prodi [5] based on the properties of operators deduced from 
the Stokes operator. We have located the eigenvalues of these operators, they are situated inside 
a parabolic curve drawn in the complex plane. The results about stability of  the perturbation are 
obtained provided that these eigenvalues have positive real parts. The physical significance of this 
assumption cannot be clearly explained. If  the initial values V0 and 00 are solutions of the linear 
stationary problem, the right members of the equations are dependent on the perturbation of the 
wind-stress, and on the initial values V0, 00. We prove then that the perturbations V(t), O(t) of the 
velocity and the temperature remain bounded provided that the perturbation of the wind-stress, 
and the initial current V0, are small enough. Under the same assumptionS, we get also more 
regularity for the perturbation. If the initial data V0, 00, are solutions of the complete non-linear 
stationary problem, the right members of the equations depend only on the perturbation of the 
wind-stress. In this case, we get stronger results for stability. Assuming that the perturbation of 
the wind-stress acts only during a finite time and is small enough, we prove that the perturbations 
V(t), O(t) tend to zero as time t ~ ~ .  Moreover, the perturbation is then a strong solution for every 
t~[0,  oo[. 

It is the fact that oceanic waves could be stable or unstable depending on the characteristics of 
the mean situation V0, 00 which induced us to undertake this study. The results given here show 
that a stable initial situation is not to be expected. For example, in the ease of a wind-stress acting 
only for a short time, the fact that the perturbation is a decreasing function of time is quite intuitive. 
Nevertheless, we need stronger assumptions to prove this result: real parts of the eigenvalues have 
to be positive, and the wind-stress must be small enough. We cannot prove that the perturbation 
induced by a strong wind-stress, acting for a finite time, tends to zero as time t - ,  or. Then, it is 
not surprising to get unstable oceanic waves, whose amplitude is an increasing function of time. 
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