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Abstract-The stability analysis, the accuracy and the efficiency of a semi-implicit finite difference 
scheme for the numerical solution of a three-dimensional shallow water model are presented and 
discussed. The governing equations are the three-dimensional Reynolds equations in which pressure 
is assumed to be hydrostatic. The pressure gradient in the momentum equations and the velocities 
in the vertically integrated continuity equation are discretized with the o-method, with 0 being an 
implicitness parameter. It ie shown that the method is stable for $ 5 0 5 1, unstable for 0 < 3 and 
highest accuracy and efficiency is achieved when 0 = 4. The resulting algorithm is msss conservative 
and naturally allows for the simulation of flooding and drying of tidal flats. 

1. INTRODUCTION 

A characteristic analysis of the two-dimensional, vertically integrated shallow water equations 

has shown that the celerity term m in the equation for the characteristic cone arises from the 

barotropic pressure gradient in the momentum equations and from the velocity derivatives in the 

free surface equation [l]. Results of this analysis have led to a practical semi-implicit method 

which has been proven to be unconditionally stable, and which has proved to be very useful in 

several applications [2,3]. 
Recently, the semi-implicit finite difference method for the twodimensional shallow water equa- 

tions has been extended to the three-dimensional shallow water equations 141. The Courant- 

Friedrich-Lewy (CFL) stability condition is not required by this method, because the barotropic 

pressure gradient in the momentum equations and the velocities in the vertically integrated con- 

tinuity equation are finite-differenced implicitly. 

Numerical experiments of the three-dimensional shallow water equations have shown that this 

algorithm is stable and is highly efficient. Moreover, when only one vertical layer is specified, 
this method reduces, as a special case, to the semi-implicit method for the two-dimensional 

vertically integrated shallow water equations as described by Casulli [l]. The resulting two- and 

three-dimensional methods, however, are only first-order accurate in time, and introduce some 

artificial damping. 

Wave damping is a well-known and undesired effect of implicit methods when large time steps 

are used. It can be shown that the damping error can be reduced to a minimum by the use of 

Crank-Nicolson type of time averaging. 

The characteristic analysis of the governing equations was first carried out by Casulli and 
Greenspan [5] on the inviscid, two-dimensional compressible flow equations in order to derive 
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an efficient semi-implicit finite difference method whose stability is independent of the speed of 

sound. Patnaik et al. [6] have improved the accuracy of this method by introducing an implicitness 

parameter 13. For 0 = 1, this method degenerates into the semi-implicit method of Casulli and 

Greenspan, but for 19 = 4, the method remains stable independently of the speed of sound, and 

results in an improved time accuracy. 

In order to obtain a more accurate method for the shallow water equations, in the present 

paper the scheme of Casulli and Cheng [4] is reconsidered with the inclusion of an implicitness 

parameter 8. When 0 = 1, this method reverts to the original semi-implicit scheme proposed 

in [4]. When 8 = i, the pressure gradient in the momentum equations and the velocities in the 

free surface equation are evaluated as an average of their values at time levels n and n + 1, so 

that this discretization is second-order accurate in time. The present algorithm is shown to be 

stable for 1 z 5 0 5 1, and highest accuracy and efficiency is achieved for 0 = i. When 8 c 3, the 

method is unstable. 

The convective and viscous terms are conveniently discretized, as in [4], by using an Eulerian- 

Lagrangian approach. The computational efficiency of the resulting algorithm is competitive with 

other numerical schemes commonly used in three-dimensional models (see, e.g., [7-111). 

2. GOVERNING EQUATIONS 

The governing three-dimensional, primitive variable equations describing constant density, free 

surface flows in estuarine embayments and coastal seas can be derived from the Navier-Stokes 

equations after turbulent averaging and under the simplifying assumption that the pressure is 

hydrostatic [4]. Such equations have the following form 

where u(z, y, Z, t), v(x, y, z, t) and w(z, y, Z, t) are the velocity components in the horizontal x, y 

and vertical z directions; t is the time; 17(x, y, t) is the water surface elevation measured from the 

undisturbed water surface; g is the gravitational acceleration and p and u are the coefficients of 

horizontal and vertical eddy viscosity, respectively. 

Integrating the continuity equation over the depth and using a kinematic condition at the free 

surface leads to the following free surface equation 

(4 

where h(x, y) is the water depth measured from the undisturbed water surface and H(x, y, t) is 

the total water depth, given by H(x, y, t) = h(z, y) + ~(2, y, t). 

The boundary conditions at the free surface are specified by the prescribed wind stresses, 

(r,w,ryw), 

and the boundary conditions at the sediment-water interface are given by specifying the bottom 

stress in a form of the Manning-Chezy formula 

av 
u- =yv, 

az (6) 
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where y = ‘y and C, is the Chezy friction coefficient. With properly specified initial 

and boundary coiditions, equations (l)-(4) f orm a well-posed initial-boundary value problem for 

three-dimensional shallow water flow. 

3. FREE SURFACE WAVE DAMPING 

In order to analyze rigorously the stability and the accuracy of this method consider, first, the 

following linearized one-dimensional shallow water equations 

af7 %+Hg=O, 

(7) 

(8) 

where g and H, for the time being, are assumed to be constant. The celerity associated with 

equations (7), (8) is given by m. A staggered grid of size Ax is introduced and the discrete 

variables u and 77 are defined at alternate locations. The &method for equations (7), (8) is then 

defined as follows 

(9) 

(10) 

The stability analysis of the scheme (9)) (10) is carried out using the von Neumann method under 

the assumption that the differential equations (7)) (8) are defined on an infinite spatial domain, or - 

equations (9), (10) become 

with periodic boundary conditions on a finite domain. By changing the variable q to .Z = n 

[,in++l’ - zp+l] = q-+“,; - (1 - e) &x7$& [z;+~ - zS] , 

[ u:+l a++ - u. ;$I = z; - (1 - e) &R$ [u;++ - u;_+] . 
(11) 

Next, a Fourier mode is introduced for each field variable u and Z. Specifically, u;+; and z,‘- 

are replaced in (11) by &Lnel(i+i)a and PeIicr, respectively, where ii” and in are the amplitude 

functions of ‘1~ and z at the time level tn, I = fl, and a is the phase angle. Thus, after some 

simplifications, equations (11) become 

tin+1 + e@ [in+1 (el(+) _ ,-1(@) )] = cn - (1 - 0) @ [,@ (e1taj2) - e-r(aP))] , (12) 

p+l + 0 Q [&n+l (&Cal21 _ e-1(a/2))] = in _ (1 _ 0) @ [Gn (e1(a/2) _ ,-l(a/2))] , 

where Q, = Jstr(At/Ax). Since e1(a/2) - e-1(a12) = 21sin(cu/2), by setting p = 2@sin(a/2), 

equations (12) in matrix notation can be written as 

p++1 = &en, 

where 

tin= (;;) P= (de I;“> Q= (_lpc;_el -lp(;-e’). 

The amplification matrix of the method is G = P-l&, and a necessary and sufficient condition 

for stability is llGll2 5 1 identically for every (Y. Since G is a normal matrix the norm of G is 

equal to its spectral radius. The eigenvalues of G are 

x12= l-pze(l-e)fIp 
i+p2e2 * 
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Thus, the condition for the spectral radius of G to be not greater than unity is 1 - 28 5 0, or 

equivalently, 

82 ;. 

The accuracy of finite difference equations (9), (10) is examined by considering the following 
Taylor series expansions 

% n+l = rf + At {Q}; + $ {Ott}; + o(At3), 

Substitution of these expressions into the finite difference equation (lo), by using the differential 

equations (7), (8), and after simplifications, yields 

<lit>: + H(G); = gHAt 
( > 

6’ - f {Q,}; + 0 (Ax2, At2), (13) 

which shows that the finite difference equation (10) is consistent with the differential equation (8) 

with a second-order accuracy obtained only when 8 = ;. For 6’ # i, the first term on the right- 

hand side of equation (13) represents the damping error and has the form of a diffusion. The 

stability of the method (0 2 4) corresponds to nonnegative diffusion coefficient gHAt (0 - i). An 

accuracy analysis can be carried out for the finite difference equation (9) in an entirely similar 

fashion. 

To compare the results obtained by the e-method, consider an initial-boundary problem for 

equations (7), (8) with g = H = 1 and with the following initial and boundary conditions 

u(x,O) = 0, 71(x, 0) = 4x), +x1;, 

U ( > -;,t =o, u($t) =o, t L 0. 

The analytical solution of this initial-boundary problem is 

~(5, t) = sin(z) sin(t), 

n(s, t) = cos(z) cos(t). 

The numerical results have confirmed that the accuracy is higher when 8 = $ and the method is 

stable for every 8 >_ 3. Figure 1 shows the numerical solution obtained for ~(0, t) when the finite 

difference scheme (9)) (10) is applied with At = 0.1, Ax = n/100 and with 0 = 1 and 8 = $. 

4. A THREE-DIMENSIONAL SEMI-IMPLICIT 
NUMERICAL METHOD 

In order to improve the efficiency and the time accuracy of the method proposed by Casulli 

and Cheng [4], the gradient of surface elevation in the momentum equations (l), (2), and the 
velocity in the free surface equation (4) will be discretized by the e-method, and the vertical 

mixing terms will be discretized implicitly. 
As shown in Figure 2, the spatial mesh consists of rectangular boxes of length Ax, width Ay 

and height Azk. Each box is numbered at its center with indices i, j and k. The discrete u 

velocity is then defined at half integer i and integers j and k; v is defined at integers i, k and half 
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Figure 1. Effect of 0 on the damping of a free surface wave: 0 = 1 dashed line; 0 = a full line. 
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integer j; UJ is defined at integers i, j and half integer k. Finally, 11 is defined at integers i, j. The 

water depth h(z, y) is specified at the u and ‘u horizontal grid points. Then, parametrized semi- 

implicit discretization for the momentum equations (I), (2) and for the free surface equation (4) 

takes the following form 

un+l a+i,j,k = Fuy++3,i,k 
$Z+l 

uk++ 
a+i,j,k+l - 

+At 
h+;,,,,+, 

un+l n+l 
a+$,i,k 

- 21. 
z+i,j,k-1 

.I, 1 - uk-’ - AZi+$,j,k_+ 

A%++,j)k 
9 (14) 

v’l”tl 
v+$,k 

= FvTj+i k 
7 2’ 

- rl$l) + (I - e> (rlyj+l 

n+l v. n+l n+l 

'/k++ 
z,3++,k+l 

-v. 
w++>k 

v. 
w+$,k 

- vntl w++,k-1 

+-At 

- 5 (1 -e) 5 Azi,j+i,k”~j+~,k - 5 AG,i-4,kVF,-+,k 7 

1 
(1‘3) 

k=m k=m 

where m and M denote the limit of k-index representing the bottom and the top finite difference 

stencil, respectively. Moreover, a.~,++,~,~ and AZi,i+; ,k are, in general, the thickness of the kth 

water layer. If, however, a vertical face of the finite difference box is not fully filled (because 

either the bottom or the free surface crosses a vertical face of the box), then a,~++,~,~ and/or 

A%,j+ 4 ,k are defined to be the wetted height of the corresponding face. Of course, some of the 

AZ can be allowed to be zero. The height of the surface layer depends on the position of the free 
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Figure 2. Spatial mesh. 

surface, and since the free surface changes with time, thus the surface AZ also depends on the 
time level 12. 

In (14) and (15), F is an explicit, nonlinear finite difference operator, which includes the contri- 

butions arising from the Eulerian-Lagrangian discretization of the convective and the horizontal 
eddy viscosity terms (see [4] for details). 

The values of u and u above free surface and below bottom in (14) and (15) are eliminated by 
means of the boundary conditions (5), (6) which are written in difference form as 

n+l 
%++,j,kf+1 

- u”+i 
z++,j,M 

vi+;, j,M+$ A”i+t,j,M+t = “’ 

w?’ 
q+;,M+l 

- vntl 
W+;,M 

‘i, j+$,M+j 
7” 

AZi,j++,M++ = ’ ’ 

and 

(17) 

where -f’+i = 9 c,2 Jm and un+3 and rP+i are taken to be 

n+* U. z+i,jm =u;+$jm-9 , , i$ (S++l,j - $j) 7 

n+$ 
v. R 

r,j+*,m = ‘i,j++,m -9% (77~j+l_rl~j)* 

If the computational domain is subdivided into N, x NY x N, computational -_ . 
boxes, then 

equations (14)-( 16) constitute a linear system of N, NV (2N, + 1) equations. ‘l’his system has 

to be solved at each time step in order to calculate the new field variables T.L~$ j k, v:;:+ k 2” , 3 

and $‘j+’ throughout the flow domain. 
When 8 = 1, the finite difference scheme (14)-(16) reduces to the one introduced by Casulli 

and Cheng [4]. 
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5. SOLUTION ALGORITHM 

Computationally, since a linear system of N,N, (2N, + 1) equations can be quite large even 

for modest values of N,, N, and N,, the system of equations (14)-(16) is first decomposed into 

a set of 2NzNy independent tridiagonal systems of N, equations, and one five-diagonal system 

of N, N, equations. Specifically, equations (14)-( 16) are first written in matrix form as 

A?+; j U’yzi,j = Gy++ j - 9 2 [d (qrT:j , - ~yj-‘)] AZy++3,j, (1% 

A?. V?t’ 2,1++ 2,3++ = Gzj++ - 9 g I8 ($::I - r1:7’) ] AZ[j++ 7 (20) 

gj+l = pj - az At Q [ (AZy++,j)T Uy$..,j - (AZy-+,j)T Uy?i,j] 

-$6 [(AZtj++)’ V;j+:+ - 

where U, V, AZ, G, 6 and A are defined as follows: 

-( 

z&n+’ 
\ 

t+i,j,M 

un+’ z++,j,M-1 

lJ:+’ 
un+l 

*++,j 
z 2+4,j,M-2 

un+l 
2+;,j,m+1 

un+l 
2++,Am , 

G;+t,;,j = 

Gyj++ = 

AZyj_+ T V;,‘_‘+ , 
’ ) ’ 1 (21) 

( *ZM \ 
*ZM-I 

AZ= 
*.ZM-~ 

. 

AZM Fu?~. 
[ 2+5~~JJ - 9 g (l - e> (rlF+l,j - ‘I:j)] + At r,” 

*ZM-I 
[ 

At 
Fur++, j M-1 - 9 - (1 - 0) (‘$+l,j - Vtj) 

2’ 9 Ax I 
1 

*z,+I 
[ 

Fu;+; jm+l - g 
, 3 

*zm 
[ 

Fu$+ jm 
I 9 

- 9 $ C1 - e, ($+l,j - Vzj") 1 
AZM Fv?. [ w++,M - g &, 

at (l- 0) (Qyj+l - qzj) 
1 

+ At TyW 

AZM-1 Fv?. 
[ w++,M-1 - 9 e (1 - 0) (Vzj+l - $j)] 

*ZM-2 Fv~“~,+ M_2 - g 
7 7 

*zm+l 
[ 

Fv,“~++ m+l - g 
3 3 

*zm Fvyj+$m- 9 t , g (1 - -9) (VTj+l - st)] 
cubm 27:4-H 
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A= 

bzj = T/)7zj - g (1 - 0) [ (AZi+i,j)T Uy++.j - (AZi-+,j)TUy_+,j] 

-g(l-e) [(AZi,j++)T V~j+; - (AZi,j-+)TV;j_+] 7 

AzM + a,_; -aM-+ 

-a,-+ AZM- 

0 -a m++ AZ, + am++ + r 

vk At 
with ak = -. 

A% 
Then, formal substitution of the expressions for UT'; j and V’& from (19) and (20) 

into (21) yields 

2 
11,++&92 

I 
(AZ)TA-lAZ]:+l j (QY!;j -v::') 

- [(AZ)TAelAi]y_+ j (VET' -q?!Lj)] 

- +$ e2 
i 
[(AZ)~A-~LIZ n 1 ( i,j++ $j+:I - $y) 
- [(AZ)TA-'AZ]n ij_3 w -G!I)] 

qj - 2 e [[(Az)TA-'G];+l,j - [(Az)TA-lG];_Lj] 

- g 8 [[(Az~A-1~1:. 
2,3++ 

- [(Az)TA-~G]~~~;~. (22) 

Since A is positive definite, A-' is also positive definite and therefore (AZ)TA-l AZ is a non- 
negative number. Hence equations (22) constitute a linear five-diagonal system of N,N, equations 

W’ for qi,j . This system is symmetric and positive definite. Thus, it has a unique solution which 
can be determined very efficiently by a conjugate gradient method [4,12]. 

It is important to emphasize that when f3 = 3 is used, the off-diagonal coefficients in 
system (22) are reduced by a factor e2 = a. Clearly, this is not the case for the main diag- 

onal term which is given by 

1 igf$e2 [[(Az)~A-~Az]~+~,~ + [(Az)TA-'Az]" t-+,j ] 

+gge2 [[(Az)~A-~AZ]~~+~ + [(Az)TA-'Az]y,_+]. 

Thus, when 8 = 4 system (22) is better conditioned, and, accordingly, a faster convergence of 
the conjugate gradient method is achieved. 

Once the new free surface location has been determined, equations (19) and (20) constitute a 
set of simple 2N,N, linear, tridiagonal systems with N, equations each. All these systems are 
independent from each other, symmetric and positive definite. Thus, they can be conveniently 
solved by a direct method. 
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Finally, by discretizing the continuity equation (3) the vertical component of the velocity at 

the new time level can be computed by setting w?’ 
W7m-j 

= 0, and 

The numerical algorithm presented above includes the simulation of flooding and drying of tidal 

flats. To this purpose at each time step the new water depths Hi?/ j and H!‘?’ 
W+3 

are defined as 

with the understanding that an occurrence of the zero value for the total depth H simply means 

a dry point which may be flooded at a later time when H becomes positive. The vertical grid 

spacings AZy++d,j and AZTj++ are updated accordingly. 

Note, finally, that when the vertical spacing AZ is taken to be large enough so that both the 

bottom and the free surface always fall within one vertical layer, this algorithm reduces to a 

two-dimensional semi-implicit numerical method, which is consistent with the two-dimensional, 

vertically integrated shallow water equations and which, for 0 = 1, yields the method described 

by Casulli [l]. 

6. NUMERICAL STABILITY 

The stability analysis of the semi-implicit finite difference method (14)-(16) will be carried out 

by using the von Neumann method under the assumptions that the governing differential equa- 

tions (l)-(4) are linear, with constant coefficients and defined on an infinite horizontal domain, 

or with periodic boundary conditions on a finite domain. Thus, if AZ denotes the constant layer 

thickness, by neglecting the wind stresses (7,” = 0,~: = 0), assuming that al = a2 = . .. = UN, 

and y in the matrix A are constants, the difference equations (19)-(21) reduce to 

AU;;;,j + g g 0 (r];$rj - $j”) AZ = AZ FU;++t,j -(I-- e)gg (77;n+l,j -$j) AZ, (24) 

- #) AZ = AZ F V;j+i - (I- 0) g $ (V&+1 - $j) AZ, (25) 

$;l = qtj - 2 e [(AZ)T IJ;$+~,~ - (AZ)T U;?i,j] 

- g 8 [(AZ)T V;;$ - (AZJT V;&] 

- 2 (1 - 0) [(AZ)T U~+~,j - (Az)T Uy-+,j] 

- e (1 - 0) [(AZ)TVcj++ - (A’)Tv;j-i] 9 (26) 

where F U? 1 
*+ZJ and FV&$ j are the explicit finite difference discretization of the horizontal 

eddy viscosity terms. Specifically, 

FUy++j =Uy+lj +Ps (Uy+),j 
2’ - 2 Uy+‘+a,j + Uy-*,j) 

At un +yp ( r+$,j+l - 2uy+;3,j + uy+;t,j-l 
) 1 (27) 



108 V. CASULLI AND E. CATTANI 

while the nonlinear convective terms are not being considered. 

THEOREM 1. The semi-implicit finite difference scheme (24)-(26) is stable in the von Neumann 

sense if 1 2 < 0 5 1 and if the time step At satisfies the following inequality 

PROOF. By replacing Uy++ j, Vyj+, 1 and ‘l~j in (24)-(28) with the corresponding Fourier com- 

ponents fJn& Ki+ib+jBl, * ‘71 I[ia+(j+$)P] e and fjn&(ia+jo), fi a er some simplifications, (24)-(26) 

become 

A@+1 + Ipegqm+l AZ=AtftiT”-Ip(l-e)g~nAZ, (30) 

A ++‘+ Iq eg Ty+1 AZ = AZ f +” - Iq (1 - e)g 6” AZ, (31) 

77 %+l+ Ipe (AZ)T tF+l+ Iqe (AZ)T Vn+l 

= fjn - Ip(1 - e) (AZ)T tin - Iq (1 - e) (AZ)T v, (32) 

where oTn, 9” and ?j” are the amplitude functions of U, V and 17 at time level P; a and p are the 

z and the y phase angles; p = 2(At/As) sin(cr/2); q = 2(At/Ay) sin(/3/2); and the amplification 
factor of the explicit difference operator F is given by 

Equations (30)-( 32) can be written in a more compact matrix form as 

P@+l = Qtin, 

(33) 

(34) 

where 
A 0 Ip eg AZ 

0 A Iqeg AZ , 

Ipe( Iqe(AZ)T 1 I 

and 

Azf Id 0 -Ip (1 - e)g AZ 

Q= 0 AZ fId -Iq(l - e)gAz 

-Ip(l - e) (AZ)T -Iq (1 - e)(Az)T 1 I 

) 

with Id being the identity matrix of order N,. Thus, the amplification matrix of the method 

is G = P-’ Q and a condition for stability is that the spectral radius of G does not exceed 1 

identically for every Q and p. Equivalently, the modulus of each eigenvalue of G-’ must be no 
less than 1. The characteristic polynomial of matrix G-l is det(P - X Q) = 0, that is, 

det 

[ 

A-XfhfId 0 Ip gs AZ 

0 A-X&ffd IqgsAZ =o, (35) 

I~s(AZ)~ Iq So 1-x I 

where s = 0 +X (1 - 0). Next to be shown is that equation (35) cannot be satisfied by any complex 
number X when 1x1 < 1. Assume that 1x1 < 1 and consider the matrix A which is real, symmetric 
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and strictly diagonally dominant. Note that when inequality (29) is satisfied, equation (33) 

implies ]j] 5 1. Therefore, ]X Az j] < Az, and hence, the matrix A - X AZ j Id remains strictly 

diagonally dominant and invertible. Consider then, 

[ 

Id 0 0 

T= 0 Id 0 9 

-I~s(AZ)~[A - XAzjId]-’ -Iqs(AZ)TIA - hhjId]-l 1 1 so that 
det(P - X Q) = det(T) x det(P - X Q) = det[T(P - X Q)]. 

Thus, equation (35) can also be written as 

where 

A-xAz jId 0 Ipgs AZ 

det 

[ 

0 A-XAzjI, IqgsAZ =O, 

0 0 b I 

b = g (p2 + q2) s~(AZ)~[A - A Az jId]-lAZ + 1 - X. 

Since det(A - X AZ j Id) # 0 it is only necessary to show that for f 2 f3 5 1 one has b # 0. On 

the other hand, since A is real and symmetric, it possesses N, real eigenvalues Xk 2 AZ and a 

complete system of eigenvectors xk, which form an orthonormal basis. Consequently, the vector 

[A - X AZ j Id]-iAz can be expressed as 

[A-x& jId]-lAZ = 2 (AZ)TXk 
,=lXk-XAzjXk’ 

Thus, the inequality b # 0 can be written as 

,(P2+q2)s2g l;(y;2;2 (xk -iAzf)+l -x#o. 
k 

Since s # 0, inequality (36) can be divided by s, to obtain 

g (p2 + q2) s 5 [(Az)Txk12 
k=l Ixk - A AZ f I2 

(& - x AZ f) + (’ ,,;) ’ # 0. 

In this latter inequality one has ]sl2 > 0 and 

[(Az)TXk]2 
dp2 +q2) ,Xk _ XAZj12 Lo. 

Moreover, 

and 

In fact, 

I+(&-XAzj)] >0 

Re[(l-X)S] >O. 

Re[s (& - i AZ j)] 

=Re{[e+X(l-e)](&-XAzj)} 

= 8 [& - j AZ Re(X)] + (1 - e)[& Re(X) - [Xl2 AZ j] 

= (1 - e)[& + Re(x)(& - AZ j) - ]Al2 j AZ] + (28 - I)[& - f AZ Re(X)] 

2 (I - o)[Ak - 1x1 (xk -AZ f) - )A12fAZ] + (28 - I)[& - If AZq] 

= (1 - o>[(xk i- f AZ 1x1) (1 - 1x1 )] i- (28 - i)[Xk - If AZ XI ] 

2 (xk - If AZxl>[(i - 6) (1 - 1x1) + (28 - i)] > 0. 

(36) 

(37) 

(38) 

(39) 
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The validity of (39) can be shown in a similar fashion with x replacing X and Xk = f = AZ = 1. 
This proves that the left-hand side of (37) has strictly positive real part. Thus, when 3 5 8 5 1 
under the stability restriction (29) the matrix G-l does not have eigenvalues X such that IX] < 1. 
Therefore, the spectral radius of G is no greater than 1 and the scheme (24)-(26) is stable in the 
von Neumann sense. 

Note that the stability of the semi-implicit finite difference scheme (24)-(26) is independent 
of the celerity, bottom friction and vertical viscosity. It does depend on the horizontal viscosity 
through the mild stability condition (29). This method becomes unconditionally stable when 
the horizontal viscosity terms are neglected. The presence of non-linear convective terms may 
affect the stability of the method when they are discretized explicitly by standard schemes which 
use, for example, central, upwind differences, or Eulerian-Lagrangian methods (ELMS). Use of 
ELMS as described in [4] is always recommended because of their higher accuracy and because 
additional conditions for the stability are not required. 

‘7. COMPUTER APPLICATIONS 

The present model, in its original formulation with 0 = 1, has been applied extensively at 
several sites including San Francisco Bay, California, and the Lagoon of Venice, Italy [2,4]. This 
section is aimed at emphasizing the superior efficiency and accuracy obtained by this method in 
the simulation of complex three-dimensional flows when 8 = $ is used. 

The Lagoon of Venice is a very complex sea water basin whose area is about 50 km2 and which 
consists of several interconnected narrow channels with a maximum width of 1 km and depth of 
50 m encircling large and flat shallow areas. Additionally, several tidal marshes with a bathymetry 
of only 20-40cm above sea level require proper treatment of flooding and drying. The Lagoon 
is connected to the Adriatic Sea through three narrow inlets, namely Lido, Malamocco, and 
Chioggia (see Figure 3). The city of Venice is situated upon the largest island near Lido inlet. 
Tides propagate from the Adriatic Sea into the Lagoon through the three inlets. In the numerical 
model the Lagoon has been covered with a N, = 384 by N3/ = 426 finite difference mesh of equal 
AZ = Ay = 100m. At the three inlets, an Mz tide of 0.5 m amplitude and 12 lunar hour period 
has been specified. 

The integration time step is chosen to be At = 15 min and the computations have been carried 
out by solving, at each time step, a corresponding linear, five-diagonal system of N,N, = 163,584 
equations. 

The numerical simulations have been performed with both 8 = 1 and 19 = i. With 0 = 4 the 
matrix of coefficients of the five-diagonal system is better conditioned because the off-diagonal 
terms have been reduced by a factor i. Thus, in general, the preconditioned conjugate gradient 
method requires a lower number of iterations to obtain the desired solution with a given accuracy. 
For example, by fixing an accuracy of 10e3, a simulation of one tidal cycle using the model with 
one vertical layer and 8 = 1, requires an average of 100 iterations at each time step. When 
0 = 4, the averaged number of iterations drops down to 65. Accordingly, the total CPU time 
required by a CRAY Y-Mpg/432 to simulate one tidal cycle reduces from 6Os, when 0 = 1, to 
49 s when fJ = 4. When the model is considered for three-dimensional applications with more 
vertical layers, the number of iterations and the corresponding computing time required to solve 
the large five-diagonal system remains essentially the same as for the one layer case. The total 
computing time, however, is increased by the solution of the corresponding tridiagonal systems. 
For example, using four vertical layers with 19 = 1 and with 8 = 4, a total computing time of 
92s and 82 s, respectively, is required for every tidal cycle. Of course, when higher accuracy 
is required, the number of iterations increases and the corresponding saving in computing time 
becomes more evident. 

The computed results indicate that the amplitude of the free surface waves in various points of 
the Lagoon is generally 5% higher when 8 = f is used. Figure 4 shows the values of 77 calculated 
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Figure 3. The Lagoon of Venice. 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

-0.1 

-0.2 

24 26 28 30 32 34 36 

Effect of 8 on the free surface in the Lagoon of Venice: /3 = I dashed line; 0 = 3 full 



112 V. CASULLI AND E. CATTANI 

at a typical point located west of the city of Venice. When 13 = i, the values of q range between 

-44cm and 48 cm; while, for 8 = 1, the values of 7 range between -42 cm and 45 cm. As 

expected, when 0 = 3, the reduced damping error results in a higher wave amplitude. 

8. CONCLUSIONS 

A parametrized semi-implicit finite difference model for the three-dimensional shallow water 

flow has been analyzed from the point of view of its numerical stability, accuracy and efficiency. A 

rigorous stability and accuracy analysis has been presented. It is shown that when the implicitness 

parameter 6 is set to be 4 the method is stable and achieves highest accuracy and efficiency. 

In the particular case that only one vertical layer is specified, this scheme remains consistent 

with the vertically integrated two-dimensional shallow water equations. Computationally, the 

resulting algorithm is suitable for the simulations of complex three-dimensional flows using fine 

spatial resolution and relatively large time steps. The present formulation is fully vectorizable 

and naturally allows for the simulation of flooding and drying of tidal flats. 
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