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An upset is a set q/ of subset of a finite set. S such that  if U ~  V and U e q / ,  
then V~ql.  A downset 9 is defined analogously. In 1966, Kleitman (J. Combin. 
Theory 1 (1966), 153-155) proved that if q / a n d  9 are arbitrary up- and downsets, 
respectively, then [og[ [9[/> 2 Isl [og c~ 9[.  In this note, we show that  a necessary and 
sufficient condition for equality to hold is: for every minimal element U of og and 
every maximal  element D of 9 ,  U _  D. This result is extended to some related 
inequalities. © 1994 Academic Press, IJac. 

Let S be a finite set. We denote the set of all subsets of S by N(S). 
An upset is a subset ~ of N(S) such that if U _  V an d  U ~ ,  then Vs#/ .  
We state the following Theorem: 

THEOREM 1. Let °ll 1 and ~ll2 be upsets in ~(S). Then I~//11 ]°g2l ~< 
2 Isl I~#1 c~ ~'2[, with equality if and only if every minimal element of  ~1 is 
disjoint from every minimal element of ~ll2. 

It is the main purpose of this note to prove Theorem 1 and to derive the 
equality conditions in some related inequalities. 

If we define a downset ~ equivalently to an upset, then it is routine 
to verify Theorem l's equivalence to the following statement: I~] 1~] ~> 
2 jsl [~//c~ ~[,  with equality holding if and only if, for every minimal element 
U of ~ and every maximal element D of N, U~_D. We set ~//= ogt, and 
@ = ~(S)\~/2 to show this. 

For  an upset ~//, define m(~') to be the set of minimal elements of ~' and 
sp(~)  = Uu~m(~U) U. The equality condition in Theorem 1 may be restated 
as sp(q/1) and sp(~#2) are disjoint. 

Proof of Theorem 1. Our proof is basically the same as Kleitman's 
original proof [-3], with a little more care to obtain the necessity of the 
equality condition. 
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For each dES,  and for i = 1 , 2 ,  let ql ia={UsqZi la~U} ,  q/,.a= J//i\q/ia, 
and q/',-a = { U \ { a } l U s ~ a } .  The proof proceeds by induction on [S[, so it 
is important to observe that q/ia and q/'~a are upsets in ~(S\{a}) .  Note that 

Trivially, I~/I = I~'ial + I~',.I, SO that  

1%1 I%1 = (l~;ol + I%~[)(VgLI + [%~1) 

= I~'LI I%.1 + I%~l I%~l + I~ia] 1%~1 + 1%~1 I~'LI 

= 2(l~ia[ I~eLI + I~l~l I % ~ l ) -  ( I ~ L I -  I % ~ l ) ( I ~ L I -  1%.[), 

the last equality following from xlY2 + y lx2  = XlX2 + Y l Y 2 -  (xl - Yl) x 
(x2 - Y2). 

Inductively, we have I~//~a[ [~//~a] ~< 21Sl- i [q/'l~ C~ J//~[ and [%e[ 1~//2e] ~< 
21sl-a[%,nJ#2a[. Since it is clear that [~lf"~G//2[ = [~[~la("hGl[12a[-'}- 
[%a C~ q/2a [, we get 

I%11q/2[ ~ <21sl 1% ~#21 - ([q/ial -- [%al)(l~'ia[ -- Iq/2a[), (1) 

from which the inequality of the theorem follows, since q/ca --- J//'e~. 
To see the necessity of the equality condition, suppose a s s p ( % ) n  

sp(d//2). Then, for i--= 1, 2, there is a U~sm(ql,) such that a s  U~. Obviously, 
Ui\{a} E ~ll'~ and U,\{a} ~ %a. Therefore, both terms in the negative factor 
of (1) are positive and [q/l[ I%1 < 2  Isl 1~1 ('~ ~(21" 

On the other hand, if sp(%)c~sp(q4)=2~,  then, for i = 1 , 2 ,  let 
Si=sp(~l[i) and let q /*=q/ i~N(Se) .  We have 1~',i=2 Isl-ls'l I~g*[ and 
I% m %1 = I ~ l  I~*12 ~s~- ~Sl~-~s=~, the latter being verified by the bijection 
U ~  ( U ~  $1, Uc~ S~, U\(S~ ~ $2)). The equality is immediate. | 

We now move on to two corollaries of Theorem 1; the inequality in the 
second is Kleitman's Theorem on the size of the union of intersecting 
families I-3]. 

COROLLARY 1.1. Let % ,  ..., qlg be upsets in ~(S) .  Then I~i=l~ I~e] ~< 
2 (~-~lsl IN~=I~/I, with equality if and only if the sp(q/i) are pairwise 
disjoint. 

Proof. The proof is by induction on k, the case k = 1 being trivial and 
the case k =  2 being Theorem 1. Therefore, assume k >  2 and the result 
holds for k -  1. 

We note that the intersection of upsets is again an upset. Therefore, 

= m ~. >1%1 
,= i= 21Sl (2) 

>~ 21Sl 2(~_~)ls I - 2(~_~)lS I , (3) 
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where the inequality in (2) is from Theorem 1 and the inequality in (3) is 
from the inductive assumption. 

For the equality condition, if sp(q/i) and sp(%) are not disjoint, then we 
can assume 2 ~< i < j and, inductively, the inequality in (3) is strict. On the 
other hand, if the sp(q/e) are pairwise disjoint, then the inequality in (3) 
holds as an equality. Thus, it suffices to show that the inequality in (2) 
holds as an equality. That is, we must show that sp(~//1)~sp((]/k=zq/~.) 
= ~ .  But this follows from the simple observation that sp(0~=2q/~)--- 
U~=2 sp(q/z). I 

A subset d of ~(S)  is an interesting family if, for all A, A' ~ d ,  
A n A' ¢ ~ .  Note that a maximal intersecting family is an upset. 

COROCt.ARY 1.2 [3]. Let all, ..., dk be intersecting families in ~(S). 
Then 

~ 21sl _ 21sl-k. 
i 1 

I f  the ~ are maximal intersecting families, then equality holds if and only if 
the sp (~ )  are pairwise disjoint. 

This generalizes the well-known fact that if d is a maximal intersecting 
family, then 1-41 = 2 Isi - 1. 

Proof We can assume that the ~ are maximal intersecting families. 
Let ~ c =  { S \ A I A ~ } .  Then 

k d c 
= I ~ ( S ) l -  i01 

k d = I~(S) l -  ;~1 

<21sl I/~=1 I~1 
2 ( k - -  1) ISl 

(4) 

(5) 

2k(ISI 1) 
=21st 2(k i)lsl (6) 

= 2 1 s i 2 1 s i - k ,  

where (4) follows from the bijection A ~ S\A,  (5) from Corollary 1.1, and 
(6) from [~] = 2  ISl-1. I 
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Also note  that  if equali ty holds in IU/k=l ~ [  ~<2 Isl - 2  Isl-k, then every 
extension of the ~ to max imal  intersecting families ~¢* must  have the 
sp (s¢*)  disjoint. 

We conclude this article with two remarks.  First, and foremost ,  it is not  
clear whether  the cases of equali ty in several generalizations of  Kle i tman ' s  
L e m m a  can be so neatly characterized.  In  part icular,  we are curious abou t  
the following two generalizations,  where sJ v ~ = { A w B IA ~ sO, B ~ ~ } 
and s ¢ A  N ' =  { A c ~ B I A e s # , B ~ } .  

THEOREM 2 [2]. If d and ~ are subsets of  ~(S) ,  then 

I~'1 l~l ~< I d  A ~1 I~d v ~1. 

THEOREM 3 [1] .  Suppose ~, fi, 7, and 6 are functions from ~ ( S )  to the 
non-negative reals. If, for any A, B ~ ~ (  S), a( A ) fi( B ) <~ 7( A w B) 5( A c~ B ), 
then for any subsets ~4, ~ of  ~(S) ,  

A E ~  ¢ I B E ~  E ~ d v ~  / ' , F ~ d A ~  

The other  c o m m e n t  we make  is that  the p roof  of Theorem 1 yields an 
injection f :  °1l I x q/2 --~ (q/1 ~ q/2) x ~ ( S ) .  Our  p roof  that  f i s  injective is very 
simple, but  the descript ion of f is compl ica ted (it is an algori thm).  I t  would 
be interesting to have a simply described injection, even if the p roof  of 
injectivity is somewhat  complicated.  
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