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We constrain the light CP-odd Higgs A0
1 in NMSSM via the rare decay π0 → e+e−. It is shown that the

possible 3σ discrepancy between theoretical predictions and the recent KTeV measurement of B(π0 →
e+e−) cannot be resolved when the constraints from Υ → γ A0

1, aμ and π0 → γ γ are combined.
Furthermore, the combined constraints also exclude the scenario involving mA0

1
= 214.3 MeV, which is

invoked to explain the anomaly in the Σ+ → pμ+μ− decay found by the HyperCP Collaboration.
© 2009 Elsevier B.V. Open access under CC BY license. 
1. Introduction

Theoretically, the rare decay π0 → e+e− starts at the one
loop level in the Standard Model (SM), which has been exten-
sively studied [1–10] since the first investigation in QED by Drell
[1]. It is nontrivial to make precise predictions of the branch-
ing ratio BSM(π0 → e+e−) because its sub-process involves the
π0 → γ ∗γ ∗ transition form factor. In Refs. [2–5], the decay was
studied via the Vector-Meson Dominance (VMD) approach, where
the results are in good agreement with each other and converge in
B(π0 → e+e−) ∼ (6.2–6.4) × 10−8. By using the measured value
of B(η → μ+μ−) to fix the counterterms of the chiral ampli-
tude in Chiral Perturbation Theory (ChPT), Savage et al. predicted
B(π0 → e+e−) = (7 ± 1) × 10−8 [6]. Using a procedure similar to
that used in Ref. [6] (although with an updated measurement of
B(η → μ+μ−)), Dumm and Pich predicted (8.3 ± 0.4) × 10−8 [7].
Alternatively, using the lowest meson dominance (LMD) approxi-
mation to the large-Nc spectrum of vector meson resonances to
fix the counterterms, Knecht et al. predicted (6.2 ± 0.3)× 10−8 [8],
which is about 4σ lower than the value predicted by Ref. [7] but
which agrees with the others. Most recently, using a dispersive ap-
proach to the amplitude and the experimental results of the CELLO
[11] and CLEO [12] Collaborations for the pion transition form fac-
tor, Dorokhov and Ivanov [9] have found that

BSM
(
π0 → e+e−) = (6.23 ± 0.09) × 10−8, (1)
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which is consistent with most theoretical predictions of BSM(π0 →
e+e−) in the literature. Moreover, their prediction that B(η →
μ+μ−) = (5.11 ± 0.2) × 10−6 agrees with the experimental data
(which gives a value of (5.8 ± 0.8) × 10−6 [13]).

Experimentally, the accuracy of the measurements of the decay
has increased significantly since the first π0 → e+e− evidence was
observed by the Geneva-Saclay group [14] in 1978 with BSM(π0 →
e+e−) = (22+24

−11 ) × 10−8. A detailed summary of the experimental
situation can be found in Ref. [15]. Recently, using the complete
data set from KTeV E799-II at Fermilab, the KTeV Collaboration has
made a precise measurement of the π0 → e+e− branching ratio
[16]

Bno-rad
KTeV

(
π0 → e+e−) = (7.48 ± 0.29 ± 0.25) × 10−8, (2)

after extrapolating the full radiative tail beyond (me+e−/mπ0)2 >

0.95 and scaling their result back up by the overall radiative cor-
rection of 3.4%.

As was already noted in Ref. [9], the SM prediction given
in Eq. (1) is 3.3σ lower than the KTeV data. The authors have
also compared their result with estimations made by various ap-
proaches in the literature and found good agreements. Further
analyses have found that QED radiative contributions [17] and
mass corrections [18] are at the level of a few percent and are
therefore unable to reduce the discrepancy. Although the discrep-
ancy might be due to hadronic dynamics that are as of yet un-
known, it is equally possible that this discrepancy is caused by the
effects of new physics (NP). In this Letter we will study the latter
possibility.

As is known that leptonic decays of pseudoscalar mesons are
sensitive to pseudoscalar weak interactions beyond the SM. Precise
measurements and calculations of these decays will offer sensitive
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Fig. 1. Relevant Feynman diagram within NMSSM.

probes for NP effects at the low energy scale. Of particular inter-
est to us is the rare decay π0 → e+e− , which could proceed at
tree level via a flavor-conserving process induced by a light pseu-
doscalar Higgs boson A0

1 in the next-to-minimal supersymmetric
standard model (NMSSM) [19]. We will look for a region of the pa-
rameter space of NMSSM that could resolve the aforementioned
discrepancy of B(π0 → e+e−) at 1σ . Then, we combine con-
straints from aμ and the recent searches for Υ (1S), (3S) → γ A0

1
by CLEO [20] and BaBar [21], respectively.

2. The amplitude of π0 → e+e− in the SM and the NMSSM

The NMSSM has generated considerable interest in the litera-
ture, which extends the minimal supersymmetric SM (MSSM) by
introducing a new Higgs singlet chiral superfield Ŝ to solve the
known μ problem in MSSM. The superpotential in the model is
[19]

WNMSSM = Q̂ Ĥuhu Û C + Ĥd Q̂ hd D̂C + Ĥd L̂he ÊC

+ λ Ŝ Ĥu Ĥd + 1

3
κ Ŝ3, (3)

where κ is a dimensionless constant and measures the size of
Peccei–Quinn (PQ) symmetry breaking.

In addition to the two charged Higgs bosons, H± , the physi-
cal NMSSM Higgs sector consists of three scalars h0, H0

1,2 and two

pseudoscalars A0
1,2. As in the MSSM, tan β = vu/vd is the ratio of

the Higgs doublet vacuum expectation values vu = 〈H0
u〉 = v sin β

and vd = 〈H0
d〉 = v cos β , where v =

√
v2

d + v2
u = √

2mW /g �
174 GeV. Generally, the masses and singlet contents of the physical
fields depend strongly on the parameters of the model (such as, in
particular, how well the PQ symmetry is broken). If the PQ sym-
metry is slightly broken, then A0

1 can be rather light, and its mass
is given by

m2
A0

1
= 3κxAk + O

(
1

tan β

)
(4)

with the vacuum expectation value of the singlet x = 〈S〉; mean-
while, another pseudoscalar A0

2 has a mass of order of mH± .
For π0 → e+e− decay, the NMSSM contributions are dominated

by A0
1. The couplings of A0

1 to fermions are [22]

L A0
i f f̄ = −i

g

2mW
(Xdmdd̄γ5d + Xumuūγ5u + X�m��̄γ5�)A0

1 (5)

where Xd = X� = v
x δ− and Xu = Xd/ tan2 β; thus, the contribution

of the ūγ5u A0
1 term in π0 → e+e− could be neglected in the large

tan β approximation.
To the leading order, the relevant Feynman diagram within

NMSSM is shown in Fig. 1. We obtain its amplitude as

M A0
1
= − G F√

2
mem3

π0 fπ0
1

m2
π0 − m2

A0
1

X2
d , (6)

which is independent of md , since md in the coupling of A0
1d̄γ5d is

canceled by the md term of the hadronic matrix
Fig. 2. Triangle diagram for π0 → e+e− process.

〈
0
∣∣d̄γ5d

∣∣π0〉 = − i√
2

fπ0

m2
π0

2md
. (7)

In the SM, the normalized branching ratio of π0 → e+e− is
given by [9]

R
(
π0 → e+e−) = B(π0 → e+e−)

B(π0 → γ γ )

= 2

(
αe

π

me

mπ0

)2

βe
(
m2

π0

)∣∣A
(
m2

π0

)∣∣2
(8)

where βe(m2
π0) =

√
1 − 4 m2

e

m2
π0

and A(m2
π0) is the reduced ampli-

tude.
To add the NMSSM amplitude to the above amplitudes consis-

tently, we rederive the SM amplitude to look into possible differ-
ences between the conventions used in our Letter and the ones
used in Ref. [9]. The Feynman diagram that proceeds via two
photon intermediate states is shown in Fig. 2. We start with the
π0γ ∗γ ∗ vertex

Hμν = −ie2εμναβkα(q − k)β fγ ∗γ ∗ Fπ0γ ∗γ ∗
(
k2, (q − k)2) (9)

where k and q − k are the momenta of the two photons, fγ ∗γ ∗ =√
2

4π2 and f
π0

is the coupling constant of π0 to two real photons.

Fπ0γ ∗γ ∗ (k2, (q − k)2) is the transition form factor π0 → γ ∗γ ∗ ,
which is normalized to Fπ0γ ∗γ ∗ (0,0) = 1. The amplitude of Fig. 2
is written as

MSM
(
π0 → e+e−)

= ie2
∫

d4k

(2π)4

Lμν Hμν

(k2 + iε)((k − q)2 + iε)((k − p)2 − me + iε)
, (10)

with

Lμν = ū(p, s)γ μ(/p − /k + me)γ
ν v(q − p, s′). (11)

There is a known, convenient way to calculate Lμν with the pro-
jection operator for the outgoing e+e− pair system [23]

P (q − p, p) = 1√
2

[
v(q − p,+) ⊗ ū(p,−) + v(q − p,−) ⊗ ū(p,+)

]

= 1

2
√

2t

[
−2meqμγ μγ 5 + 1

2
εμνστ

(
pσ (q − p)τ

− (q − p)σ pτ
)
σμν + tγ 5

]
(12)

where t = q2 = m2
π0 . After some calculations, we get

MSM
(
π0 → e+e−) = 2

√
2α2memπ0 fγ ∗γ ∗ A

(
m2

π

)
(13)

where the reduced amplitude A(q2) is
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Fig. 3. The dependence of B(π0 → e+e−) on the parameter |Xd| with mA0
1
= mπ0 /2,

214.3 MeV and 3 GeV, respectively. The horizontal lines are the KTeV data, where
the solid line is the central value and the dashed ones are the error bars (1σ ).

A
(
q2) = 2i

q2

∫
d4k

π2

k2q2 − (q · k)2

(k2 + iε)((k − q)2 + iε)((k − p)2 − me + iε)

× Fπ0γ ∗γ ∗
(
k2, (q − k)2). (14)

We note that the A(q2) derived here is in agreement with Ref. [9].
Further evaluation of the integrals of A(q2) is quite subtle and
lengthy [2,24], and only the imaginary part of A(m2

π0) can be ob-
tained model-independently [1,2]. In the following calculations, we
quote the result of Ref. [9],

A
(
m2

π

) = (10.0 ± 0.3) − i17.5. (15)

With Eqs. (6) and (13), we get the total amplitude

M = 2
√

2α2memπ0 fγ ∗γ ∗ A
(
m2

π

)

− G F√
2

mem3
π0 fπ0

1

m2
π0 − m2

A0
1

X2
d . (16)

3. Numerical analysis and discussion

Now, we are ready to discuss the effects of A0
1 numerically, with

a focus on the mA0
1
< 2mb scenarios. The dependence of B(π0 →

e+e−) on the parameter |Xd| is shown in Fig. 3 with mA0
1
= mπ/2,

214.3 MeV, 3 GeV as benchmarks. We have used the input pa-
rameters B(π0 → γ γ ) = 0.988 and fπ0 = (130.7 ± 0.4) MeV [13].
As shown in Fig. 3, B(π0 → e+e−) is very sensitive to the pa-
rameter |Xd| and mA0

1
. For mA0

1
< mπ0 , the NMSSM contribution

is deconstructive and reduces B(π0 → e+e−) at small |Xd| region.
For mA0

1
> mπ0 , the NMSSM contribution is constructive and could

enhance B(π0 → e+e−) to be consistent with the KTeV mea-
surement Bno-rad

KTeV (π0 → e+e−) = (7.48 ± 0.38) × 10−8 (where |Xd|
strongly depends on mA0

1
).

3.1. Constraint on the scenario of mA0
1
= 214.3 MeV

It is interesting to note that the HyperCP Collaboration [25] has
observed three events for the decay Σ+ → pμ+μ− with a narrow
range of dimuon masses. This may indicate that the decay pro-
ceeds via a neutral intermediate state, Σ+ → p P 0, P 0 → μ+μ− ,
with a P 0 mass of 214.3 ± 0.5 MeV. The possibility of P 0 has been
explored in the literature [26,28–30]. The authors have proposed
A0

1 as a candidate for the P 0, and have also shown that their ex-
planation could be consistent with the constraints provided by K
and B meson decays [26,27]. It would be worthwhile to check on
whether the explanation could be consistent with the π0 → e+e−
decay.

Taking mA0
1

= 214.3 MeV, we find that B(π0 → e+e−) is en-

hanced rapidly and could be consistent with the KTeV data within
1σ for

|Xd| = 14.0 ± 2.4. (17)

However, the upper bound |Xd| < 1.2 from the aμ constraint has
been derived and used in the calculations of Refs. [26,29]. So, with
the assumption that mA0

1
= 214.3 MeV, our result of |Xd| violates

the upper bound with a significance of 5σ .
Recently, CLEO [20] and BaBar [21] have searched for the

CP-odd Higgs boson in radiative decays of Υ (1S) → γ A0
1 and

Υ (3S) → γ A0
1, respectively. For mA0

1
= 214 MeV, CLEO gives the

upper limit

B
(
Υ (1S) → γ A0

1

)
< 2.3 × 10−6 (90% C.L.) (18)

which constrains |Xd| < 0.16.
The BaBar Collaboration has searched for A0

1 through Υ (3S) →
γ A0

1, A0
1 → invisible in the mass range mA0

1
� 7.8 GeV [21]. From

Fig. 5 of Ref. [21], we read

B
(
Υ (3S) → γ A0

1

) × B
(

A0
1 → invisible

)
� 3.5 × 10−6 (90% C.L.) (19)

for mA0
1

= 214 MeV. Assuming B(A0
1 → invisible) ∼ 1, we get the

conservative upper limit |Xd| < 0.19.
All of these upper limits are much lower than the limit of

Eq. (17) set by π0 → e+e−; therefore, the scenario where mA0
1

�
214 MeV in NMSSM could be excluded by combining the con-
straints from π0 → e+e− and the direct searches for Υ radiative
decays.

3.2. Constraints on the parameter space of mA0
1
− |Xd|

To show the constraints on NMSSM parameter space from
π0 → e+e− , we present a scan of mA0

1
− |Xd| space, as shown in

Fig. 4. In order to scan the region of mA0
1

∼ mπ0 , the amplitude

of the A0
1 contribution in Eq. (6) is replaced by the Breit–Wigner

formula

M A0
1
= − G F√

2
mem3

π0 fπ0
1

m2
π0 − m2

A0
1
+ iΓ (A0

1)mA0
1

X2
d . (20)

With the assumption that A0
1 just decays to electron and photon

pairs for mA0
1
∼ mπ0 , the decay width of A0

1 could be written as

Γ
(

A0
1

) = Γ
(

A0
1 → e+e−) + Γ

(
A0

1 → γ γ
)

(21)

with

Γ
(

A0
1 → e+e−) =

√
2G F

8π
m2

e mA0
1

X2
d

√√√√1 − 4
m2

e

m2
A0

1

,

Γ
(

A0
1 → γ γ

) = G F α
2

8
√

2π3
m3

A0
1

X2
d

∣∣∣∣
∑

i

r Q 2
i ki F (ki)

∣∣∣∣
2

, (22)

where r = 1 for leptons and r = Nc for quarks, ki = m2
i /m2

A0
1

and Q i

is the charge of the fermion in the loop. The loop function F (ki)

reads [31]
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(a)

(b)

Fig. 4. Constraints on the NMSSM parameter space through B(π0→e+e−),
B(Υ (1S) → γ A0

1), B(Υ (3S) → γ A0
1) and aμ , respectively. The shaded regions are

allowed by the labeled processes.

F (ki) =
⎧⎨
⎩

−2(arcsin 1
2
√

ki
)2 for ki � 1

4 ,

1
2 [ln(

1+√
1−4ki

1−√
1−4ki

) + iπ ]2 for ki < 1
4 .

As shown in Fig. 4, only two narrow connected bands of
the |Xd| − mA0

1
space survive after the KTeV measurement of

B(π0→e+e−), which show that π0→e+e− is very sensitive to NP
scenarios with a light pseudoscalar neutral boson.

In the following, we will determine which part of the remaining
parameter space could satisfy the constraints enforced by radiative
Υ decays and aμ simultaneously.

To include the aμ constraint, we use the experimental result
that [32] aμ(Exp) = (11659208.0 ± 6.3) × 10−10 and the SM pre-
diction [33] aμ(SM) = (11659177.8 ± 6.1) × 10−10. The discrepancy
is

�aμ = aμ(Exp) − aμ(SM) = (30.2 ± 8.8) × 10−10(3.4σ) (23)

which is established at a 3.4σ level of significance.
The contributions of A0

1 to aμ are given by [34]

δaμ

(
A0

1

) = δa1-loop
μ

(
A0

1

) + δa2-loop
μ

(
A0

1

)
,

δa1-loop
μ

(
A0

1

) = −√
2G F

m2
μ

8π2
|Xd|2 f1

(m2
A0

1

m2

)
,

μ

δa2-loop
μ

(
A0

1

) = √
2G F α

m2
μ

8π3
|Xd|2

[
4

3

1

tan2 β
f2

(
m2

t

m2
A0

1

)

+ 1

3
f2

(
m2

b

m2
A0

1

)
+ f2

(
m2

τ

m2
A0

1

)]
(24)

with

f1(z) =
1∫

0

dx
x3

z(1 − x) + x2
,

f2(z) = z

1∫
0

dx
1

x(1 − x) − z
ln

x(1 − x)

z
. (25)

It has been found that the A0
1 contribution is always negative at

the one loop level and worsens the discrepancy in aμ; however,
it could be positive and dominated by the two loop contribution
for A0

1 > 3 GeV [34]. One should note that there are other contri-
butions to aμ in NMSSM; for instance, the chargino/sneutino and
neutralino/smuon loops. Moreover, the discrepancy �aμ could be
resolved without pseudoscalars [34]. So, putting a constraint on
|Xd| via aμ is a rather model-dependent process. There are two ap-
proximations with different emphases on the role of A0

1; namely,
(i) assuming that �aμ is resolved by other contributions and re-
quiring that A0

1 contributions are smaller than the 1σ error-bar
of the experimental measurement, and (ii) assuming that the A0

1
contributions are solely responsible for �aμ . In Ref. [26], approxi-
mation (i) has been used to derive an upper bound of |Xd| < 1.2.
We present the aμ constraints with the two approximations which
are shown in Figs. 4(a) and (b), respectively.

From Fig. 4(a), we can find that there are two narrow overlaps
between the constraints provided by aμ and B(π0→e+e−): one
is for mA0

1
∼ 3 GeV with |Xd| > 150 and another one is for mA0

1
∼

135 MeV with |Xd| < 1.
In the searches for Υ → γ A0

1 decays, CLEO [20] obtains the
upper limits for the product of B(Υ (1S) → γ A0

1) and B(A0
1 →

τ+τ−) or B(A0
1 → μ+μ−), while BaBar presents upper limits on

B(Υ (3S) → γ A0
1) × B(A0

1 → invisible). All these limits fluctuate
with the mass of A0

1 frequently. For simplicity, we take the loosest
upper limit B(Υ (1S) → γ A0

1)× B(A0
1 → τ+τ−) < 6×10−5 of CLEO

and assume B(A0
1 → τ+τ−) = 1. Similarly, we also use the loosest

upper limits on B(Υ (3S) → γ A0
1)× B(A0

1 → invisible) < 3.1×10−5

of BaBar [21] and assume B(A0
1 → invisible) = 1. With the loos-

est upper limits, we get their bounds on the |Xd| − mA0
1

space,

which are shown in Fig. 4. From the figure, we can see the bounds
(excluding the parameter space Xd > 1) for 0 < mA0

1
< 7.8 GeV.

Fig. 4(b) shows that there is no region of parameter space satisfy-
ing all the aforementioned constraints if the contribution of A0

1 is
required to solely resolve the aμ discrepancy.

Of particular interest, as shown in Fig. 4(a), is the parameter
space around mA0

1
∼ 135 MeV with |Xd| < 1 (which is still allowed

with approximation (i)). To make a thorough investigation of the
space, we read off the upper limits of BaBar [21] from Fig. 5 for the
value mA0

1
∼ 135 MeV: B(Υ (3S) → γ A0

1) × B(A0
1 → invisible) �

3.3 × 10−6. With the assumption that B(A0
1 → invisible) � 1 and

the constraints from B(π0→e+e−), we get

|Xd| = 0.10 ± 0.08, mA0
1
= 134.99 ± 0.01 MeV, (26)

where the constraint on mA0
1

is dominated by B(π0→e+e−) and

the limit of |Xd| is dominated by B(Υ (3S) → γ A0
1). At first sight,

the uncertainties in the above mentioned two parameters are too
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Fig. 5. sin 2θ versus the mass difference of the unmixed states with |Xd| = 0.05 and
0.18. The solid and the dashed lines denote the real and the imaginary parts of
sin 2θ , respectively.

different. We find that the difference arises from our assumption
Γ (A0

1) � Γ (A0
1 → e+e−) + Γ (A0

1 → γ γ ). From Eqs. (20) and (21),
one can see that the X2

d factor in M A0
1

could be canceled out

by the one in Γ (A0
1) when mA0

1
approaches mπ0 , which results

in a very sharp peak for position of mA0
1
. Thus, with the well

measured quantities given in Eq. (20) and the sensitivity of the
peak, mA0

1
turns out to be well-constrained. Furthermore, if we

take mA0
1
= mπ0 , we find that X2

d is canceled out exactly, so there

is no parameter to tune; however, we have B(π0 → e+e−) � 1,
which violates the unitary bound and is thus excluded.

From the results of Eq. (26), we obtain δaμ(A0
1) = (−9.2 ±

8.9) × 10−12 with tanβ = 30 as a benchmark, which is small
enough to be smeared by the chargino/sneutrino and neutralino/
smuon contributions. Moreover, we have

Γ
(

A0
1

) = (5.7 ± 5.5) × 10−13 MeV, (27)

which corresponds to τ (A0
1) ∼ 1.2 × 10−9 s (cτ ∼ 36 cm).

For the case where A0
1 decays mostly to invisible particles, we

take the width of A0
1 as a free parameter and get Γ (A0

1) � 8.24 ×
10−6 GeV, mA0

1
= 134.99 ± 0.02 MeV and |Xd| � 0.18. In this case,

mA0
1

can equal mπ0 , and it is found that Γ (A0
1) � 3.3 × 10−6 GeV

and |Xd| � 0.18.

3.3. The resonant effects of mA0
1
∼ mπ0

So far we have included only the width effects of A0
1 with the

Breit–Wigner formula for the propagator of A0
1. When the masses

of A0
1 and π0 are very close, the mixing between the two states

could modify the parton level π0–A0
1 coupling. In a manner anal-

ogous to Ref. [35], the mixing can be described by introducing
off-diagonal elements in the A0

1–π0 mass matrix

M2 =
(m2

A0
1
− imA0

1
ΓA0

1
δm2

δm2 m2
π0 − imπ0Γπ0

)
(28)

with δm2 =
√

G F /4
√

2 fπ0m2
π0 Xd . The complex mixing angle θ be-

tween the states is given by

sin2 2θ = (δm2)2

1
4 (m2

A0
1
− m2

π0 − imA0
1
ΓA0

1
+ imπ0Γπ0)2 + (δm2)2

. (29)

The mass eigenstates A′ 0
1 and π ′ 0 are obtained as
A′ 0
1 = 1

N

(
A0

1 cos θ + π0 sin θ
)
, (30)

π ′ 0 = 1

N

(−A0
1 sin θ + π0 cos θ

)
, (31)

where N = √|sin θ |2 + |cos θ |2. Then, we can write the decay am-
plitude of the “physical” state π ′ 0 as

∣∣M
(
π ′ 0 → e+e−)∣∣2 = 1

N2

(|cos θ |2∣∣M
(
π0 → e+e−)∣∣2

+ |sin θ |2∣∣M
(

A0
1 → e+e−)∣∣2)

. (32)

Obviously, we obtain the SM result when θ is small.
With |Xd| = 0.05 and 0.18, Fig. 5 shows sin 2θ as a function

of the difference between mA0
1

and mπ0 . We note that the imagi-

nary part of sin 2θ is negligibly small, since ΓA0
1
mA0

1
+ Γπ0mπ0 �

δm2. So, the normalization parameter N of the mixing states is
nearly unity. Combining the constraints from B(Υ (3S) → γ A0

1)

and B(π ′ 0 → e+e−), we get

|Xd| = 0.17 ± 0.01, mA0
1
� mπ0 . (33)

This confirms the results of our straightforward calculation from
Eq. (26), but gives a somewhat stronger constraint on |Xd|. With
this constraint, we get

Γ
(

A0
1

) = (9.8 ± 1.1) × 10−13 MeV, (34)

which is also in agreement with Eq. (27). Furthermore, we get
|sin θ |2 = 0.31 ± 0.19.

It is well known that the decay width of π0 → γ γ agrees per-
fectly with the SM prediction, so it is doubtful that that π0 → γ γ
would be compatible with Higgs with a degenerate mass mπ0 . Us-
ing the fitted result |sin θ |2 = 0.31 ± 0.19 and

∣∣M
(
π ′ 0 → γ γ

)∣∣2 = 1

N2

(|cos θ |2∣∣M
(
π0 → γ γ

)∣∣2

+ |sin θ |2∣∣M
(

A0
1 → γ γ

)∣∣2)
, (35)

one can easily observe that

∣∣M
(

A0
1 → γ γ

)∣∣2 � ∣∣M
(
π0 → γ γ

)∣∣2
(36)

is needed to give Γ (π ′ → γ γ ) � Γ (π0 → γ γ ). However, it would
require a too large value of |Xd| � 103; therefore, the degenerate
case is excluded.

4. Conclusion

We have studied the decay π0 → e+e− in the NMSSM and
shown that it is sensitive to the light CP-odd Higgs boson A0

1 pre-
dicted in the model. The possible discrepancy between the KTeV
Collaboration measurement [16] and the theoretical prediction of
B(π0 → e+e−) could be resolved in NMSSM by the effects of A0

1
at the tree level. However, it excludes a large fraction of the pa-
rameter space of mA0

1
− |Xd|. To further constrain the parameter

space, we have included bounds from muon g − 2 and the recent
searches for A0

1 from radiative Υ decays performed at CLEO [20]
and BaBar [21]. Combining all these constraints, we have found
that

• B(π0 → e+e−) and B(Υ → γ A0
1) put strong constraints on

the NMSSM parameter Xd and mA0
1
. Due to their different

dependences on the two parameters, the interesting scenario
where mA0

1
= 214.3 MeV is excluded, which would invalidate

the A0
1 hypothesis for the three HyperCP events [25].
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• Although these constraints point to a pseudoscalar with mA0
1
∼

mπ0 and |Xd| = 0.10 ± 0.08 (0.17 ± 0.01, π0 − A0
1 mixing in-

cluded) in the NMSSM, such an mA0
1

is excluded by π0 → γ γ

decay.

In this Letter, we have worked in the limit of Xd � Xu , i.e., the
large tan β limit. If we relax the limit and take Eq. (5) as a gen-
eral parameterization of the couplings between a pseudoscalar and
fermions, the ū–u–A0

1 coupling should be included. However, its
contribution is deconstructive to the contributions from Xd , since
the π0 flavor structure is (uū − dd̄). To give a result in agreement
with the KTeV Collaboration measurement [16], Xu � Xd would
be needed, which would imply possible large effects in Ψ (1S) ra-
diative decays. Detailed discussion of this issue would be beyond
the main scope of our present study. In summary, we could not
find a region of parameter space of NMSSM with mA0

1
< 7.8 GeV

in the large tan β limit that is consistent with the experimental
constraints. The HyperCP 214.3 MeV resonance and the possible
3.3σ discrepancy in π0 → e+e− decay are still unsolved. Finally,
further theoretical investigation is also needed to confirm the dis-
crepancy between the KTeV measurements and SM predications
of π0 → e+e− decay. If the discrepancy still persists, it would be
an important testing ground for NP scenarios with a light pseu-
doscalar boson.
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