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Abstract

Inspired by the social behavior of the bird flocking or fish schooling, the particle swarm opti-
mization (PSO) is a population based stochastic optimization method developed by Eberhart
and Kennedy in 1995. It has been used across a wide range of applications. Faure, Halton and
Vander Corput sequences have been used for initializing the swarm in PSO. Quasirandom(or
low-discrepancy) sequences such as Faure, Halton, Vander Corput etc are deterministic and
suffers from correlations between radical inverse functions with different bases used for different
dimensions. In this paper, we investigate the effect of initializing the swarm with scrambled
optimal Halton sequence, which is a randomized quasirandom sequence. This ensures that we
still have the uniformity properties of quasirandom sequences while preserving the stochastic
behavior for particles in the swarm. Numerical experiments are conducted with benchmark
objective functions with high dimensions to verify the convergence and effectiveness of the
proposed initialization of PSO.

Keywords: Randomized Low-discrepancy sequences, optimal Halton sequence, Particle Swarm Opti-
mization, Stochastic optimization simulation

1 Introduction

The particle swarm optimization (PSO) is a population based stochastic optimization technique
developed by Eberhart and Kennedy in 1995. It is a optimization method inspired by the social
behavior of the bird flocking or fish schooling [2]. PSO has been used across a wide range of
applications. Areas where PSO have shown particular promise include multimodal problems
and problems for which there is no specialized method available or all specialized methods give
unsatisfactory results [11, 7, 8, 6].

Over the past two decades researches of PSO have been focused on two main aspects of PSO
algorithm: initialization of particles and parameter selection. Initialization of particles plays
an important role in population based optimization techniques. If the swarm population does
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not cover the search area efficiently, it may not be able to locate the global optima and may
converge to a local optimum point. Quasirandom sequences like Vander Corput sequence and
Halton sequence provides better estimation in population search algorithms rather than Monte
Carlo sequences [9],[10].

Quasirandom sequences are more evenly distributed over the D dimensional unit cube, thus
it improves the accuracy of the estimation. But the drawback here is, that the the original
Halton sequence suffers from correlation effect between radical inverse functions with different
basses used for different dimensions [1], and also it provides deterministic behavior as opposed
to the stochastic behavior. It is important to have stochastic initialization since PSO is a
stochastic optimization method.

In this paper, we initialize the particles using randomized quasirandom sequence. This
guarantees the uniformity properties of the quasirandom sequences and random permutation
of the digits provides stochastic behavior.

The article is organized as follows. Section 2, Introduces the Standard PSO algorithm, In
section 3, Optimal Halton sequence ( Scrambled Halton sequence) is defined. Numerical results
are discussed in Section 4. Finally Conclusion and Future work for this paper is presented in
section 5.

2 The PSO Method
2.1 Standard PSO

A standard PSO algorithm maintains a population of M particles, and places them in the search
space of the objective function. PSO defines each particle’s position as a potential solution to
the function to be optimized, and then searches for the optima by updating its position in every
iterative step. Each particle is associated with a velocity which directs the flying of the particle
toward a new, presumably better, position/solution. The particles fly through the problem
space by following the current optimum particles. In every iteration, each particle’s velocity is
updated by following two “best” values. The first one is current best solution it has achieved
so far. This value is called pbest. Another “best” value that is tracked by the particle swarm
optimizer is the best value, obtained so far by any particle in the population. This best value
is a global best and called gbest.

After finding the two best values, the particle updates its velocity and positions with fol-
lowing equations.

Typ1 = w0 + 171 141 (pbesty — ap) + cara i1 (gbest; — ay). (1)

5t+1 = CL_;g + 6t+1- (2)

Let D be the dimension of the search space, and let af 7 denote the k'h particle’s

jt* component at time t. Then a_’;t = (af’l,af’Q,...,af’D) is the k** particle’s position
at time ¢, vf, = (vP' 02 FP) is the k' particle’s velocity at time t. M? =
(pbestf’l,pbestf’Q, ...,pbestf’D) and gbest; = (gbest}t, gbest?, ..., gbestP) are the vectors of cur-
rent best values and global best values, respectively. 71 ;41 and 72441 are uniformly distributed
random numbers between 0 and 1. There are three factors w, ¢; and ¢z in equation (1). w
factor is called the inertia weight and is simply a constant while ¢; and ¢ are the cognitive(or

personal or local) weight and social or global weight respectively.
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2.2 Algorithm

Without loss of generality, consider a minimization problem in the D dimensional space, where
f € C, C is the set of bounded, continuous functions and f : P — R.

Minimize : f(a)

Subject to :
gr(@) <0 k=1,2,..p (3)
(_') 0 m=1,2,..q

a’ <a <a

min — max

j=1,2,..D

where @ = (a',a?, ..., a”) and p, ¢ are number of inequality and equality constraints respectively.

Algorithm of Standard PSO
1. Initialize a population array of M particles with random positions and velocities on D
dimensions, in the search space.

Loop

2. For each particle evaluate the Objective function in D variables.

3. Compare each particle’s objective function value with its pbe_:etktf1 value. If current value

is better than pbeﬂst’ftfl, then set pbe;tkt equal to the current value. i.e

pbestk = akt_’, if f(a_]ft) < f(pbe_:stkt_l),
pbestk, |, if f(ak;) > f(pbestk, ). (4)
fork=1,2,.., M.

4. Identify the particle in the swarm with the best success so far and assign its position to
the variable gbest,.

Choose a?; s.t.f(a?;) < f(a_’:?t) forall k=1,2,....M

ghest, = L7 i f(ab) < f(gbest, ). 5
gbest, 1, if f(aPy) > f(gbest,_ ;).

5. Update each particle’s j*"* dimension of velocity according to the following equation, for
k=12,...Mand j=1,2,....D

vfjrjl = wvt I t+1(pbestt —ay) + 02r27t+1(gb65t{ —ay). (6)

To ensure that each component of U%t+1 is kept within the search space, make the following

modification 4
Upnins i ’Ut+1 < vmm
Uffl = vfjﬁl, if vmm < 'Uth <l (7)
/Ugna:r if vmam < varl

where vj in and v' are determined from constraints of the objective function or by

ax

J — qJ
min ~ amzn and Umaz = @

setting v’ A
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6. Update each particle’s j** dimension of position according to the following equation, for
k=1,2,... M and j=1,2,.... D
k.j k.j k.j
agy = ag”’ + v (8)

To ensure that each component of a7ft+1 is kept within the search space, make the following

modification _ _ _
) azm’n’ if a’ffl < ainin'
afjrjl = af—fl’ if aZnin S afj&fl S a’;na:r' (9)
agnaw lf agnaw < af-,l—jl'

End of the Loop

7. If a criterion is met (after a certain number of iterations or until particle position converge
to a certain value) exit loop.

3 Scrambled Halton Sequence

Unlike pseudorandom numbers, there are only a few common choices for quasirandom number
generation. However, by scrambling a quasirandom sequence, one can produce a family of
related quasirandom sequences. Finding one or a group of optimal quasirandom sequences
within this family is an interesting problem, as such optimal quasirandom sequences can be
quite useful for enhancing the performance of ordinary quasi-Monte Carlo. The process of
finding such optimal quasirandom sequences is called the derandomization of a randomized
(scrambled) family of quasirandom sequences. In addition to providing more quasirandom
sequences for quasi-Monte Carlo applications, derandomization can help us to improve the
accuracy of error estimation provided by randomized quasi-Monte Carlo. This is due to the
fact that one can find a set of optimal sequences within a family of scrambled sequence family,
and use sequences within this set for error estimation. In this section, we give a detailed
description how to derive optimal Halton Sequences.

A classical family of low-discrepancy sequences are Halton sequences [4], which are bases on
the radical inverse function defined as follows:

qbp(n)zf—l-j—&—...—l—w, (10)

where p is a prime number and expansion of n in base b is given as n = by + b1p + ... + by p™,
with integers 0 < b; < p.
Since Halton sequence X, in (0, 1]° is defined as

Xﬂ = ((bpl(n)vd)pz(n)?"'7¢Ps(n))a (11)

where p1,po, ..., ps are pairwise co-primes. In practice, we always use the first s primes as the
bases.

Comparison to other low-discrepancy sequences, Halton sequences are easier to implement.
However, a problem with Halton sequence comes from the correlations between the radical
inverse functions for different dimensions. The correlations cause the Halton sequence to have
poor 2-D projection for some pairing coordinates. In order to improve the quality of Halton
sequence, the scrambled Halton sequence can break the cycle and correlation among dimensions.
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Scrambled Halton sequence can help us to ignore the number of points and obtain good quality
of Halton sequence.

By analyzing the inner property of points in each coordinate, correlations are related to
the most significant bit. We permute the most significant bits of each Halton point according
to coordinate. The period of points in each coordinate is the base. Permutation of most
significant bit of each point is the same as permutation in {¢,(1),¢p(2),...,0,(b)}, {dp(b +
1),0p(b+2),...,0,(20)},.... The advantage of this procedure is that we have the same code
as the original Halton sequence. The only thing we need to do is to permute the points according
to each coordinate, and output the scrambled Halton sequence. This permutation of Halton
sequence does not change its uniformity in one dimension and just change the position of one
point [1]. In this practice, we followed recommendation from early implementation[3] to skip
certain number of n instead n = 1, we dropped first 5000 points and start with n = 5001. This
has no effect on asymptotic performance, but it dramatically improves practical performance
when dimension is high. It is always safe to skip a couple thousand points when we are using
quasirandom sequences.

4  Numerical Results

To implement the PSO algorithm, the values of the parameters {w, c1, ca} are needed. According
to Ming Jiang et al [5], suggested parameter tuple in literature are w = 0.729,¢; = 2.8w, ¢y =
1.38w or w = 0.729,¢1 = ¢ = 1.49 or w = 0.6,¢c; = ¢ = 1.7. Among these three, w =
0.729,¢1 = co = 1.49 is the most widely used parameter tuple, so we choose that to perform
our numerical results. Stopping criteria for the algorithm is taken as the maximum number of
iterations. Millie Pant et al [10] have used benchmark problems to analyse the performance
of PSO, if particles are initialized with Vander-Corput sequence. We have chosen the same
functions to compare the optimality of the solution, which are summarized in table 1. The
optimum point of each function is at 0. In order to have a fair comparison , we have set number
of particles to 20 and 40. Also we have our comparison in the same ranges.

Particles are initialized using 1) Halton sequence with base 3 for each direction , 2) Scrambled
Halton sequence with base 3 for each direction and 3) dropping the first 5000 points of Scrambled
Halton sequence. “Halton” denotes the result for initializing using Halton sequence with base
3, “Scrambled H.” denotes the result for initializing using Scrambled Halton sequence with base
3 and “Drop 5000” denotes result for initializing after dropping first 5000 points of Scrambled
Halton sequence with base 3. Since the initialization of the particles follows a random behavior
each test is executed 30 times and took the mean of the values as the optimum value.

The results are summarized in tables 2-5. Here M denotes the number of particles and D
denotes the dimension of the function. Millie Pant et al [10] , have performed the algorithm
for 1000, 1500 and 2000 iterations. But since our value converge to the optimum point at 50
iterations, we performed the results only for 50 iterations. Also we checked the convergence
for high dimensions i.e 70 and 100. Figures 1-4 show the convergence of global best value in
the swarm for each function at 100 dimensions evaluated with 40 particles, in the range 1, and
the one on right is an enlarged view of the same graph showing the convergence for iteration
number 25 to 50.
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Objective function Range 1 Range 2
fi=>1" (22 — 10cos(2mz;) + 10) [-5.12,5.12]P  [-100, 100]”
fa= Wloo S a2 =" cos( \/ng-T1) +1 [—600, 600]°[—1000, 1000]”
f3 ="M 100(zi1 — 22)2 4 (2 — 1)?) [~30,30]”  [~100, 100}
f1=20+e—20exp(—0.24/L1 3" | a2) — exp(L 31 cos(2mx;))  [-32,32]P  [-100,100]7
Table 1: Optimization test functions and it’s Ranges
M D R1:[-5.12, 5.12] R2:[-100, 100]
Halton Scrambled H.  Drop 5000 | Halton Scrambled H. Drop 5000
20 10 | 4.5031e-05 9.4292e-05 1.4199e-05 | 0.0183 0.0047 0.0093
20 | 6.0832e-05 1.7520e-04 9.1973e-06 | 0.0201 0.0047 0.0070
30 | 6.9443e-06 2.6703e-04 1.3455e-04 | 0.0199 0.0226 0.0153
50 | 5.7875e-04 5.5034e-05 1.5749e-05 | 0.6320 0.1052 0.0104
70 | 8.0016e-05 8.1385e-05 7.6740e-05 | 0.0084 0.0428 0.0163
100 | 3.7532e-04  5.7959e-05 1.8847e-04 | 0.1467 0.0216 0.0068
40 10 | 3.6110e-06 1.6048e-06 3.6206e-06 | 0.0040 0.0073 0.0051
20 | 6.9260e-05 4.3515e-05 8.5975e-06 | 0.0059 0.0028 0.0079
30 | 1.8150e-05 4.9339e-05 1.4129e-05 | 0.0058 0.0010 0.0240
50 | 6.1877e-06 1.6712e-05 2.3661e-05 | 0.0015 0.0564 0.0022
70 | 1.0746e-04 9.1970e-06 8.7913e-05 | 0.0032 0.0072 0.0044
100 | 1.3386e-04 3.1211e-04 2.5485e-05 | 0.0043 0.0150 0.0181
Table 2: Results of test function f;
M D R1:[-600, 600] R2:[-1000, 1000)
Halton  Scrambled H. Drop 5000 | Halton Scrambled H.  Drop 5000
20 10 |4.9462e-05 2.2319e-04 1.5571e-04 | 0.0014 7.6142¢-04 1.6756e-04
20 |2.9423e-04 3.2445e-04 1.6124e-04 | 0.0040 6.5461e-04 5.4820e-04
30 | 2.0535e-04 2.0806e-05 5.2344e-05| 0.0016 8.8793e-04 2.1003e-04
50 | 1.5963e-04 1.7287e-04 2.0185e-04 |  0.0032 6.7706e-04 7.7382¢-04
70 | 1.1883e-04 9.1621e-04 2.6643e-04 | 0.0018 9.9320e-05 0.0029
100 | 1.4924e-04 3.6559e-04 8.6489¢-04 | 0.0010 3.5493e-04 0.0022
40 10 | 1.1053e-05 2.0025e-05 8.0946¢-06 | 3.4932¢-04 2.4241e-04 4.9436¢-05
20 | 2.8379e-05 1.3041e-05 4.0735e-05 | 1.3493e-04 7.8787e-05 1.0553e-04
30 | 2.9824e-04 5.4652e-04 7.1948e-04 | 6.9671e-05 5.0725e-05 8.3411e-04
50 | 1.6720e-04 5.3928e-05 8.3615e-05 | 7.7936e-04 1.1867e-04 9.9799¢-05
70 | 3.1517e-04 3.2714e-05 3.6104e-05 | 5.2766e-04 4.2098¢-04 1.4845e-04
100 | 1.5062e-04 5.5221e-05 9.3912e-05 | 1.4093e-04 6.6336e-04 3.1576e-04

Table 3: Results of test function fo
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Figure 1: Convergence graph for function f1
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M D R1:[-30, 30] R2:[-100, 100]
Halton Scrambled H. Drop 5000 | Halton Scrambled H. Drop 5000

20 10 0.0342 0.0038 0.0023 0.0951 0.0048 0.1557

20 0.0148 0.0011 0.0047 0.0090 0.1181 0.0222

30 0.0051 0.0036 0.0021 0.0157 0.0383 0.0076

50 0.0346 0.0013 4.2693e-04 | 0.0418 0.1161 0.0031

70 0.0034 0.0427 0.0025 0.0527 0.0941 0.0272

100 0.0018 0.0312 0.0087 0.1361 0.0305 0.2750

40 10 | 3.1437e-04 6.1063e-04 1.9113e-04 | 0.0134 0.0038 9.7550e-04
20 | 7.4913e-04 1.8756e-04 1.7657e-04 | 0.0263 0.0070 0.0057
30 | 7.2197e-04 1.2019e-04 3.9049e-04 | 0.0584 0.0077 0.0225
a0 0.0049 7.9631e-04 2.1287e-04 | 0.0257 0.0030 0.0017
70 0.0031 6.0691e-04 0.0056 0.1823 0.0567 0.0495
100 0.0026 7.2791e-04 0.0032 0.0412 0.0539 0.0209

Table 4: Results of test function f3

M D R1:[-32,32] R2:[-100, 100]
Halton Scrambled H. Drop 5000 Halton Scrambled H. Drop 5000
20 10 0.0014 0.0072 8.7490e-04 0.0035 0.0060 0.0194
20 0.0025 0.0026 8.0518e-04 0.0067 0.0028 0.0057
30 0.0021 9.5752e-04 0.0072 0.0044 0.0018 0.0039
50 0.0032 0.0022 0.00241 0.0186 0.0062 0.0041
70 0.0022 0.0017 0.0011 0.0028 0.0026 0.0062
100 0.0025 5.9831e-04 4.4743e-04 0.0033 0.0033 0.0019
40 10 0.0010 7.9967e-04 5.4900e-04 0.0018 8.6368e-04
20 | 7.4003e-04 5.0134e-04 3.8245e-04 0.0041 0.0025 0.0022
30 | 8.6885e-04 6.2990e-04 0.0015 6.2206e-04 0.0043 0.0018
50 | 8.8984e-04 0.0010 0.0011 0.0038 0.0016 0.0029
70 0.0016 5.4819e-04 4.3998e-04 0.0025 0.0025 0.0016
100 0.0015 7.1370e-04 6.2701e-04 0.0044 0.0012 7.1727e-04

Table 5: Results of test function fy

5 Conclusion and Future Work

In PSO, Particles’ velocities are updated according to a random manner. Hence the particle’s
positions are random vectors. So it is important to initialize particles using random sequences.
In this paper we showed the importance of using Randomized quasirandom sequences in ini-
tializing the particles. Scrambled optimal Halton sequence is one such sequence and we used
that sequence for numerical experiments.

The Numerical results shows that for f; , f3 and f; all three sequences provides similar
results. For f, , Scrambled Halton and drop 5000 sequences provides better estimation than
Halton sequence when the range is expanded and the number of particles is less.

From this analysis we conclude that , even though all three sequences provides similar results,
Scrambled Halton sequence and Drop 5000 sequences are better in initializing the swarm due
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Figure 4: Convergence graph for function f4

to their random behavior. Also it is clear that accuracy can be improved by increasing the
number of particles in the swarm, since it covers the search space more efficiently.

In future studies we plan to analyze convergence of particle’s positions theoretically if we
initialize particles using randomized quasirandom sequences.
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