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Abstract 

Necessary and sufficient conditions are given on the data for completability of  a 
partial symmetric inverse M-matrix, the graph of  whose specified entries is a cycle, and 
these conditions coincide with those we identify to be necessary in the general (non- 
symmetric) case. Graphs for which all partial symmetric inverse M-matrices have 
symmetric inverse M-matrix completions are identified and these include those that arise 
in the general (positionally symmetric) case. However, the identification of  all such 
graphs is more subtle than the general case. Finally, we show that our new cycle con- 
ditions are sufficient for completability of  all partial symmetric inverse M-matrices, the 
graph of  whose specified entries is a block graph. © 1999 Elsevier Science lnc. All 
rights reserved. 
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1. Introduction 

An M-matrix is an n x n matrix with nonpositive off-diagonal entries 
whose inverse exists and is entry-wise nonnegative. An n × n nonnegative 
matrix that occurs as the inverse of an M-matrix is called an inverse M- 
matrix, thus, an inverse M-matrix is simply a nonnegative matrix whose 
inverse has nonpositive off-diagonal entries. A good deal is known about the 
important classes of M-matrices and inverse M-matrices (e.g. [2,4,7,8]). We 
shall make use of the facts that the matrices in both classes necessarily have 
positive principal minors and hence positive diagonal entries and have LU 
factorizations with both factors in the class, that both classes are invariant 
under positive diagonal scaling, transposition, and permutation similarity, 
and that irreducible inverse M-matrices have only positive entries. Sym- 
metric M-matrices are positive definite (and matrices with nonpositive off- 
diagonal entries that are symmetric positive definite are M-matrices). Sym- 
metric M-matrices (sometimes called Stieljtes matrices) arise in a variety of 
applications. Our primary interest is in "inverse Stieltjes matrices". Since the 
Cholesky factors of Stieltjes matrices are M-matrices, inverse Stieltjes ma- 
trices are completely positive, i.e., factor as BB ~ in which B is nonnegative. 
Henceforth, we abbreviate "inverse M" to IM and "symmetric IM" to SIM. 

A partial matrix is a rectangular array in which some entries are speci- 
fied, while the remaining (unspecified) entries are free to be chosen. A 
completion of a partial matrix is a particular choice of values for the un- 
specified entries, resulting in a conventional matrix. A matrix completion 
problem then asks for which partial matrices do there exist completions of a 
certain desired type. It is convenient to describe the positions of the spec- 
ified entries in a partial matrix via a graph. For example, if the partial 
matrix is square, we may use the directed graph in which the edge (i,j) 
occurs if and only if the i, j entry is specified. Throughout, we assume that 
the diagonal entries of a square partial matrix are specified, but we omit 
loops from the graph. If  the specified entries occur in symmetrically placed 
positions ("positionally symmetric"), the graph may be taken to be undi- 
rected, which will be the case throughout. 

Here, we are primarily interested in the SIM completion problem, 
though the discussion is naturally relevant to the general IM completion 
problem. The problem is subject to investigation due to the intrinsic in- 
terest in these classes as well as its interesting relation to the well-studied 
positive definite completion problem. Since principal submatrices of IM 
matrices are IM (see e.g. Ref. [8]), every fully specified principal submatrix 
of a partial matrix that has an IM (SIM) completion would have to be IM 
(SIM). A partial matrix meeting this obvious necessary condition is called a 
partial IM- (SIM-) matrix, analogous to the notion of "partial positive 
definite" ([5]). 
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An undirected graph G is called chordal if no subgraph induced by a set of 
vertices is a cycle of length 4 or more. Chordal graphs are very important in 
completion problems and they may be viewed as follows. 

A clique in a graph is a set of vertices that induce a complete subgraph, and a 
clique is called maximal if its vertices do not constitute a proper subset of a 
clique. The maximal cliques of a chordal graph may be viewed in a tree-like 
manner. A graph is chordal if and only if it may be sequentially built from 
complete graphs via the identification of a clique of the "next" complete graph 
to be added with a clique of the graph built so far. The complete building 
blocks are the maximal cliques of the resulting chordal graph while the cliques 
of identification (so-called "minimal vertex separators") are intersections of 
these maximal cliques. This brief introduction to the "clique-tree" structure of 
chordal graphs is sufficient for our needs here. See Ref. [3] for (many) more 
details. 

It will be convenient, however, to categorize chordal graphs in terms of the 
number of vertices in the intersections of maximal cliques. We call a chordal 
graph k-chordal if no two distinct maximal cliques intersect in more than k 
vertices. In Ref. [5] it was shown that every partial positive definite matrix, the 
graph of whose specified entries is G, has a positive definite completion if and 
only if G is chordal. More recently in Ref. [12] it was shown that tile answer to 
the analogous question for the positionally symmetric IM completion problem 
is the 1-chordal graphs (there called "block-clique"). In the symmetric case 
there is an additional subtlety, possibly involving 2-chordal graphs. 

We will need some notation for submatrices. Let A be an n x n matrix. If c~ 
and fl are two subsets of { 1 ,2 , . . . ,  n}, A [c~, fl] is the submatrix of A lying in rows 

and columns fl, while A(~,fl) is the complementary submatrix of A. We 
abbreviate A[~, ~] to A[~] and A(e, ~) to A(ct), and, if e = {i} and ~ = {j}, we 
write A(i, j) for A(ct, fl). 

In Section 2, we show that the 1-chordal graphs guarantee SIM complet- 
ability (for partial SIM matrices) and give an example (3-chordal) to show that 
not all chordal graphs do. In Section 3 we derive new cycle conditions for the 
general IM completion problem, and in Section 4, we show that these condi- 
tions are sufficient for a cycle in the SIM completion problem. This allows us to 
exhibit a large class of graphs for which the cycle conditions are sufficient for 
the SIM completion problem in Section 5. Finally in Section 6, we further 
discuss graphs for which partial SIM matrices have SIM completions; here 
nonchordal graphs are again ruled out, but 2-chordal graphs play a role. 

2. Sufficiency of l-chordal graphs for the SIM completion problem 

In Ref. [12] it was shown that the graphs (of the specified entries) for which 
every positionally symmetric partial IM matrix has an IM completion are 
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exactly the l-chordal graphs. Resolution of the analogous question for the SIM 
completion problem does not immediately follow because both the hypothesis 
and the requirements upon the completed matrix are strengthened by the re- 
quirement of symmetry. Indeed, as we shall see, there are interesting differen- 
ces. However, as we shall exploit, 1-chordal graphs remain sufficient, and 
though the completion strategy is similar, we present a brief discussion here for 
completeness. As usual, the key is to first understand the case in which there 
are just two maximal cliques. 

In the proof we shall have the need for the following definition, notation and 
fact from Ref. [13]. 

Definition 2.1. If A is an n x n matrix, then the support of A is the set 
{(i,j): a,:i ~0} .  If  e c {1 ,2 , . . . , n}  and A[~] is invertible, let .3~ denote the 
n x n matrix whose support is a subset of 2 x ~ and in which A-~[~] = A [~}-I 
For example, A{1.2} is the n x n matrix which has A[{1,2}] -I in the upper left 
corner and 0's elsewhere. 

Lemma 2.2 [13]. Suppose ~ and fi are two overlapping cliques whose union is the 
graph o f  a partial matrix A. I f  A[:~],A[fl], and A[:~ ~ fl] are all invertible and B is 
the unique completion of  A whose inverse has zeros in the positions that 
correspond to unspecified entries o f  A, then B -l = A~ + ,41~ - A~n/~. 

Lemma 2.3. Suppose that 

I A ] ]  al2 X ] 

A =  [a~2 a22 a r 32 

LxT a32 A33 

is an n x n partial S I M  matrix in which a22 is 1 x 1 and X and X T consist entirely 
o f  the only umpecified entries of  A. Then 

A l =  

,',,,T, ] Air aj2 

1 4 4 

is an S I M  completion o f  A. Moreover, A i is the unique completion o f  A whose 
inverse has O's in the same positions that X and X T occupy in A and is also the 
unique determinant maximizing completion among S I M  completions o f  A. 

Proof. Up to positive diagonal congruence Lemma 2.3 is a special case of [12], 
Theorem 1. [] 
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By now standard techniques, first used in Ref. [5], the lemma may be ex- 
tended to all 1-chordal graphs. Note that, implicitly, we use the fact that the 
SIM matrices are permutation similarity invariant. 

T h e o r e m  2.4. Let G be a 1-chordal graph on n vertices. Then eye,iv n x n partial 
S I M  matrix A, the graph o f  whose ~pecified entries is G, has an S IM completion. 
~loreover, there is a unique S I M  completion A] of  A whose inverse entries are 0 
in every unspecified position o f  A, and A1 is the unique determinant maximizing 
S I M  completion ~?[" A. 

Proof. The proof  is by induction on the number of  maximal cliques in G, 
beginning with the case of two cliques covered by Lemma 2.3. For brevity, we 
summarize and omit details. Suppose that G has k maximal cliques with index 
sets q , . . . ,  Ck, and suppose that G has been built by sequential addition of 
cliques in the indicated order, so that the cardinality of  Ck ~ (C1 U. •. U C~. ] ) is 
1. By the induction hypothesis, we may complete A[CI U . . .  UCk l] as 
indicated. Then, again apply Lemma 2.3 to C~ and the completion of  
AIG U. . .  U C~-1], and Lemma 2.2 verifies the inverse zero pattern fox" the 
induction step. [] 

Note that any tree is 1-chordal, as the edges are the maximal cliques. Thus, 
the theorem applies to a partial SIM matrix whose specified entries lie in the 
tridiagonal part (G is a path), a fact we shall use later. 

We shall discuss later (Section 4) whether there is completability for partial 
SIM matrices with more general graphs. But we note here that as in the po- 
sitionally symmetric case [12] we do not have completability for nonchordal 
graphs (see Section 4). Moreover, also as in the prior case, there is no chordal 
theorem as shown by the following example whose graph is 3-chordal with two 
maximal cliques. 

Example 2.5. Consider the partial SIM matrix 

A = 

1 4~ g 5 x 
3 J 3 9 1 ~ 2 

~o 1 3 1 ~ - . 

2 5 
} 3 I 
8 4 4 

For there to be an x such that A is an SIM matrix, we must have det 
A(1,2) = d e t  A[{2,3,4,5},{1,3,4,5}] >/0 which, by Sylvester's identity for 
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determinants [6], is equivalent to: det A[{3,4,5}, {1,3,4}] det A[{2,3,4,}, 
{3, 4, 5}] ~< det A[{2,3,4}, { l, 3, 4}] det A[{3,4,5}]. 

Since det A [{2, 3, 4}, { 1,3, 4}] = 0 and det A [{2, 3, 4}, {3, 4, 5}] > 0, for the 
principal submatrix B=A[{1,3,4,5}] ,  we must have d e t B ( 1 , 4 ) =  
det A[{3,4,5}, {1,3,4}] ~<0. But, since B must be IM, it follows from the co- 
factor form of the inverse that det B(1, 4) ~> 0. Thus, detB(1,4) = 0 or 
x = 3/16. In this event, A -1 is positive in the 3, 4 and 4, 3 positions, so that A 
does not have an SIM completion. 

3. Cycle conditions necessary for the IM completion problem 

In Ref. [13] it was shown that the inverse M-matrices are contained among 
the "path-product" matrices (see Definition 5.5). This could be used to prove 
the necessity of the cycle conditions we are about to describe, but we give a 
simple, independent proof of their necessity. 

Consider the partial IM matrix 

A = 

"all a12 aln 

a21 a22 a23 ? 

a32 

9 an_l, n 

an I an,n - 1 ann 

If  A has an IM completion A = (aq), then each 3 × 3 principal submatrix 

" ~lii a U aik ] 

A [ { i , j , k } ] =  a/i a~j a /k l  
I 

[_ aki a,~i akk _1 

would also be IM [8]. But, then the upper right 2 × 2 submatrix 

[ a(/ aik ] 

ajj ajk .] 

would have nonpositive determinant. Equivalently, we have 

aqajk ~ aik. a// 
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Concatenation of this inequality gives 

a12a23...an l,n 

a 2 2 a 3 3  • .  • a n  1 . n - I  
<. alnr 

in which all entries are specified entries of A. By cyclic permutation and 
transposition, the above inequality implies a total of 2n inequalities. Notice 
that these inequalities preclude certain arrangements of O's and nonzeros 
among the specified entries. (The diagonal entries are nonzero because of the 
prevailing assumption that A is partial IM.) For example, it cannot happen 
that exactly one, or only a symmetrically placed pair of specified off-diagonal 
entries be 0 if these 2n inequalities hold. (In these cases any completion would 
be irreducible, yet have O's, which cannot happen for an IM matrix anyway.) 
On the other hand, if there are two (or more) pairs of symmetrically placed O's, 
then the 2n conditions are trivially met, and there are completions as the 
problem reduces (via direct summation) to a collection of undirected paths 
(which are 1-chordal). Thus, in the case of symmetric data meeting the 2n 
conditions, we must have a completion if any specified entries are 0. So we 
assume henceforth that the specified off-diagonal entries are positive in any 
completion discussions for a cycle. This will be convenient for giving succinct 
statements of our cycle conditions, but we note that there are worthy questions 
of sufficiency for certain nonsymmetric arrangements of O's. Multiplication of 
the cited 2n inequalities by appropriate factors then gives a symmetrized ver- 
sion of our "cycle conditions", which are equivalent to the 2n inequalities in 
case all data is nonzero. 

Lemma 3.1. I f  the partial I M  matr ix  A = (aij), the graph o f  whose specified 
entries is the bidirectional o 'cle 1 to 2 to 3 t o . . .  to n to 1, has an I M  completion, 
then 

I a12a23...an-l,nanl a 2 1 a 3 2 - . . a n n - l a i n  l max , 
a l  I a22  " • • ann a l  I a 2 2  • • - ann 

~ m i n { a l 2 a 2 1  a 2 3 a 3 2  anlaln} 
a i l a 2 2  a 2 2 a 3 3  allann 

By positive diagonal scaling, any partial IM matrix may be "normalized" to 
have l's on the diagonal, without altering completability. Thus, without loss of 
generality we may assume 

a l l  ~ a22  ~ . . .  ~ ann ~ ] 
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in the partial matrix A and take A to be of the form 

1 al bn 

bl 1 a2 

b2 

A = 

? an 1 

an b,,_~ 1 

in which case the necessary cycle conditions assume the form 

max{a,a2. . ,  a,,, b i b 2 . . ,  bn} <~ min {a, bi}. 
1 ~<t~<n 

We note that the data are symmetrizable via positive diagonal similarity (which 
does not alter completability) if and only if at a 2 . . .  an = b~b2 . . ,  b,.  In the event 
the data are symmetric: b, -- ai, i : 1 , . . . ,  n, our cycle conditions become 

min {a~} a l a 2 . . . a , ,  <~ I<~i<~n 

o r  

H a/<~ai, i =  1 , . . . , n .  
j# i  

In Section 4 we show these cycle conditions are sufficient for the complet- 
ability of a partial SIM matrix A to an SIM matrix. We conjecture that the 
general cycle conditions are also sufficient for completability of  A in the 
nonsymmetric case. 

4. Sufficiency of the cycle conditions for completability in the symmetric case 

Just as in the positive definite completion problem, a natural step toward 
understanding the SIM completion problem is the understanding of  complet- 
ability when the graph of the specified entries is a single cycle (see Ref. [1]) and 
then the graphs for which these cycle conditions (along with partial SIM) are 
sufficient (see Ref. [1]). Cycles do require additional conditions (which are quite 
different from those for the positive definite case) and the next two sections are 
devoted to this program. In the 3 x 3 case, the (symmetric) cycle conditions are 
readily seen to be equivalent to a symmetric nonnegative matrix being SIM. 
This follow from an easily verified observation that we are about to use: if 
0~<ai < 1, i = 1,2 and 0~<x < 1 (which is necessary for the {1,3} principal 
submatrix to be inverse M), then 
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A =  al 1 2 

X a2 

is invertible and the off-diagonal entries of A -1 nonpositive if and only if 
(i) 

ala~<~x<~rnin~al'a2}" ( a2  a l  ' (4.1) 

when a~a2 > O, 
(ii) x = 0 when exactly one of  {aj, a2} is 0, or 
(iii) 0 ~ < x < l  whenal  = a 2 = 0 .  

These conditions are equivalent to the cycle conditions. 
In case n > 3, given the 1-chordal result of  Section 2, one natural strategy 

for assessing completability of a given symmetric pattern is to determine 
conditions on the data for completability to a partial SIM matrix whose graph 
is some specific symmetric, 1-chordal super-pattern of the original pattern of 
specified entries. For the resulting partial SIM matrix with l-chordal graph, 
completability is assured. 

When the undirected graph of a partial SIM matrix A is an n-cycle, n ~> 4, 
we implement this strategy as follows. Data are assigned to the chord {n - 1, 1 } 
so that (1) the resulting ( n -  1)-cycle (1 ,2 , . . .  , n -  1, 1) meets the cycle con- 
ditions and thus has a SIM completion by induction and (2) the original data 
on the edge {n, 1 } is consistent with a completion (by Theorem 2.4) of the 1- 
chordal data whose maximal cliques are {1 . . . .  , n - 1 }  and { n - 1 , n } .  
Graphically, this is illustrated in the figure below. 

! 

Specifically, our result is stated as follows. 
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Theorem 4.1. Let  

1 al 

al 1 

a2 

CR. Johnson, R.L. Smith / Linear Algebra and its Applications 290 (1999) 193 212 

A = 

an 

a2 ? 

? an-1 

an an- 1 1 

be an n × n partial S I M  matrix, n >~ 4. Then A has an S I M  completion i f  and 
only i f  the cycle conditions 

H aj<~a,., i =  1 , . . . , n  
j¢i 

are satisfied. 

In the p r o o f  o f  the theorem we shall have need o f  the following easily 
verified lemma.  

Lemma  4.2. Let  A,  = ( 1 - a)I, + aJn in which 0 ~< a < 1, In is the n × n identity 
matrix, and Jn is the n × n matrix consisting o f  all ones. Then, 

1 
A ; '  = (1 + (n - 1)a)(1 - a)[(1 + (n - 1)a)ln - aJn]. 

Not ice  that  An, n ~> 1, is thus an SIM. 

P r o o f  of  Theorem 4.1. In view o f  the remarks  at the end of  Section 3 it is 
enough to prove  sufficiency. In case ai = a for  all i, 1 ~< i ~< n, we can, in light o f  
the lemma,  set each unspecified entry equal  to a in order  to obta in  an SIM 
complet ion.  I f  one o f  the ai's is 0, the inequalities imply that  at least two are. In 
this event, we have several S I M  comple t ion  p rob lems  whose graphs  are paths.  
Solution o f  these (guaranteed by Theo rem 2.4), sur rounded  by O's gives a 
comple t ion  o f  A. 

N o w  assume no ai = 0 and ai # aj for  some i and j ,  1 ~< i, j ~< n. By cyclic 
pe rmuta t ion  we m a y  also assume that  a. /a l  or  a . /a .  1 equals 

m i n {  aj , as : l<~j<~n}  
ai+J aj_j 

in which ao := an and a,+j :=  al. 
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First suppose a . / a . _ l  is the smallest "neighbor-to-neighbor" ratio among 
the data. If n = 4, then the partial matrix 

A1= 

I aj ~ a4 
a3 

aj 1 a2 ? 

a~ a2 l a3 
a3 

a4 9. a3 1 

is completable to an SIM matrix using Lemma 2.3. Specifically, All{ 1,2, 3}] is 
SIM since x =- a4/a3 (< 1) satisfies the inequalities (4.1). Since A1 [{3, 4}] is SIM 
by assumption, if we apply Lemma 2.3, a completion of A (1:o an SIM) will 
result if the two remaining unspecified entries are replaced by aza3 because 
a4 = a3(a4/a3) already. Inductively, assume the theorem holds for all matrices 
of order k, 4 < ~ k < n .  Suppose that a~= min~<s.<,_2a j and then define 

n - 2  
a = Hs=~,/¢i a/. Then, using the cycle conditions, we have 

an ai ai a l a 2 . . . a . _ 2  <~ <~ 
a n -  t ai 1 ai~ 1 

since a , / a ,  ~ is the smallest neighbor-to-neighbor ratio. Since at least one of 
a~_l, ai+~ >~ a, this implies 

an a~ 
a l a 2 . . ,  a,  2 ~ <~ ~ .  (4.2) 

an-  1 a 

Replace the unspecified 1, n -  1 and n -  1, 1 entries of A by a . / a .  i to 
obtain the partial matrix 

1 a 1 a,, an 
an- 1 

al 1 ? 

an-2 

a,z_, '? an 2 1 an-  I un 1 

a n  a n - .  1 1 

The (n - 1) × (n - 1) partial SIM matrix A 2 [{ 1 , 2 , . . . ,  n -- 1 }] satisfies the cycle 
conditions in Eq. (4.2) and is thus completable to an SIM matrix by the in- 
ductive assumption. Call this completion A3. Then it is apparent that the last 
column of A3 and a,,_l can be used to complete A itself(again using Lemma 2.3; 
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that is, for k = 1, . . .  ,n - 1, we let ak, = an-lak,n-j = a,,-la,-l.k = a,k to fill in 
the remaining unspecified entries where the double subscripts indicate entries 
from the completion of A2[{1, . . .  ,n - !}]). The case in which a,,/al is the 
minimum is analogous by placing a,/a~ in the 2, n entry. [] 

Remark. In the positive definite completion problem it follows from the 
chordal result ([5]) that the order of the data around the cycle is irrelevant to 
completability (without knowing the cycle conditions of Ref. [1]). In spite of 
the fact that there is no chordal result for the SIM completion problem, 
Theorem 4.1, interestingly, shows that again the order of the data around the 
cycle is irrelevant. 

5. Graphs for which the cycle conditions are sufficient for completability 

Definition 5.1. A block graph is a graph built from cliques and (simple) 
cycles as follows: starting with a clique or cycle, sequentially articulate the 
"next" clique or simple cycle at most one vertex of the current graph. 
Note that, if all cycles in a graph are completed to cliques, the resulting 
graph is 1-chordal. 

A completability criterion for partial SIM matrices with block graphs is 
given in our next result. 

Theorem 5.2. Let A be an n x n partial S I M  matrix, the graph of  whose specified 
entries is" a block graph G. Then A has an S I M  completion i f  and only if  all 
minimal cycles in G satisfy the cycle conditions. 

Proof. Suppose A is an n × n partial SIM matrix with block graph G such 
that all cycles in G satisfy the cycle conditions. Complete each simple cycle 
in G in the manner of Theorem 4.1, obtaining a new partial IM matrix, 
the graph of whose specified entries is 1-chordal. The resulting partial SIM 
matrix can be completed to an SIM matrix by Theorem 2.4. On the other 
hand, if G contains a minimal cycle that does not satisfy the cycle 
conditions, then the partial principal submatrix associated with this cycle 
does not have an SIM completion by Theorem 4.1. Thus, A itself cannot 
have an SIM completion, because the property of being IM is inherited by 
principal submatrices. [] 

In the next example, we complete a partial SIM matrix whose graph is a 
block graph in order to illustrate the algorithmic nature of the completion 
process. 
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Example 5.3. Consider the partial SIM matrix 

A = 

1 0.2 

0.2 1 

? 0.5 
? ? 

0.8 ? 

0.7 ? 

0.3 ? 
? ? 

? 9 

? '~ 0.8 0.7 

0.5 ? ? ? 

1 0.4 '~ ? 
0.4 1 0.3 ? 

? 0.3 1 '~ 

? ? ? l 

"~ ? "~ 0.4 
? ? ? ? 

? ,7 ? ,~ 

0.3 9 
? ? ? 

9 ? 9 

? ? ? 

? 9 ? 

0.4 ? ? 

1 0.5 0.3 

0.5 1 0.2 

0.3 0.2 1 

The block graph G of A consists of  the cycle 1 ---, 2 ~ 3 ~ 4 ~ 5 ~ 1 together 
with the cliques induced by each of  {1,6, 7} and {7, 8, 9}. It is easily seen that 
the cycle satisfies the cycle conditions and thus we are ensured of a completion. 
We will complete A by first completing the cycle in the algorithmic fashion of 
the proof  of Theorem 4.1, and then combining the resulting clique with the 
other two using the " l -chordal"  method of Theorem 2.4. 

The smallest neighbor-to-neighbor ratio in A[{ 1,2, 3, 4, 5}] is 0.2/0.8 = 0.25. 
Thus, we form the partial completion 

0.5 1 0.4 ? ' 

A] = ? 0.4 1 0.3 ".~ J 
0.25 ? 0.3 1 8 

[ 0.2 ? '~ 0.8 

of A[{2, 3, 4, 5, 1 }]. A " l -chordal"  completion is possible using the cliques in- 
duced by each of  {2, 3, 4, 5} and {5, 1}. 

The smallest neighbor-to-neighbor ratio in All{2, 3, 4, 5}] is 0.25/0.5 = 0.5. 
So we form the partial completion 

1 0.3 0.5 ()'i 5J 
0.3 1 0.4 

A2 = 0.5 0.4 1 0 5 / 
0.25 ? 0.5 J 

of A1[{5,4,3,2}]. We can then complete A2 in l-chordal fashion using the 
cliques induced by {5,4,3} and {3,2}. Similarly, we can complete 
A[{ 1,2, 3, 4, 5}] in 1-chordal fashion using the cliques induced by {2, 3, 4, 5} 
and {5, 1} to obtain the completion 
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1 0.2 0.4 0.24 0.8 ] 

0.2 1 0.5 0.2 0.25 

A3 = 0.4 0.5 1 0.4 0.5 [ 

J 0.24 0.2 0.4 1 0 3 

[_ 0.8 0.25 0.5 0.3 I 

ofA[{1,2,3,4, 5}]. 
In 1-chordal fashion we can then combine the cliques induced by 

{1,2,3,4,5} and {1,6,7} to obtain the clique induced by {1,2,3,4,5,6,7}. 
This latter clique can then be combined with the clique induced by {7, 8, 9} to 
obtain the completion 

l 0.2 0.4 0.24 0.8 0.7 0.3 0.15 0.09 

0.2 1 0.5 0.2 0.25 0.14 0.06 0.03 0.018 

0.4 0.5 1 0.4 0.5 0.28 0.12 0.06 0.036 

0.24 0.2 0.4 1 0.3 0.168 0.072 0.036 0.0216 

0.8 0.25 0.5 0.3 1 0.56 0.24 0.12 0.072 

0.7 0.14 0.28 0.168 0.56 1 0.4 0.2 0.12 

0.3 0.06 0.012 0.072 0.24 0.4 1 0.5 0.3 

0.15 0.03 0.06 0.036 0.12 0.2 0.5 1 0.2 

0.09 0.018 0.036 0.0216 0.072 0.12 0.3 0.2 1 

of A. It may be verified that this completion is an SIM matrix by direct cal- 
culation. 

We next examine the relationship between the inverse M-matrix and Eu- 
clidean distance matrix completion problems. 

Definition 5.4. Let [I II denote Euclidean length on some R k. For two points P 
and Q, we use d ( P ,  Q) for l ip  - QH. The n × n matrix O = (d,j) is a (Euc l idean)  
d i s tance  m a t r i x  if there exist points P1, . . . ,  Pn in R k such that dij = d(Pi,  Pj) .  

Definition 5.5. We call a nonnegative n × n matrix A a path product (PP) 
matrix [13] if, for every path il --* i2 ~ . . .  --+ ik-l  ~ ik in the complete graph 
Kn on n vertices, we have 

ail i2ai2i  3 • . .  ai~ ilk 
ai~ik. (5.1) 

ai2i2ai3i3 • ' • aik-l ik 1 

If, whenever it = ik in Eq. (5.1), we further require that the inequality is strict, 
we call A a strict path product (SPP) matrix. Further, if at, = 1, i = 1 , . . . ,  k, we 
call a PP (respectively SPP) matrix a normalized (respectively strict normalized) 
path product (NPP, respectively SNPP) matrix. We call the inequalities (5.1) 
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the path product inequalities and, in case il = ik in Eq. (5.1), the cycle product 
inequalities. 

We note by the Theorem 4.1 that any SIM matrix with diagonal entries 
equal to 1 must be NPP. 

Observe that a matrix A is NPP if and only if B = - log A (interpreted en- 
trywise) satisfies the polygonal inequalities 

b,~i2 + bi2i3 + "'" + bik ,i~ ~ bilit. (5.2) 

Thus, if B is a distance matrix, then e -8 (interpreted entrywise) is NPP and, 
similarly, since a normalized inverse M-matrix is NPP [13], if A is an nor- 
malized inverse M-matrix, then B = - l o g  A (again interpreted entrywise) 
satisfies the polygonal inequalities. 

It was shown in Ref. [9] that the polygonal inequalities are necessary and 
sufficient for cycle completability in the Euclidean distance matrix completion 
problem. However, it is not necessarily the case that e -" is inverse M (and so, 
by itself, the cycle result for distance matrices does not imply our SIM cycle 
completion result), as seen by the following example. 

Example 5.6. Consider the distance matrix 

0 0.80 

0.80 0 

_ 

B = 

0(6 . lo  0(6 .29 

ov  .90 

0 0 /6 .37 ' 

0 

which is the Euclidean distance matrix in R 2 for the points Pj (0.9, 0.5), 
P2 (0.1,0.5), p~ (1.0, 0.2), and P4 (0.4, 0.3). It is easily verified that the 2, 3 and 3, 2 
entries of the inverse ofA = e -" are positive and thus A is not an SIM matrix. 

6. Graphs for which partial SIM matrices have SIM completions 

Now we turn to the question: if all partial SIM matrices with graph G are 
completable, what must the structure of G be? This is the question of  a con- 
verse to Theorem 2.4. 

In view of the results of  Section 4, G cannot contain an induced cycle of 
length 4 or more, because, then, properly more conditions are needed for 
completability; thus, G must be chordal. Using simple embedding techniques, 
Example 2.5 shows that G cannot contain an induced subgraph that is the 
complete graph on 5 vertices less an edge. Thus, G must be 2-chordal. Must G, in 
fact, be 1-chordal as in the positionally symmetric case [12]? This is a very 
delicate question. In the positionally symmetric case, it was possible to give 
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robust examples, for the complete graph on 4 vertices less an edge (K 2), in which 
a partial IM matrix has no completion even on the boundary of  the IM matrices. 
In the symmetric case no such example is possible, although there is a thin set of 
examples for which there are completions only in the closure of the SIM ma- 
trices. Thus, if the notion of completability is expanded slightly, then K 2 also 
insures completability. However, without such an expansion, the following 
discussion indicates a converse to Theorem 2.4 (i.e. 1-chordal is necessary). 

By a "singular IM (SIM)" matrix we simply mean a singular matrix in the 
F 4 2 ] 

topological closure of the IM (SIM)matrices. For  example, [ )  1 ~ is singular 
SIM as it is the limit of matrices of the form L- - 

I4+~:  2 1 2  1 

for s > 0. 

Theorem 6.1. Let  A be a 4 x 4 partial S I M  matrix with a 2-chordal graph G. 
Then A has a (possibly singular) S I M  completion. 

Proof. If the graph G of A is, in fact, 1-chordal, we are done by Theorem 2.4. 
So we may assume, without loss of generality, that 

1 a12 al3 x ] 
a21 1 a23 a24 

A =  
[afl a32 1 a34 / 

a42 a43 1 _1 

in which a,j = aji. 
First, suppose that one of the specified 3 x 3 submatrices of A contains a 

symmetrically placed pair of 0 entries. Then, since an inverse M-matrix with 0 
entries is reducible, this specified submatrix must contain a second pair of  
symmetrically placed 0 entries. It is then seen by considering cases that either 
x = 0 gives an SIM completion of A, or we can apply Lemma 2.3 to complete A 
to a SIM matrix. Hence, we will assume that A has no 0 entry for the remainder 
of  the proof. 

The completion that will have zeros in the inverse in the 1, 4 and 4, 1 po- 
sitions is obtained by setting x equal to 

x0 = A[{1), {2, 3}](A[{2, 3}])-1AI{2, 3},4] 

1 - a 2 
23 



C.R. Johnson, R.L. Smith / Linear Algebra and its Applications 290 (1999) 193~12 209 

Similarly, for a completion to have zeros in the 2, 3 and 3, 2 positions of the 
inverse, detA[{1,3, 4}, {1,2, 4}] = 0 or, equivalently, ax 2 + bx + c := 0 in which 
a : a23, b = - ( a 1 2 a 3 4  -k a13a24) ,  and c = a12a13 -k a24a34 - a23. Then 

d 2 = b 2 - 4ac = (a12a34 q- a13a24)  2 + 4a23(a23  - a12a13 - a24a34)  

= (a12a34 - a13a24)  2 + 4(a23 - a21a13)(a23 - a24a43)  /> 0 

by the path product conditions. 
Thus, there are two completions that have zeros in the 2, 3 and 3, 2 positions 

of the inverse, namely 

a12a34 q- a13a24 - -  d a12a34 -]- a13a24 q- d 
Xl = and x2 --- 

2a23 2a23 

We will show that either x0 or xj provides a (possibly singular) completion 
of A. 

C l a i m  1. a12a24 ,  a13a34 <~ xo <.xv & which  

x r  - -  

X1 -]-X 2 a12a34 @013a24 

2 2a23 

Proof of Claim 1. After some algebraic manipulations, one sees that a12a24 ~ xo 
is equivalent to (a13-a12a23)(a34-a32a24) ~> 0 which holds by the path 
product inequalities. The other left-hand inequality is similar. 

Algebraic manipulations show that Xo ~<x~, if and only if 
(a12 --  a13a32)(a34 -- a32a24)  -? (a13 - -  a12a23)(a24 -- a23a34)  /> 0 which again holds 
by the path product inequalities. 

Claim 2. 

x,~<min{a12 a24 a13 034} 
a24 a l2  a34 a13 

Proof of Claim 2. Without loss of generality, assume a12 <~ a24 and consider the 
inequality Xl <~a12/a24 which is equivalent to a24(a12a34 +a13a24)-  2a12a23 
<~ a24d. Now, if the left-hand side of the latter inequality is <0, there is nothing 

to prove. So assume the contrary (so that both sides of the inequality are 
nonnegative). Squaring both sides of the inequality and simplifying, we see that 
the inequality is equivalent to a23(a~4 -a22)(a23 -a24a43) /> 0. Sir~ce each of 
the factors on the left is nonnegative (the second by assumption), it follows that 

a12 a24 
Xl ~ - - ~ - - .  

a24 a12 

In a similar fashion one can argue that 
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a13 a34 
Xl ~ - - ~ - -  

a34 a13 

and Claim 2 follows. 
Since xl ~< xv ~< x2, we m a y  just  consider  the following two cases. 
C a s e  1: Xl ~<)c0 <~ x~ ~< x2: Let B be the nonnegat ive  comple t ion  obta ined  by 

setting x = x0. By Sylvester 's  identity for  determinants ,  

det  B = det B[{1,2,3}] det B[{2,3,4}1 > 0. 
1 - a23 

Let B -l  = (/3ij). We have B -l  =/}{1,2.3} -t-/}{2,3,4} - /}{2,3} by L e m m a  2.2. Since 
det A(3, 2) ~> 0 for  xl ~< x ~< xz, /qz3 ~< 0. Thus,  B -l  is in Z which implies B is an 
SIM comple t ion  o f  A. 

C a s e  2: Xo < x~ <~x,, < x2: Let C be the comple t ion  obta ined  by setting 
x = xl. By Claims 1 and 2, 

a12a24~ a13a34 ~ Xl 
a12 a24 a13 a34 

a24 a¿2 a34 a13 

This implies that  0 < x~ ~ I. First suppose  0 < xl < 1. Then,  by Eq. (4.1), 
C[{1,2, 4}] and C[{1,3, 4}] are inverse M-matr ices .  Also, 

det C[{ I, 2, 4}] det C[{ 1, 3, 4}] 
det C = 

1 - x ~  

and det C(1 ,4)  > 0 since x0 < xl, i.e., 

> 0  

det C(I  4) = xl (1 - a 2 ) - a24(a12 - -  a13a32) --  a34(a13 --  aj2a23) ; 23 

)" X0(1 - -  a~3 ) --  a24(a12 - -  a13a32)  --  a34(a13 - -  a12a23)  

= det B(1, 4) = 0. 

Applying  L e m m a  2.2 again, C -1 = C{1,2,4} -~- C{1,3,4} - C{1,4} is in Z which im- 
plies C is an S IM comple t ion  of  A. On the other  hand,  if Xl = 1, then 

a12 a13 

a24 a34 

or, equivalently,  a12 = a24 and a13 = a34. Further ,  upon  simplifying xj = 1, we 
see that  a23 --- a12a13 = a24a34. So, if we let r = a12 and s = a13, then [ rs ] 

1 rs r 
C ~ 

rs  1 s 

r s 1 
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It can be easily checked that C is a singular SIM matrix by showing that det 
C --- 0 and, for e > 0, det (C + el) > 0 and all 3 × 3 minors of C + ~l have the 
appropriate sign. 

Thus, either x0 or xl provides a (possibly singular) completion of A which 
completes the proof. [] 

A necessary condition that A have an SIM completion is. that det 
A(2, 3) ~> 0, equivalently, xl <~x <~x2. Thus, ifxl = 1, there is a unique singular 
SIM completion. 

Example 6.3. The only SIM completion of the partial SIM matrix 

[ 1 0 . 4 0 . 5 7 ]  

0.4 1 0.2 0.4 

A = 05 0.2 1 05 

is the singular completion which replaces the unspecified entries by l's. 
However, it is not true that every partial SIM matrix with a 2-chordal graph 

has a (possibly singular) SIM completion. This is illustrated by the following 
example. 

Example 6.4. Consider the partial SIM matrix 

1 9 ~ 2 x "  
40 5 5 

9 1 

5 2 

3 1 
1-6 ~ Y 

1 1 l 
5 

3 1 1 x y ~ ~ _ 

Then x (respectively y) is the only unspecified entry of B = A[{1,3,4,5}] 
(respectively C ---- A[{2, 3, 4, 5}]). Adopting the notation in the proof of Theo- 
rem 6.1 and applying it to the matrices B and C, we find that 

3 
x0 = ]~ < 0.875 - 2 . 5 ~  =x j  and 

13 
y0 = ~-~ < 1.125 - 2 . 5 ~  =y~ 
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Thus, if  A has  a (poss ib ly  singular)  S IM comple t ion ,  we must  have x ~> x~ > x0 
and y / >  yl > Y0. Also  not ice  tha t  if  D = A [{ 1,2, 3, 4}], then det  D( I ,  2) = 0. Let  
A I be the co r r e spond ing  comple t ion  o f  A. A p p l y i n g  Sylvester ' s  ident i ty  for  
de te rminants ,  det  A~(1 ,2 ) />  0 if  and  only if  det  A[{3 ,4 ,5} ,{1 ,3 ,4} ]  det  
A [{2, 3,4},  {3, 4, 5}] ~< det  A [{2, 3, 4}, { 1,3, 4}] det  A {3,4, 5}], or,  equivalent ly ,  
det  B(1,4)  det  C(4, 1) ~< det  D(1 ,2)  det  C[{2, 3, 4}] = 0. Since x > x0 implies  det  
B(1.4) > 0 and since y > y0 implies det  C(4, 1) > 0, we have a cont rad ic t ion .  
Therefore ,  A has no  S IM comple t ion .  

We have been unable  to de te rmine  whether  pa r t i a l  S I M  matr ices  with g raph  

0 0 0 

have at  least a s ingular  S IM comple t ion .  
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