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Stability of the Memory
of Eye Position in a Recurrent Network
of Conductance-Based Model Neurons

1999), inactivation (Cannon and Robinson, 1987; Cheron
and Godaux, 1987; Straube et al., 1991; Godaux et al.,
1993; Mettens et al., 1994b), and microstimulation (Can-
non and Robinson, 1987; Godaux et al., 1989; Yokota et
al., 1992) studies indicate that the prepositus hypoglossi
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and medial vestibular nucleus participate in the mainte-†Bell Labs
nance of persistent activity and do not simply read itLucent Technologies
out from some other area of the brain. Despite a largeMurray Hill, New Jersey 07974
number of experimental and theoretical studies of the
integrator, the mechanisms responsible for maintaining
persistent neural activity are still unclear.Summary

These mechanisms are not just of interest in the oculo-
motor system, because persistent neural activity hasStudies of the neural correlates of short-term memory
been observed in a wide variety of brain areas (Fuster,in a wide variety of brain areas have found that tran-
1995), generally in association with short-term memorysient inputs can cause persistent changes in rates
tasks. From this broader perspective, the integrator canof action potential firing, through a mechanism that
be viewed as storing a short-term memory of the currentremains unknown. In a premotor area that is responsi-
eye position (Seung, 1996). Pharmacological studiesble for holding the eyes still during fixation, persistent
have shown that fixation is impaired when the integratorneural firing encodes the angular position of the eyes
is inactivated (Cannon and Robinson, 1987; Cheron andin a characteristic manner: below a threshold position
Godaux, 1987; Straube et al., 1991; Godaux et al., 1993;the neuron is silent, and above it the firing rate is
Mettens et al., 1994b), a disorder that can be interpretedlinearly related to position. Both the threshold and
as loss of the ability to store a short-term memory oflinear slope vary from neuron to neuron. We have re-
eye position.produced this behavior in a biophysically plausible net-

For physiological investigations, the goldfish is a con-work model. Persistence depends on precise tuning
venient experimental preparation with fixation perfor-of the strength of synaptic feedback, and a relatively
mance comparable to that of mammals (Mensh et al.,long synaptic time constant improves the robustness
1997, Soc. Neurosci., abstract). A brainstem nucleusto mistuning.
has previously been identified as part of the neural inte-
grator for horizontal eye position in goldfish (Pastor etIntroduction
al., 1994). The present paper describes a mathematical
model of the goldfish integrator with the biophysical

In many vertebrates, oculomotor behavior with the head realism necessary for fruitful interaction with experimen-
stationary consists of static periods of fixation punctu- tal research. An early version of this work has appeared
ated by saccadic eye movements (see Figure 1A). During elsewhere (Lee et al., 1997).
fixation in mammals, premotor neurons in the prepositus In the model, saccades are stimulated by bursts of
hypoglossi and the medial vestibular nucleus exhibit input from command neurons. Each burst of feedfor-
maintained discharge, the frequency of which changes ward input changes the firing rates of neurons in the
with every saccade to a new angular eye position (Lo- network, and this change is maintained by recurrent
pez-Barneo et al., 1982; Escudero et al., 1992; McFar- excitation after the feedforward input is over. Signals
land and Fuchs, 1992; Scudder and Fuchs, 1992). Each from integrator neurons lead to the oculomotor plant,
change in frequency is stimulated by a transient pulse so that persistent changes in these signals cause persis-
of input from command neurons and persists for the tent changes in the angular position of the eyes. In short,
duration of the fixation. This paper is concerned with a the model network is able to hold the eyes still during
fundamental question: what are the physiological mech- fixation, because it maintains a short-term memory of
anisms that allow a transient input to give rise to a the current eye position in the form of a persistent pat-
persistent change in neural activity? tern of neural activity. The recurrent excitatory connec-

The two brainstem nuclei mentioned above are part tions in the network are crucial for this persistence.
of the “neural integrator” for horizontal eye position in Their strengths are precisely tuned in the model, so that
the oculomotor system of mammals (Robinson, 1989; activity neither decays nor increases during periods of
Moschovakis, 1997), where the term “integrator” is used fixation.
in the sense of calculus. The saccadic transformation A number of properties of biological integrators are
of a pulse into a step change in eye position is just one reproduced by the model. First, the encoding of eye
example of integration. More generally, other types of position in neural activity is in accord with the results
eye movements also involve the integration of velocity of single-unit recordings of integrator neurons (Lopez-
signals to produce changes in eye position. Barneo et al., 1982; Escudero et al., 1992; McFarland

Lesion (Cheron et al., 1986a, 1986b; Kaneko, 1997, and Fuchs, 1992; Scudder and Fuchs, 1992). Namely,
each integrator neuron in the model exhibits a linear
relationship between firing rate and eye position when it‡ To whom correspondence should be addressed (e-mail: seung@

mit.edu). is active. However, there is also a threshold eye position
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et al., 1998, Soc. Neurosci., abstract). Real integrator
neurons measured in vitro exhibit similar discharge
properties (Serafin et al., 1991; du Lac and Lisberger,
1995; Wang et al., 1998, Soc. Neurosci., abstract). Since
little is known about synaptic transmission in the gold-
fish integrator, a generic synaptic model is used. The
model synapses are assumed to have a saturation non-
linearity, which is commonly observed in neurons in a
wide variety of brain areas. The time constant of recur-
rent synapses is set at 100 ms. This value could corre-
spond, for example, to the time constant of the NMDA
receptor, if the recurrent synapses of the goldfish inte-
grator turn out to be glutamatergic.

The strength of feedback was tuned through a careful
design process, which involved approximation of the
spiking, conductance-based model by a nonspiking, re-
duced model obtained using an averaging method simi-
lar to those introduced previously (Rinzel and Frankel,
1992; Ermentrout, 1994). The synaptic strengths of the
reduced model were tuned so that it would maintain
persistent neural activity, and these tuned values were
placed in the conductance-based model. This tuning
procedure was convenient but was not intended to be
biologically plausible. Alternatively, tuning could con-
ceivably be accomplished in biological integrators by
adaptive mechanisms of synaptic plasticity (Arnold and

Figure 1. Signals in the Oculomotor System and the Architecture Robinson, 1992, 1997; Seung, 1997, Soc. Neurosci., ab-
of a Recurrent Network Model stract).
(A) Schematic of eye position and neural activity versus time in the Previously, there have been other recurrent network
oculomotor system. models of the integrator (Rosen, 1972; Kamath and Kel-
(B) Network model of the integrator based on recurrent excitation. ler, 1976), most of which were formulated as networks
All integrator neurons receive feedforward input from vestibular,

of linear elements (Cannon et al., 1983; Galiana andexcitatory burst, and inhibitory burst neurons. To make the diagram
Outerbridge, 1984; Cannon and Robinson, 1985; Arnoldcompact, only 5 integrator neurons are shown, but 15 were actually

used in the simulations. Signals from the burst and integrator neu- and Robinson, 1991, 1992, 1997). Like the present
rons are relayed by the motor neurons to the oculomotor plant, to model, they were based on tuned positive feedback,
produce eye position. although they were lacking in biophysical realism. The

present model is different because it contains biologi-
below which it is silent. The linear slope and the thresh- cally relevant nonlinearities. Furthermore, it is based on
old vary from neuron to neuron. a relatively long synaptic time constant of 100 ms and

Second, persistence is not perfect, even in a well- is therefore more robust than previous models, other
tuned model. There is some drift of neural activity with things being equal. These points are explained more
time, which leads to drift in eye position during fixation. fully in the Discussion section.
The drift velocity depends systematically on eye posi-
tion, generally in a nonlinear manner. Similar systematic Results
dependences have been experimentally observed in
measurements of fixation behavior in the dark (Becker

Persistent Activity in a Conductance-Based Model
and Klein, 1973; Hess et al., 1985; Mensh et al., 1997,

As shown in Figure 1B, the model contains 15 integratorSoc. Neurosci., abstract).
neurons, which interact with each other by recurrentThird, the persistence of neural activity degrades
excitatory synapses. They also receive feedforward in-when synaptic strengths are mistuned, neurons are de-
put from three neurons. The vestibular input neuron isstroyed, or the strength of feedback is otherwise per-
tonically active at a constant rate, simulating the back-turbed. This qualitatively reproduces the experimental
ground activity present in vestibular afferents when theresults of pharmacological inactivation of the integrator,
head is stationary. The excitatory and inhibitory burstin which persistence degrades with the extent of inacti-
neurons are normally silent, except for occasional briefvation (Cannon and Robinson, 1987; Pastor et al., 1994).
bursts of action potentials that cause saccadic eyeIt also suggests that the changes in fixation performance
movements.observed after visual–vestibular adaptation are due to

Our choice of 15 integrator neurons in the model ischanges in the strength of feedback in the integrator
comparable to estimates of 25–40 neurons in the gold-(Tiliket et al., 1994).
fish oculomotor integrator (Pastor et al., 1994). OurBoth intrinsic and synaptic conductances of the neu-
methods could also be used to construct models ofrons are modeled in a biophysically plausible way. The
the integrator with larger numbers of neurons, to bemodel neurons fire action potentials repetitively in re-
consistent with the estimated sizes of mammalian inte-sponse to applied current, at a rate that is an approxi-

mately threshold linear function of the current (Shriki grators.
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Figure 2. Repetitive Firing of the Conductance-Based Model Neuron

(A) Dynamics of membrane voltage V and synaptic activation s during repetitive firing.
(Top) A step in excitatory synaptic conductance gE starting at 100 ms and ending at 500 ms.
(Middle) The first action potential occurs with a latency of about 68 ms. Thereafter, convergence to periodic behavior is rapid, with little spike
frequency adaptation.
(Bottom) Synaptic summation for tsyn 5 100 ms. Each action potential causes a jump in the synaptic activation s, with rise time equal to the
width of the action potential. Between action potentials, s decays exponentially, as seen clearly in the uninterrupted decay after the last action
potential. The jump sizes decrease as s increases, due to saturation. The broken line shows the behavior of the reduced dynamics in Equation 12.
(B) Response functions characterizing output of a neuron during repetitive firing as a function of excitatory synaptic input gE with inhibitory
synaptic input gI 5 0.
(Top) The neural response function f (defined in Equation 10) is almost exactly proportional to firing rate n. Except for some rounding of the
curves near threshold, both functions are roughly linear in gE over the range in the graph.
(Bottom) The neural response function F also has a threshold but includes in addition the effects of saturation nonlinearity (see Equation 13).

We utilized a conductance-based model neuron, de- The membrane potentials of the 15 integrator neurons
are shown in Figure 3B. Each excitatory burst evokes avised by Shriki et al. (1998, Soc. Neurosci., abstract),

with a single compartment containing leak, voltage- burst in the integrator neurons, and each inhibitory burst
causes them to pause briefly from firing. These transientdependent transient sodium, delayed rectifier potassium,

and A-type potassium conductances. The equations effects of transient stimulation are not surprising. More
remarkably, the transient stimulation has a persistentgoverning these intrinsic conductances are described in

the Experimental Procedures and Appendix. The model effect: the firing rates immediately after a burst are differ-
ent than they were before, and these new rates persistneuron has a threshold linear relationship between firing

rate and applied current, resembling real integrator neu- until the next burst a second later.
This persistence is not caused by feedforward synap-rons measured in vitro (Serafin et al., 1991; du Lac and

Lisberger, 1995; Wang et al., 1998, Soc. Neurosci., ab- tic input. Since the burst synapses are fast, burst input
quickly decays back to zero after the burst. Furthermore,stract).

Synaptic transmission is modeled with the simplifying the vestibular input never changes: it is the same both
before and after the burst. Therefore, the persistence isassumption that a presynaptic spike train produces the

same fraction of open receptors at every postsynaptic the result of recurrent synaptic excitation of the inte-
grator neurons.target. This fraction, called the synaptic activation, is

incremented by each presynaptic action potential and During each interburst interval, there is a persistent
pattern of activity distributed across the population ofdecays exponentially with some time constant. There

are two classes of synapses in our simulations, slow integrator neurons, as shown in Figure 3B. In most inter-
vals, the activity pattern consists of both active and(100 ms) and fast (5 ms). The recurrent and vestibular

synapses are slow and show temporal summation as in inactive neurons. But in the first interval all neurons are
inactive, and in the fourth interval all neurons are active.Figure 2A. The excitatory and inhibitory burst synapses

are fast. Saturation nonlinearity was also included in the Within the subset of active neurons, the firing rates are
heterogeneous, rather than uniform.synaptic model (see Figure 2B). Whether such saturation

exists in biological integrator synapses is not yet known, In the oculomotor system, the integrator and burst
neurons drive extraocular motor neurons, which in turnbut similar saturation effects have been observed in

other types of synapses throughout the nervous system. drive the oculomotor plant (Belknap and McCrea, 1988).
Here, this signal transformation is modeled as a linearThe membrane potentials of the three input neurons

are shown in Figure 3A. The vestibular neuron fires at combination of integrator and burst synaptic activa-
tions, which is then low-pass filtered with the viscoelas-a constant rate of roughly 40 Hz; the excitatory burst

neuron fires at 1, 2, and 3 s after the beginning of the tic time constant of the oculomotor plant. The resulting
eye position is shown as a function of time in Figuresimulation; and the inhibitory burst neuron fires at 4

and 5 s. 3C. Each excitatory burst causes a positive step in eye
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Figure 3. Persistent Changes of Neural Activity and Eye Position Induced by Transient Burst Inputs, as Simulated in the Conductance-Based
Network Model

The weights from the burst neurons to the integrator neurons are W1 5 0.03 and W2 5 0.15 for all i (see Equation 6).
(A) Vestibular, excitatory burst, and inhibitory burst neurons. The membrane potentials are plotted versus time.
(B) Integrator neurons. Each transient burst of input causes a persistent change in neural activity.
(C) Eye position. The persistence during interburst intervals is due to the persistence of neural activity in the integrator.

position, and each inhibitory burst causes a negative synaptic input (Figure 2B, top). It has a threshold nonlin-
step. The persistence of eye position is due to the persis- earity but is approximately linear above threshold. The
tence of neural activity in the integrator. other response function includes the effects of synaptic

saturation (Figure 2B, bottom). Both response functions
are important for the model.Tuning of Synaptic Strengths

The reduced model was further simplified by con-The persistent neural activity evident in Figure 3 is not
straining the recurrent synaptic weight matrix to be ofa generic property of the recurrent network architecture
the outer product form. Such structure emerges sponta-used here. Rather, it arose from a careful design process
neously from Hebbian synaptic plasticity in associativein which the strength of feedback was precisely tuned.
memory models (Hopfield, 1982). Related learning rulesFirst, the spiking, conductance-based model was ap-
have also been proposed for the integrator (Arnold andproximated by a reduced model that dispenses with the
Robinson, 1991, 1992, 1997; Seung, 1997, Soc. Neu-dynamics of action potential generation (see Equation
rosci., abstract; Xie and Seung, 2000) and could provide14 in the Experimental Procedures). The reduced model
a way for approximate outer product structure to ariseis formally similar to the “neural network equations”
spontaneously in biological integrators.popular in brain modeling and computer science (Wilson

With the outer product constraint, tuning the strengthand Cowan, 1972; Hopfield and Tank, 1986; Grossberg,
of feedback becomes equivalent to a problem in func-1988) but possesses a precise biophysical interpretation
tion approximation. This is described mathematically inby virtue of its derivation from the conductance-based
the Experimental Procedures (Equation 18) and de-model using an averaging method similar to those intro-
picted graphically in Figure 4. Each curve in Figure 4Aduced previously (Ermentrout, 1998b). Intuitively, the
is a copy of the saturating response function at thereduction is possible because slow recurrent synapses
bottom of Figure 2B and represents the contribution offilter the neural spike trains, making possible a smooth,
a neuron to the feedback in the network. The thresholdnonspiking description of network dynamics (Rinzel and
and scale of each curve are controlled by the strengthsFrankel, 1992; Ermentrout, 1994).
of recurrent and vestibular synapses connected to theIn many traditional neural network models, the nonlin-
corresponding neuron. These parameters have been ad-earity of neural response is summarized by a single
justed so that the sum of all these curves approximatessigmoidal function, the precise form of which is a matter
a straight line with unity slope, which is the conditionof convention. In contrast, the reduced model used here
for persistence through tuned feedback. The quality ofrelies on two response functions, both of which are
the approximation is depicted in Figure 4B. The nthcalculated from the dynamics of action potential genera-
curve from the bottom is the cumulative sum of thetion in the conductance-based model. One response

function is essentially the firing rate as a function of curves in Figure 4A with the n leftmost thresholds. The
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Figure 4. Tuning Positive Feedback by Bal-
ancing Saturation and Recruitment

(A) Graphical representation of the amount
of feedback contributed by each integrator
neuron to the network, which is given for neu-
ron i by the term hiF(j iÊ 1 Bi) in Equation 18.
Each curve is the same function F as in Figure
2B, but horizontally scaled and translated by
j i and Bi and vertically scaled by hi.
(B) Cumulative sums of the same curves, in
order of increasing threshold. The envelope
of these curves is a good approximation to
a straight line with unity slope, which is the
condition for tuning positive feedback. The
variable Ê is the internal representation of eye
position (see Experimental Procedures for
definition). As it increases, linearity is achieved
by recruiting more neurons to compensate
for saturation.

envelope of these curves is the full sum, which is a good above this threshold. This is consistent with single-unit
recordings of integrator neurons, which usually have aapproximation to the requisite straight line.

The approximation shown in Figure 4B yielded the threshold in the normal oculomotor range. The slope of
the rate–position relationship, or the position sensitivity,synaptic strengths listed in Table 1, which were then

used to perform the numerical simulations of the spiking, varies from neuron to neuron. Similar heterogeneity of
position sensitivities is observed in single-unit record-conductance-based model shown in Figure 3. The suc-

cess of this procedure in yielding a network with persis- ings of integrator neurons.
tent neural activity demonstrates that the reduced
model is a good approximation to the spiking, conduc- Robustness

Our model required careful tuning to allow maintenancetance-based model.
of persistent neural activity. Figures 6 and 7 show that
deviations from this optimal design cause marked dete-Drift

Figure 3 demonstrated persistent changes in firing rate riorations in persistence.
In Figure 6A, the strengths of all integrator synapsesand eye position. To characterize persistence more

quantitatively, we performed a longer simulation of the are reduced to 90% of their tuned values. Fixation ability
is impaired: after saccades in both directions, eye posi-conductance-based model, driven by a pseudorandom

sequence of saccades. Figure 5A shows the resulting tion is not persistent but converges rapidly to a null
position, as shown at the top. The membrane potential100 fixations, interrupted by one saccade per second.

Six seconds of this trace are shown expanded in Figure of one of the integrator neurons is shown in the middle
panel. After saccades, the firing rate of the neuron al-5B. The solid line is the result of a linear fit of eye position

versus time during one fixation, excluding the time pe- ways converges to the same value, instead of persisting
in time. Unstable behavior is produced if the integra-riod immediately after the saccade. The slope of this

line was used to calculate the drift velocity of the eye tor synapses are increased to 110% of their tuned
strengths, as shown in Figure 6B. Both eye position andin each fixation. This drift velocity is graphed in the

points of Figure 5C, and is generally less than a few firing rate increase exponentially at low values, though
this explosive instability is limited by saturation.degrees per second for eye positions less than 358. The

reduced model also predicts a systematic relationship The simulations of Figure 7 were like those of Figure
5, except that a single neuron was removed. A graph ofbetween drift velocity and eye position (see Equation

23 in the Experimental Procedures), which is graphed eye position versus time shows rapid decay at large
eye positions (Figure 7A). This causes the range of eyeas the solid line, and agrees well with the behavior of

the conductance-based model. positions in Figure 7A to be smaller than in Figure 5A.
From the functional dependence of drift velocity on eye
position (Figure 7C), it is evident that there is high driftNeural Coding

The encoding of eye position in firing rate was also at eye positions larger than the threshold of the missing
neuron. At eye positions below threshold, the drift isquantified in the long simulation. During each intersac-

cadic interval, the mean firing rate and eye position unaffected, as can be seen by comparison with Fig-
ure 5C.were computed. The data points of Figure 5D show the

rate–position relationship for three of the neurons in
the conductance-based model. The solid lines show the Discussion
rate–position relationships of all the neurons in the re-
duced model (see Equation 21 in the Experimental Pro- The oculomotor integrator has been modeled as a net-

work of conductance-based neurons interacting by re-cedures). Again, the conductance-based model and the
reduced model agree very well. current excitation. The design of the spiking, conduc-

tance-based model relied on a nonspiking, reducedFor each neuron, the rate is zero for positions less
than some threshold value but is approximately linear model derived using an averaging method. The strength
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Figure 5. Numerical Simulation of Conductance-Based Model
Driven by a Sequence of 100 Saccades at 1 s Intervals

The applied currents of the burst neurons are Gaussian random Figure 6. Loss of Persistence Caused by Mistuning of Synaptic
variables with mean 5 mA/cm2 and standard deviation 1 mA/cm2. Feedback
The weights from the burst neurons to the integrator neurons are (A) Loss of persistence caused by reducing recurrent synaptic
W1 5 0.02 and W2 5 0.18 for all i. weights by 10% from their tuned values. The vestibular synapses
(A) Eye position E versus time. Fixation performance is good over have also been increased by 10%, to keep the range of eye positions
a range of eye positions, up to about 358. roughly the same as before. The weights from the burst neurons to
(B) An expanded view of 6 s of the same time series, along with a the integrator neurons are W1 5 0.03 and W2 5 0.15 for all i. Each
sample linear fit to E(t) during an interburst interval, excluding the burst is stimulated by a current pulse lasting 100 ms.
first 200 ms after the burst. The slope of this line was used to (Top) Loss of fixation performance. Eye position is not persistent
calculate dE/dt in every interburst interval. but decays toward a single null position after every saccade.
(C) This resulted in a graph of the functional relationship between (Middle) Membrane potential of a single neuron in the network.
the drift dE/dt and E, shown in the data points. The points are in (Bottom) The instantaneous firing rate of the neuron is not persistent
good agreement with the solid line from Equation 23 of the reduced but decays to a single stable level after every burst input.
model. In the range up to about 358, the drift does not exceed a (B) Unstable behavior caused by increasing recurrent synaptic
few degrees per second. weights by 10% from their tuned values. The weights from the inhibi-
(D) Threshold linear encoding of eye position in the firing rates of tory burst neuron to the integrator neurons are W2 5 0.20 for all i.
integrator neurons. The mean firing rate and mean eye position Each inhibitory burst is stimulated by a current pulse lasting 100 ms.
were computed during each interburst interval for three integrator (Top) Eye position drifts toward positive values after every saccade
neurons and are shown in the data points. The solid lines are the but saturates at high values.
rate–position relationships for all 15 integrator neurons, according (Middle) Membrane potential of a single neuron in the network.
to the reduced model (see Equation 21). The agreement between (Bottom) The instantaneous firing rate of the neuron increases after
the conductance-based model and the reduced model is very good. every inhibitory burst input. The increase looks exponential at low

rates but saturates at high rates.

of synaptic feedback in the reduced model was tuned
so that it would maintain persistent activity. When the saturation. Both types are evident in the neural response

function at the bottom of Figure 2B and in Figure 4A.resulting synaptic strengths (Table 1) were transferred to
the conductance-based model, numerical simulations Because of saturation, the amount of feedback contrib-

uted by a neuron becomes insufficient as its activityexhibited persistent activity, confirming the validity of
the tuning procedure. The encoding of eye position in increases. In Figure 4B, this shortfall is compensated

by recruitment of neurons that rise above threshold asneural activity was threshold linear, in accord with sin-
gle-unit recordings of integrator neurons. eye position increases. Therefore, in a properly tuned

network, a balance between recruitment and saturation
keeps the amount of synaptic feedback sufficient toSaturation and Recruitment

There are two types of nonlinearity in the reduced model, maintain persistent neural activity.
But the function approximation of Figure 4B is stillthe threshold for action potential discharge and synaptic
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Figure 7. Loss of Persistence after Lesion of
a Single Neuron

The network is driven by a pseudorandom
sequence of saccades at 1 s intervals with
stimulation parameters the same as in Fig-
ure 5.
(A) Eye position E versus time. The range of
E has shrunk relative to Figure 5, due to in-
creased drift at larger values of E.
(B) An expanded view of 6 s of the same time
series, along with a sample linear fit to E(t)
during an interburst interval, excluding the
first 200 ms after the burst. The slope of this
line was used to calculate dE/dt in every in-
terburst interval.
(C) This resulted in a graph of the functional
relationship between the drift dE/dt and E,
shown in the data points. The solid line is
from Equation 23 of the reduced model. Com-
pared to Figure 5C, the drift is left unchanged
for E less than the threshold of the lesioned
neuron, but is substantially increased for E
greater than the threshold.

not perfect, even though the synaptic strengths have organization (McCrea and Baker, 1985; Escudero and
Delgado-Garcia, 1988; Spencer et al., 1989; Escuderobeen well tuned. Consequently, there is residual drift in

neural activity and eye position during fixation (Figure et al., 1992; Gamkrelidze et al., 1999, Soc. Neurosci.,
abstract). Previous integrator models have emphasized5C). The drift velocity is fairly low in the range of eye

positions between 08 and 358 but rises sharply for eye the role of contralateral inhibition, noting that mutual
inhibition could create the positive feedback requiredpositions greater than 358. This large drift velocity can

be seen in Figures 5A and 5C. No neurons have thresh- for persistence (Cannon et al., 1983; Galiana and Outer-
bridge, 1984; Arnold and Robinson, 1997). However, theolds for these large values of eye position, so it is not

possible to counterbalance saturation by recruitment. results of midline lesions have yielded conflicting evi-
dence concerning this issue (Cheron et al., 1986b; Anas-Therefore, the present model predicts that the fixation

performance of an integrator should be poor in parts of tasio and Robinson, 1991; Pastor et al., 1994).
As the role of contralateral inhibition is still controver-the oculomotor range where there are no thresholds of

integrator neurons, assuming that the recurrent syn- sial, we have made our first generation model unilateral
for the sake of simplicity. Since the model includes ipsi-apses are excitatory and strongly saturating.
lateral recurrent excitation only, its firing rates always
increase with increasing eye position, so that all linesNeural Coding
in Figure 5D have positive slope. In other words, pureFor most integrator neurons, the relationship between
recurrent excitation leads to position sensitivities all offiring rate and eye position has a threshold nonlinearity,
the same sign, as was previously noted by Cannon etaccording to single-unit recordings (Lopez-Barneo et
al. (1983). Likewise, single-unit recordings have shownal., 1982; McFarland and Fuchs, 1992). This threshold
that integrator neurons on the same side of the goldfishis reproduced by the present model (Figure 5D) but was
brain have position sensitivities of the same sign (Aksaylacking in previous linear models. Above threshold, the
et al., 1997, Soc. Neurosci., abstract).firing rates of the model neurons encode eye position

Our model is a counterexample to the claim by Cannonlinearly, again consistent with single-unit recordings.
et al. (1983) that a purely excitatory network cannotThe thresholds and slopes vary over the population of
maintain persistent activity in the presence of tonic ves-neurons.
tibular input. They assumed that the threshold for neuralThe present model demonstrates that a nonsaturat-
firing is at zero current. In our model neuron, there is aing rate–position relationship can be compatible with
positive threshold for firing, so their argument does notstrongly saturating synapses. Previously, the empirically
apply.observed lack of saturation in the rate–position relation-

ship was used to justify linear network models (Cannon
et al., 1983) and to reject previous models based on The Intrinsic Cellular Time Constant
elements with saturation nonlinearity (Rosen, 1972; Ka- In the present model, as in previous models, the persis-
math and Keller, 1976), but this argument is not valid if tence of activity in a single neuron can be characterized
synapses saturate. by a single cellular time constant tcell. The role of synaptic

feedback is to boost the network time constant tnet to be
longer than tcell. In their linear network models, RobinsonExcitation versus Inhibition

The anatomical and physiological facts about the synap- and collaborators have assumed that tcell is a membrane
time constant with a value of 5 ms (Cannon et al., 1983;tic organization of biological integrators are still limited.

There is some evidence that ipsilateral recurrent excita- Cannon and Robinson, 1985; Arnold and Robinson,
1991, 1992, 1997). In our model, tcell corresponds to thetion and contralateral inhibition are basic features of this
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time constant tsyn of recurrent synapses, which we chose In the nonspiking versions of both models, the persis-
tent activity patterns form a continuous family parame-to be 100 ms. At present, there is little experimental data

concerning synaptic transmission in biological inte- trized by the remembered variable (see Equation 16).
This continuous family can be idealized as a continuousgrators, so our choice is tentative. The value of 100 ms

could correspond, for example, to the time constant of dynamical attractor, a manifold of stable fixed points
(Seung, 1996). Strictly speaking, this is just an idealiza-the NMDA receptor. Interestingly, it has been reported

that injections of APV, an NMDA receptor antagonist, tion, as both models contain only a finite number of
fixed points at which the drift truly vanishes. The restinto the neural integrator cause deterioration of fixation

performance in cats (Mettens et al., 1994a). However, it of the persistent activity patterns are not truly fixed
points but rather points at which drift is very slow (seeis not clear from this experiment whether the affected

NMDA receptors belong to recurrent synapses of the Figure 5C). Based on considerations of structural stabil-
ity, it can be argued that any recurrent network modelintegrator.

Whether tcell is 5 or 100 ms has significant conse- with a continuous attractor must depend on precise
tuning of synaptic feedback (Seung, 1996).quences for the robustness of the network to mistuning

of parameters. These consequences can be precisely Accordingly, corruption of synaptic strengths in either
the ring model or the present model results in drift ofquantified for a linear network as follows. To attain a

network time constant tnet, the global strength of synap- both neural activity and the remembered variable (com-
pare Figure 6 of this paper and Figure 5 of Zhang, 1996).tic feedback (as quantified by the largest eigenvalue of

the synaptic weight matrix) must be tuned to unity with This shows that both models depend on precise tuning
of synaptic feedback. At first glance, the ring model maya precision of tcell/tnet (Seung, 1996). According to mea-

surements of goldfish oculomotor fixation in the dark, not appear to require tuning, but in fact its ability to
store a memory of a directional variable depends onthe network time constant is typically greater than tnet 5

10 s (Mensh et al., 1997, Soc. Neurosci., abstract). If rotational symmetry of synaptic interactions. With such
symmetry, the model is able to maintain a persistenttcell 5 5 ms, then the required precision is better than 1

part in 2000. If tcell 5 100 ms, only 1 part in 100 is required. activity pattern centered around any direction on the
ring, in the absence of any external signal containingAlthough this argument is strictly valid only for linear

networks, it suggests that networks are generally more directional information. It is difficult to see how rotational
symmetry could be realized in a biological neural net-robust to mistuning when tcell is longer, other things

being equal. As a result, the present model is more work without some mechanism for tuning synaptic
strengths.robust than the linear network models of Robinson and

collaborators, for the most part (some of the subtleties Dealing with the problem of tuning is the greatest
challenge facing network models based on continuousinvolved in this kind of comparison are discussed by

Seung, 1996). Nevertheless, the present model is still attractors. The tuning procedure followed here is conve-
nient but artificial. It could potentially be replaced bysensitive to perturbations, as shown in Figures 6 and 7,

and so may not be as robust as biological integrators. adaptive mechanisms of synaptic plasticity that enable
the network to tune itself based on visual or other typesTherefore, it seems important to look for mechanisms

of synaptic plasticity that could improve robustness by of error signals (Arnold and Robinson, 1992, 1997;
Seung, 1997, Soc. Neurosci., abstract; Xie and Seung,maintaining tuning.
2000).

Continuous Attractors Procedures
The present model has a number of similarities to the

Synaptic feedback has been hypothesized to be the mechanism ofring model, a recurrent network that is able to store a
persistent neural activity in a number of integrator models (Rosen,memory of a directional variable by maintaining persis-
1972; Kamath and Keller, 1976). Most of these models have been

tent activity patterns (Zhang, 1996; Camperi and Wang, formulated as networks of linear elements (Cannon et al., 1983;
1998). The preferred directions of neurons in the model Galiana and Outerbridge, 1984; Cannon and Robinson, 1985; Arnold
are evenly spaced on a ring, and the strength of synaptic and Robinson, 1991, 1992, 1997):
interaction between two neurons depends only on the
difference in their preferred directions (Ben-Yishai et al., tcell

dni

dt
1 ni 5 o

N

j 5 1

Wijnj 1 Bi. (1)
1995). The ring model can integrate angular velocity
signals to produce changes in the stored directional In these equations, the firing rates n1,...,nN of a network of N neurons

are assumed to interact linearly through synaptic connections ofvariable (Zhang, 1996), much as the present model is
strength Wij, and tcell is generally interpreted as a membrane timeable to integrate the pulses of input from command
constant. If synaptic strengths are properly tuned, such linear net-neurons to produce step changes in eye position.
works can maintain a short-term memory of eye position that is

The ring model reproduces the fact that head direction linearly encoded in persistent neural activity. The conditions for
(Zhang, 1996) and direction of a saccadic target (Cam- tuning can be expressed in terms of the eigenvalues and eigenvec-
peri and Wang, 1998) are encoded in neural firing rates tors of the synaptic weight matrix (Seung, 1996). In some models,

the synaptic connections are designed (Cannon et al., 1983; Cannonaccording to a bell-shaped tuning curve. This is analo-
and Robinson, 1985), while in others they emerge spontaneouslygous to the way in which the present model reproduces
from a synaptic learning rule (Arnold and Robinson, 1991, 1992,the experimental observation that eye position is en-
1997; Seung, 1997, Soc. Neurosci., abstract).

coded in firing rates in a threshold linear manner (Lopez- The linear models make two major simplifications that are ques-
Barneo et al., 1982; Escudero et al., 1992; McFarland tionable. They ignore action potentials, describing the activity of

each neuron with a dynamical variable like firing rate. Although thisand Fuchs, 1992; Scudder and Fuchs, 1992).
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simplification is traditional in neural network models, the range of synaptic time constant tsyn,ij for each synapse from neuron j to i.
However, we assumed that every synapse from neuron j has theits validity has not been clear. Furthermore, the model neurons are

assumed to be perfectly linear elements. This lends mathematical same time constant, tsyn,ij 5 tsyn,j for all i. It follows that sij 5 sj for all
i, since they are all driven by the same presynaptic voltage Vj.tractability, at the cost of ignoring the threshold and saturation

nonlinearities that are typical of most neurons. Here, we describe The synapse is gated by the presynaptic voltage Vj through the
sigmoid function:the methods used to design a conductance-based model of the

integrator, which is more biophysically realistic than previous linear
models. s (V ) 5

1
1 1 exp[V 2 us)/ss]

. (5)
A gentler introduction to the methods described here is available

in another paper about the dynamics of a single neuron with an
Normally, this gating function is vanishingly small, but it approachesexcitatory autapse (Seung et al., 2000). The autapse model is simpler
unity briefly whenever a presynaptic action potential drives the volt-than the present network model, because feedback is localized to
age over the threshold us 5 220 mV. The parameter ss 5 2 mVa single loop instead of distributed over a web of synaptic connec-
controls the sharpness of the voltage dependence.tions. The autapse model more simply illustrates the concept of

Figure 2A illustrates the dynamics of synaptic summation in re-persistence through tuned synaptic feedback, although it cannot
sponse to stimulation by a train of action potentials. Each presynap-reproduce the distributed neural codes that are observed in biologi-
tic action potential causes a sharp rise in the synaptic activation s,cal integrators. The autapse model has the further limitation that it
roughly as fast as the width of the action potential. This is followedrelies on a nonsaturating synapse, whereas network models can
by exponential decay with time constant tsyn 5 100 ms. Saturationwork with either saturating or nonsaturating synapses (strongly satu-
nonlinearity of the synapse is evident from the fact that the firstrating synapses are used here).
action potential causes a larger jump in s than later ones. This
nonlinearity is due to the 1 2 s factor on the right-hand side ofThe Conductance-Based Model
Equation 4. The size of the increment is controlled by the parameterDynamics of Action Potentials
as, which was set at as 5 200 to produce strong saturation.According to studies of integrator neurons in vitro, the relationship

The time constant of the synaptic activation has been chosen asbetween firing rate and applied current is approximately linear above
either slow (tsyn 5 100 ms) or fast (tsyn 5 5 ms) for each neuron.threshold over a large range (Serafin et al., 1991; du Lac and Lis-
Recurrent and tonic feedforward excitation is modeled with slowberger, 1995; Wang et al., 1998, Soc. Neurosci., abstract). To repro-
synapses, while feedforward burst excitation is modeled with fastduce this threshold linear relationship, we utilized a model neuron
synapses. Likewise, burst inhibition is modeled with fast synapses.introduced by Shriki et al. (1998, Soc. Neurosci., abstract). This
This means that all burst input is transient, decaying rapidly afterchoice was not critical; other model neurons in the literature with
the burst is over. It is convenient to make the burst input fast, insimilar linear behavior (Ermentrout, 1998a; Wang, 1998) could have
order to clearly illustrate the persistence of the recurrent network,been substituted. At present, threshold linearity is the only empirical
but this is not an essential feature of the model. A more biophysicallyconstraint imposed on the model neuron. A true biophysical model
detailed synaptic model has not been used, as not much is knownof integrator neurons should become possible in the future, when
about synaptic transmission in the integrator. The most importantmore information about their intrinsic conductances becomes
property of the model is its relatively long time constant of 100 ms,available.
which is important for improving the robustness of tuned positiveThe voltage Vi of the single compartment of neuron i obeys the
feedback (Seung, 1996).current balance equation:
Synaptic Connectivity
The network simulations contained 15 integrator neurons and 3

Cm
dVi

dt
5 2IL,i 2 INa,i 2 IK,i 2 IA,i 2 Isyn,i 1 Iapp,i , (2) input neurons: a vestibular neuron, an excitatory burst neuron, and

an inhibitory burst neuron (see Figure 1B). The vestibular neuron
where Cm is the membrane capacitance. The right-hand side con- was tonically active at a constant rate of roughly 40 Hz, simulating
tains a leak current IL, a voltage-dependent transient sodium current the background activity present in primary vestibular afferents when
INa, a delayed rectifier potassium current IK, and an A-type potassium the head is stationary. This tonic activity was produced by an applied
current IA. The properties of these currents are described completely current of Iapp,0 5 3 mA/cm2. The burst neurons were silent most of
in the Appendix. the time, except for occasional bursts of activity that stimulated

If the synaptic current Isyn is zero, and the applied current Iapp is saccadic eye movements. These bursts were produced by 50 ms
held constant above a threshold value of 2.046 mA/cm2, then the pulses of applied current, with magnitudes specified in the figure
model neuron converges to repetitive firing at a frequency that is captions.
approximately linear in applied current (Shriki et al., 1998, Soc. Neu- The synaptic activations of the integrator neurons are denoted
rosci., abstract). by s1,...,sN; those of the vestibular, excitatory burst, and inhibitory

The synaptic current Isyn,i in neuron i is the sum of excitatory and burst neurons are s0, s1, and s2. The excitatory synaptic conduc-
inhibitory contributions: tance of the ith integrator neuron is:

Isyn
i 5 gE,i (Vi 2 VE) 1 gI,i (Vi 2 VI). (3)

gE,i 5 o
N

j 5 1

Wijsj 1 Wi0s0 1 W1s1, (6)

Here, gE,i denotes the sum total of excitatory synaptic conductances
in neuron i, and gI,i is the sum total of inhibitory synaptic conduc- which is composed of recurrent excitation from other integrator
tances. The voltages VE 5 0 and VI 5 270 mV are the reversal neurons, feedforward tonic excitation from the vestibular neuron,
potentials of excitatory and inhibitory synapses, respectively. and feedforward burst excitation. The inhibitory synaptic conduc-
Synaptic Transmission tance:
As described above, the dynamics of intrinsic conductances gener-
ate action potentials in the model neuron. These action potentials gI,i 5 W2s2 (7)
lead to synaptic transmission and the opening of synaptic receptors

comes solely from the inhibitory burst neuron.in postsynaptic target neurons. The fraction of open channels at
Since synaptic activations are dimensionless variables, the synap-each of the synapses made by neuron j on its targets is described

tic weights have the dimensions of conductance. The weight Wij isby a single dimensionless variable sj called the synaptic activation,
the maximal conductance of the synapse from neuron j to i, achievedwhich takes values in the range from zero to one. We modeled its
only if all receptors are open (sj 5 1). The recurrent synaptic strengthsdynamics as (Wang and Rinzel, 1992):
are of the outer product form:

tsyn,j
dsj

dt
1 sj 5 ass (Vj) (1 2 sj). (4)

Wij 5 jihj, (8)

where the values of the parameters j1,...,jN and h1,...,hN are listed inStrictly speaking, there should be a synaptic activation sij and a
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1992; Ermentrout, 1994, 1998b) but performs better for stronglyTable 1. Tuned Values of Parameters in the Network Model
saturating synapses, which is the relevant case here.

j i 100h i 10Bi We replaced s(Vj) in Equation 4 by its time average for fixed
gE,j. This replacement becomes exact in the limit of infinitely slow1.0700 0.9255 0.3623
synapses (tsyn → ∞) and is often a good approximation for large but0.6387 0.5109 0.3506
finite tsyn. The averaging method was applied to the conductance-0.8641 0.0739 0.3328
based model during the time intervals between bursts, when the0.7916 0.6413 0.3258
fast excitatory and inhibitory burst synapses are inactive. Therefore,1.0348 0.4433 0.2651
only the recurrent synapses, which are slow and excitatory, are0.9573 0.3464 0.2580
considered in the following discussion.0.7739 0.4826 0.2472

For gE above a threshold value, the model neuron converges rap-0.5111 0.4848 0.2760
idly to repetitive firing at a constant frequency, as shown in Figure0.9928 0.3294 0.1526
2A. Both the membrane potential V(t;gE) and synaptic activation0.7668 0.0668 0.1909
s(t;gE) are periodic in time. Let ,u(t). 5 T(gE)21 eT(gE)

0 dt u(t) denote0.8693 0.3370 0.1563
the time average of the periodic function u(t) over a single interspike0.9752 0.2616 0.0961
interval of length T(gE), and define:1.0531 0.2417 0.0627

0.9429 0.3549 0.0617
0.6058 0.3707 0.1563 f(gE) 5

,(1 2 s(t; gE))s(V(t; gE)).
,1 2 s(t; gE).

5
1
as

,s(t; gE).
,1 2 s(t; gE).

(10)

The vectors j i, hi, and Bi for the integrator neurons in the network
model. The neurons are listed in order of increasing threshold. The In words, f(gE) is the time average of s(V(t;gE)), weighted by
units of j i and Bi are conductance (mS/cm2), when hi is dimen- 1 2 s(t;gE). This definition differs from the unweighted average
sionless. ,s(V(t; gE)). used in previous applications of the averaging method

(Ermentrout, 1994, 1998b). A theoretical justification for our use of
the weighted average (Equation 10) is outside the scope of this
paper. The empirical justification is simply that the weighted average

Table 1. These parameter values were found by an optimization gave superior results. When the synaptic strengths of the conduc-
procedure to be described later. tance-based model were tuned using a reduced model obtained

Every integrator neuron receives feedforward excitation from the from the standard method of averaging, the persistence time of
vestibular neuron. The strengths of the vestibular synapses are neural activity was poor. But tuning based on a reduced model
specified in Table 1 in the form Bi 5 Wi0,s0., which is the time obtained from our nonstandard method was successful, as illus-
average of the vestibular contribution to the excitatory conductance trated by the results reported in this paper. Note that both versions
in Equation 6. Like the recurrent synaptic connections, these were of the method of averaging give the same result in the limit as
chosen using an optimization procedure to be described later. The

tsyn → ∞, since 1 2 s(t;gE) becomes constant in time.
average of the synaptic activation of the vestibular neuron is ,s0. 5 The second definition in Equation 10 can be proven equivalent to
0.6465. the first by averaging Equation 4 over a period and is more conve-

Each integrator neuron receives feedforward excitation and inhibi- nient in some circumstances. It follows from the second definition
tion from the burst neurons. All excitatory burst synapses have the that our nonstandard method of averaging yields neural network
same strength W1, and all inhibitory burst synapses have the same equations with the same fixed points as the mean field approxima-
strength W2. The numerical values are given in the figure legends. tion (Shriki et al., 1998, Soc. Neurosci., abstract), another method
This uniformity is convenient but is not important for the model. of deriving neural network equations from conductance-based mod-
Oculomotor Plant els. The standard method of averaging and the mean field approxi-
The oculomotor integrator is a premotor area that projects to motor mation give the same fixed point equations for nonsaturating syn-
neurons that drive the extraocular muscles. We modeled the trans- apses, but not for saturating synapses.
formation performed by the motor neurons and the oculomotor plant The shape of f is shown at the top of Figure 2B, and was found
with a first-order linear differential equation: by numerically simulating repetitive firing for various values of gE

and computing the time average in Equation 10. It turns out that
tE

dE
dt

1 E 5 c 1 o
N

j 5 1

hj sj 1 r1s1 1 r2s22. (9) the function f(gE) is almost exactly proportional to firing rate n:

f(gE) < 0.229 kHz21 n(gE). (11)This amounts to a low-pass filtering of a linear combination of the
synaptic activations of the integrator and burst neuron. This model

Both functions are approximately linear in gE.should not be interpreted literally as saying that the integrator and
Substituting f(gE,j) for s(Vj) in Equation 4 yields the averaged equa-burst neurons project directly to the extraocular muscles. Rather,

tion of motion:it is a mathematical approximation of the effect of the neural circuitry
and musculature intervening between these neurons and the eye.

To produce a step change in eye position, the oculomotor plant
tsyn,j

dsj

dt
1 sj 5 as (1 2 sj)f(gE,j). (12)

must be driven by “pulse step” input (Robinson, 1964). The pulse
moves the eye to a new position, overcoming viscous drag forces.
The step holds the new eye position. Here, the viscous drag is This equation can be regarded as a simplified description of the
characterized by the time constant tE 5 150 ms of the oculomotor neural dynamics portrayed in Figure 2A. One way of interpreting
plant. The step is provided by the integrator neurons (s1,...,sN), and this figure is to regard the neuron as two devices cascaded in series.
the pulse is provided by the burst neurons (s1, s2). The parameter The first device consists of the intrinsic conductances. It transforms
values r1 5 0.12 and r2 5 20.07 were set by hand so that burst the excitatory synaptic conductance gE (Figure 2A, top) into a train
inputs produced nearly perfect step changes in eye position. Note of action potentials V (Figure 2A, middle). The second device is the
that the hj in Equation 9 are the same parameters that appear in synapse, which transforms the presynaptic action potentials into
the outer product form (Equation 8) of the recurrent connections. the synaptic activation s (Figure 2A, bottom).
The prefactor of c 5 10008 was set to give an oculomotor range The averaged equation of motion describes the transformation
of 408. from gE to s directly, omitting the intermediate stage of the mem-

brane potential V. Because the complex dynamics of intrinsic con-
ductances have been neatly packaged into the function f, the dy-The Reduced Model

An averaging method was applied to construct a nonspiking, re- namics of the reduced model (Equation 12) is quite simple. If gE

is held constant in time, the synaptic activation s exponentiallyduced model from the conductance-based model. The method is
similar to others that were proposed previously (Rinzel and Frankel, approaches:
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changes slowly, the approximation E ≈ cÊ holds, so that the oculo-
F(gE) 5

asf(gE)
1 1 asf(gE)

(13)
motor plant “reads out” Ê to produce eye position E.

During intersaccadic intervals, the synaptic conductances of the
Judging from the bottom of Figure 2A, the reduced model (Equation integrator neurons are functions of Ê:
12) accurately captures the overall exponential behavior of s but
smooths over the sudden jumps due to action potentials. This gE,i 5 j i Ê 1 Bi. (20)
smoothing is in the same spirit as the classical neural network equa-

This expression is derived from Equation 6 by substituting the outertions (Wilson and Cowan, 1972; Hopfield and Tank, 1986), which
product form (Equation 8), using the definition (Equation 17), andreplaced trains of discrete action potentials with continuous vari-
neglecting the burst input. Combining this with Equation 11 yieldsables like instantaneous firing rate or temporally smoothed mem-
ni ~ f(j i Ê 1 Bi). Upon substituting Ê ≈ E/c, we find the relationshipbrane potential. The effects of synaptic saturation are evident in F
between firing rate and eye position:(Figure 2B), unlike in the function f.

Substituting Equation 6 for the synaptic conductance gE,i into
ni ~ f(j i E/c 1 Bi) (21)Equation 12 yields:

which is graphed in the solid lines of Figure 5D for all 15 integrator
tsyn,i

dsi

dt
1 si 5 as (1 2 si)f 1 o

N

j 5 1

Wij sj 1 Bi2. (14) neurons. The lines are straight because f is approximately linear
(Figure 2B, top).

This equation is remarkable, because it specifies how the parame-The tonic input from the vestibular neurons is in the bias term Bi 5
ters of the model relate to the properties that are measured in single-Wi0 ,s0.. Excitatory and inhibitory burst input have been neglected,
unit recordings of integrator neurons. The slope of each line is theas the equations are only meant to approximate the conductance-
position sensitivity of the neuron and is determined by the recurrentbased model during the time intervals between bursts.
synaptic connections (through j i). The threshold eye position de-
pends not only on the recurrent synapses (through ji) but also theTuning the Reduced Model
feedforward vestibular synapses (through B i 5 Wi0, s0.).The fixed point equations of the reduced model are:

si 5 F 1 o
N

j 5 1

Wij sj 1 Bi2, (15) Drift in Neural Activity and Eye Position
The difference between the two sides of Equation 18 has an impor-
tant dynamical interpretation. To derive it, we note that the variablewhich is obtained by setting dsi/dt 5 0 in Equation 14 and using
Ê obeys the equation:the definition in Equation 13. Since we have assumed the outer

product form Wij 5 jihj for the synaptic weight matrix (see Equation
8), the fixed point equations (Equation 15) are approximately satis- tsyn

dÊ
dt

1 Ê 5 o
i

hi(1 2 si)f(jiÊ 1 Bi). (22)
fied if:

This is obtained by multiplying the reduced model (Equation 14) bysi < F(j i Ê 1 Bi), (16)
hi, summing over i, substituting the outer product form Wij 5 jihj for

Ê 5 o
i

hi si. (17) the synaptic weight matrix, and using the definition (Equation 17)
of Ê. For a tuned network, the approximation (Equation 16) for si

can be substituted, yielding:These conditions can in turn be satisfied if:

Ê < o
N

i 5 1

hiF(jiÊ 1 Bi). (18) tsyn
dÊ
dt

1 Ê < o
i

hiF(jiÊ 1 Bi) (23)

Hence, we tuned parameters to minimize the squared difference So the difference between the two sides of Equation 18 is propor-
between the two sides of Equation 18 over a range of values of Ê. tional to the drift dÊ/dt in the variable Ê.
Each term in the sum is represented graphically in Figure 4A, and According to Equation 23, dÊ/dt vanishes at the zero crossings
the cumulative sums are shown in Figure 4B. of the solid line in Figure 5C. These correspond to fixed points of

The components of the vector ji were chosen randomly from a the reduced model. The zero crossings with negative slope are
uniform distribution in the interval (0.5,1.1) and rounded to four stable fixed points, as can be shown by a linear stability analysis
decimal places. Thresholds ui were chosen from 0 to 0.037 in steps of Equation 23. There is some clustering of the values of Ê around
of 0.0025, and then a Gaussian noise with standard deviation 0.001 these stable fixed points in Figures 5C and 5D. The presence of
was added. The biases were computed via Bi 5 0.0368 2 ui/ji and these fixed points should not be overemphasized. They are not in
rounded to five decimal places. The hi were determined by minimiz- themselves important to the function of the integrator. Only low drift
ing the squared difference between the two sides of the equation is important for fixation, and fixed points are just a side effect of
at values of Ê from 0 to 0.038 in steps of 0.0001. The hi were rounded the tuning required to make dÊ/dt small.
to the values shown in Table 1. It was verified that all parameters The existence of multiple stable fixed points is possible because
ji, hi, and Bi were nonnegative, in keeping with the assumption of of the nonlinearity of F in Equation 18. For a linear network, the
excitatory connections. From ji and hi, the synaptic weight matrix relationship between dE/dt and E would be linear, so that only zero
was constructed via Wij 5 jihj. The strengths of the vestibular syn- or one fixed point would be possible. In an optimally tuned network,
apses Wi0 5 Bi/,s0. were calculated from the bias Bi. the number of stable fixed points presumably grows with the size

The tuned values given in Table 1 are special, but not unique. of the network.
There are other settings of parameters that give the network compa-
rable persistence. Persistence does not require local tuning of each

Rates versus Spikes
and every synaptic strength to a unique value, but only that the

The success of the tuning procedure in producing persistent activity
strength of feedback be globally tuned.

shows that the reduced model is a very good approximation to
the conductance-based model, but it is by no means perfect. For

Neural Coding of Eye Position example, we have found (but do not report fully here) oscillatory
The quantity Ê introduced in Equation 17 plays an important role in behaviors in the firing rates of the conductance-based model that
the reduced model: it is the internal representation of eye position. are not present in the reduced model. This discrepancy is a sign of
This can be seen by substituting Equation 17 in Equation 9 to obtain: a breakdown in the method of averaging. It is well known that the

method encounters problems when applied to systems in which
tE

dE
dt

1 E 5 cÊ. (19) natural frequencies are in whole-number ratios with each other, a
phenomenon known as resonance (Sanders and Verhulst, 1985). If
the spiking vestibular input is removed and replaced by a constantThis is valid during intersaccadic time intervals, when the terms in

Equation 9 containing s1 and s2 can be neglected. Provided that Ê bias term in the synaptic conductance of the integrator neurons,
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the oscillations become much weaker. This indicates that the main IA (V) 5 gAa3
∞ b(V 2 VK) (37)

resonance in our simulations is between the integrator neurons and
a∞ (V) 5

1
exp[2(V 1 50)/20] 1 1

(38)the vestibular neuron. However, the oscillations do not vanish com-
pletely when the synchronous drive of the vestibular neuron is re-
moved, so apparently there are also resonances between integrator b∞ (V) 5

1
exp[(V 1 80)/6] 1 1

(39)
neurons. It would be interesting to look for such effects in experi-
mental measurements of integrator neural activity. db

dt
5

b∞ (V) 2 b
tb

(40)
The method of averaging was applicable because of the slow

synapses in the model. If the synapses are made faster while the size
gA 5 20, tb 5 20.of the network is fixed, the reduced model becomes an inaccurate

We used the fourth-order Runge-Kutta method with step size 0.01approximation, so that the present tuning procedure breaks down,
ms to integrate these equations, except in Figure 2B, where a stepthough other tuning procedures might be possible. The problem is
size of 0.002 ms was used. With no synaptic or applied current, themitigated if the number of neurons is increased, so that it becomes
dynamical variables converge to a fixed point at V 5 268.3737, h 5possible to construct an accurate reduced model by averaging over
0.9820, n 5 0.0631, and b 5 0.1259.neurons instead of time (Shriki et al., 1998, Soc. Neurosci., abstract).

Instantaneous rate functions were calculated from spike timesIn the present work, the spiking nature of neural activity does
defined as the downward zero crossings of the membrane potential.not play a major role; the nonspiking, reduced model is a good
The rate between successive spikes at times ta and ta11 was definedapproximation to the spiking, conductance-based model. It should
as 1/(ta11 2 ta). In other words, the rate function was constant duringbe noted that there is a different conception of persistent activity
each interspike interval.based on synchronous volleys of spikes circulating in a network,

though it is not clear how to make such a “synfire theory” (Abeles,
1991) compatible with the experimental facts about neural coding Acknowledgments
in the integrator.

We thank O. Shriki, H. Sompolinsky, and D. Hansel for providing us
Appendix: Intrinsic Conductances with their model neuron, and X.-J. Wang for discussions on synaptic
Our simulations utilize a model neuron introduced by Shriki, Hansel, models. E. Aksay and X. Xie provided helpful comments on the
and Sompolinsky (Shriki et al., 1998, Soc. Neurosci., abstract). The manuscript.
only modification we have made is to increase the threshold by
using a higher leak conductance. Unless otherwise noted, the mea- Received June 18, 1999; revised February 8, 2000.
surement units are voltage (mV), conductance (mS/cm2), current
(mA/cm2), and capacitance (mF/cm2).

ReferencesCurrent Balance Equation

Abeles, M. (1991). Corticonics: Neural Circuits of the Cerebral Cortex
Cm

dVi

dt
5 2IL(Vi) 2 INa(Vi, hi) 2 IK(Vi, ni) 2 IA(Vi, bi) (24)

(Cambridge: Cambridge University).
2 Isyn (Vi, {sj}) 1 Iapp,i Anastasio, T.J., and Robinson, D.A. (1991). Failure of the oculomotor

neural integrator from a discrete midline lesion between the abdu-
Cm 5 1 mF/cm2. cens nuclei in the monkey. Neurosci. Lett. 127, 82–86.
Intrinsic Conductances

Arnold, D.B., and Robinson, D.A. (1991). A learning network modelLeak Current IL.
of the neural integrator of the oculomotor system. Biol. Cybern. 64,
447–454.IL(V) 5 gL(V 2 VL) (25)

Arnold, D.B., and Robinson, D.A. (1992). A neural network model of
gL 5 0.2, VL 5 265.

the vestibulo-ocular reflex using a local synaptic learning rule.
Sodium Current INa. Philos. Trans. R. Soc. Lond. B Biol. Sci. 337, 327–330.

Arnold, D.B., and Robinson, D.A. (1997). The oculomotor integrator:INa(V,h) 5 gNam
3
∞(V)h(V 2 VNa) (26)

testing of a neural network model. Exp. Brain Res. 113, 57–74.
m∞(V) 5

am(V)
am(V) 1 bm(V)

(27) Becker, W., and Klein, H.M. (1973). Accuracy of saccadic eye move-
ments and maintenance of eccentric eye positions in the dark. Vision

am(V) 5
(V 1 30)/10

1 2 exp[2(V 1 30)/10]
(28) Res. 13, 1021–1034.

Belknap, D.B., and McCrea, R.A. (1988). Anatomical connections of
bm(V) 5 4 exp[2(V 1 55)/18] (29) the prepositus and abducens nuclei in the squirrel monkey. J. Comp.

Neurol. 268, 13–28.φ21
h

dh
dt

5 ah(V)(1 2 h) 2 bh(V)h (30)
Ben-Yishai, R., Bar-Or, R.L., and Sompolinsky, H. (1995). Theory of

ah(V) 5 0.07 exp[2(V 1 44)/20] (31) orientation tuning in visual cortex. Proc. Nat. Acad. Sci. USA 92,
3844–3848.

bh(V) 5
1

exp[2(V 1 14)/10] 1 1
(32)

Camperi, M., and Wang, X.J. (1998). A model of visuospatial working
memory in prefrontal cortex: recurrent network and cellular bistabil-

gNa 5 100, VNa 5 55, φh 5 10. ity. J. Comput. Neurosci. 5, 383–405.
Delayed Rectifier Potassium Current IK. Cannon, S.C., and Robinson, D.A. (1985). An improved neural-net-

work model for the neural integrator of the oculomotor system: moreIK(V) 5 gKn4 (V 2 VK) (33)
realistic neuron behavior. Biol. Cybern. 53, 93–108.

φ21
n

dn
dt

5 an (V)(1 2 n) 2 bn(V)n (34) Cannon, S.C., and Robinson, D.A. (1987). Loss of the neural inte-
grator of the oculomotor system from brain stem lesions in monkey.
J. Neurophysiol. 57, 1383–1409.an(V) 5

(V 1 34)/100
1 2 exp[2(V 1 34)/10]

(35)

Cannon, S.C., Robinson, D.A., and Shamma, S. (1983). A proposed
neural network for the integrator of the oculomotor system. Biol.bn (V) 5

1
8

exp[ 2 (V 1 44)/80] (36)
Cybern. 49, 127–136.

Cheron, G., and Godaux, E. (1987). Disabling of the oculomotorgK 5 40, VK 5 280, φn 5 10.
neural integrator by kainic acid injections in the prepositus-vestibu-A-Type Potassium Current IA. The activation variable a is instanta-
lar complex of the cat. J. Physiol. 394, 267–290.neous, while the inactivation variable b has a relaxation time tb that

is independent of voltage. Cheron, G., Gillis, P., and Godaux, E. (1986a). Lesions in the cat



Conductance-Based Model of a Network Integrator
271

prepositus complex: effects on the optokinetic system. J. Physiol. medial vestibular nuclei on cat eye movements. J. Neurophysiol.
72, 785–802.372, 95–111.

Cheron, G., Godaux, E., Laune, J.M., and Vanderkelen, B. (1986b). Moschovakis, A.K. (1997). The neural integrators of the mammalian
saccadic system. Front. Biosci. 2, d552–d577.Lesions in the cat prepositus complex: effects on the vestibulo-

ocular reflex and saccades. J. Physiol. 372, 75–94. Pastor, A.M., de La Cruz, R.R., and Baker, R. (1994). Eye position
and eye velocity integrators reside in separate brainstem nuclei.du Lac, S., and Lisberger, S.G. (1995). Membrane and firing proper-

ties of avian medial vestibular nucleus neurons in vitro. J. Comp. Proc. Natl. Acad. Sci. USA 91, 807–811.
Physiol. [A] 176, 641–651. Rinzel, J., and Frankel, P. (1992). Activity patterns of a slow synapse

network predicted by explicitly averaging spike dynamics. NeuralErmentrout, B. (1994). Reduction of conductance-based models
with slow synapses to neural nets. Neural Comput. 6, 679–695. Comput. 4, 534–545.

Ermentrout, B. (1998a). Linearization of f-i curves by adaptation. Robinson, D.A. (1964). The mechanics of human saccadic eye move-
Neural Comput. 10, 1721–1729. ment. J. Physiol. 174, 245–264.

Ermentrout, B. (1998b). Neural networks as spatio-temporal pattern- Robinson, D.A. (1989). Integrating with neurons. Annu. Rev. Neu-
forming systems. Rep. Prog. Phys. 61, 353–430. rosci. 12, 33–45.

Escudero, M., and Delgado-Garcia, J.M. (1988). Behavior of reticu- Rosen, M.J. (1972). A theoretical neural integrator. IEEE Trans.
lar, vestibular and prepositus neurons terminating in the abducens Biomed. Engin. 19, 362–367.
nucleus of the alert cat. Exp. Brain Res. 71, 218–222. Sanders, J.A., and Verhulst, F. (1985). Averaging Methods in Nonlin-
Escudero, M., de la Cruz, R.R., and Delgado-Garcia, J.M. (1992). A ear Dynamical Systems: Applied Mathematical Sciences (New York:
physiological study of vestibular and prepositus hypoglossi neu- Springer-Verlag).
rones projecting to the abducens nucleus in the alert cat. J. Physiol. Scudder, C.A., and Fuchs, A.F. (1992). Physiological and behavioral
458, 539–560. identification of vestibular nucleus neurons mediating the horizontal
Fuster, J.M. (1995). Memory in the Cerebral Cortex (Cambridge, MA: vestibuloocular reflex in trained rhesus monkeys. J. Neurophysiol.
MIT Press). 68, 244–264.
Galiana, H.L., and Outerbridge, J.S. (1984). A bilateral model for Serafin, M., Waele, C.D., Khateb, A., Vidal, P.P., and Muhlethaler,
central neural pathways in vestibuloocular reflex. J. Neurophysiol. M. (1991). Medial vestibular nucleus in the guinea-pig. I. Intrinsic
51, 210–241. membrane properties in brainstem slices. Exp. Brain Res. 84,

417–425.Godaux, E., Cheron, G., and Gravis, F. (1989). Eye movements
evoked by microstimulations in the brainstem of the alert cat. Exp. Seung, H.S. (1996). How the brain keeps the eyes still. Proc. Natl.
Brain Res. 77, 94–102. Acad. Sci. USA 93, 13339–13344.
Godaux, E., Mettens, P., and Cheron, G. (1993). Differential effect Seung, H.S., Lee, D.D., Reis, B.Y., and Tank, D.W. (2000). The au-
of injections of kainic acid into the prepositus and vestibular nuclei tapse: a simple illustration of short-term analog memory storage by
of the cat. J. Physiol. 472, 459–482. tuned synaptic feedback. J. Comput. Neurosci., in press.
Grossberg, S. (1988). Nonlinear neural networks: principles, mecha- Spencer, R.F., Wenthold, R.J., and Baker, R. (1989). Evidence for
nisms, and architectures. Neural Networks 1, 17–61. glycine as an inhibitory neurotransmitter of vestibular, reticular, and
Hess, K., Reisine, H., and Dursteler, M. (1985). Normal eye drift prepositus hypoglossi neurons that project to the cat abducens
and saccadic drift correction in darkness. Neuroophthalmology 5, nucleus. J. Neurosci. 9, 2718–2736.
247–252. Straube, A., Kurzan, R., and Büttner, U. (1991). Differential effects
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