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1. INTRODUCTION

This paper is concerned with the following one-phase Stefan problem:

Lu=u, —u, =0, in 0 <x<s(),0 <t LT, (1.1)
u,(0, t) = H(2), 0<t<T, (1.2)
u(x, 0) = D(x), 0<x<<h (1.3)
u(s(2), 1) =0, 0<t<T,s0)=5b>0 (14

and
$(t) = — u,(s(2), ), 0<t<T, (L.5)

where T is an arbitrarily fixed positive number.

As is well known, the problem (1.1)-(1.5) is a mathematical description for
the unidimensional heat conduction in a plane infinite slab of homogeneous
thermally isotropic material with a phase occurring at one limiting plane and
the thermal flux prescribed on the other.

For sake of simplicity, in writing down (1.1)-(1.5) we choose a system of
variables such that the thermal coefficients (conductivity, heat capacity,
density, latent heat) disappear.

* This research was supported in part by the National Science Foundation Contract
G.P. 15724 and the NATO Senior Fellowship program.
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Problems of this type have been considered by various authors [1, 6, 7, 9,
10, 11, 12, 13]. Our discussion of this problem applies the maximum principle
as the major tool in a constructive existence proof via the method of retarding
the argument in the free boundary condition (1.5). Hence, existence is
obtained under minimal smoothness assumptions upon the data. In the follow-
ing sections we shall discuss existence (global), uniqueness, stability, mono-
tone dependence, and the asymptotic behavior of the solution of (1.1)-(L.5).
The techniques used and the results obtained are similar to those in [2, 3,
4, 5].

The assumptions we shall require on the Stefan data are as follows:

(A) H(2) is a bounded piecewise continuous nonpositive function;

(B) D(x) is a piecewise continuous function suck that:
0 << P(x) <L(b — x).

Obviously, the assumption (B) on the Lipschitz continuity of @(x) near
x = b has a significance only in the case b > 0.

The assumption on the sign of H(¢) means that heat is entering the region,
so that, for each ¢ there is only one phase, say the liquid one (of course, the
same reasoning holds if @(x) < 0 and H(¢) = 0).

We make the following definitions:

DerFiNiTION 1. We say that a real-valued function u(x, 1) is a solution of
the auxiliary problem (1.1)-(1.4) for a given real-valued function s(t) (s(t) > 0),
if:

(@) Ugpand u,€C, up =u,, 0 <x <s(2), 0 <t < T;

(b) ueCin 0 << x <s(2), 0 <<z <CT except at points of discontinuity
of D(x);

(c) u(x, 0) = P@(x) at points of continuity of P(x) and

0 < lim u(x, £) < lim u(x, ) < 00
t-=0 t->0
at points of discontinuity;
(d) lim,,, u,(x, t) = H(t) at points of continuity of H and

0 < lim | uy(x, £)] < Tim | u,(x, #)] < oo
20 x>0

at points of discontinuity.
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DeFINITION 2. By a solution of the given Stefan Problem (1.1)-(1.5) we
mean a pair of real-valued functions (s(2), u(x, t)), such that s(0) = &, and for
Q<t<T:

1) s(t)eCLs(t) >0;¢t>0;

(ii) u(x, t) is the solution of the corresponding auxiliary problem;

(1) u,(s(2), t) exists and is continuous;

(iv) (1.5) 1s satisfied.

It is well known that (see [8, 2]), if s(¢) is Holder continuous with Holder
coefficient > 1, if (A) and (B) are satisfied and if & > 0, the auxiliary problem
has a unique solution.

We state a useful result concerning the reformulation of the free boundary
condition (1.5).

LemMa 1. Under assumptions (A) and (B), if s(¢) s a Lipschitz continuous
Junction for 0 <t <C T, then condition (1.5) is equivalent to:

d0:b+K¢deiﬁMﬂh~f?MM0M. (1.6)

Proof. Suppose (u, s) is a solution of (1.1)-(1.5) and integrate (1.1) over
its domain of validity; using (1.2)-(1.5), (1.6) follows directly.

Suppose conversely that (u, s) satisfies (1.1)-(1.4) and (1.6); by differentiat-
ing (1.6), (1.5) follows directly if u,(s(?), t) exists and is continuous for
0 <<t << 7. But this last assumption is guaranteed by Lemma 1 of [2]; con-
sequently Lemma 1 is proved.

2. ExistENCE (b > 0)

First, we need:

LemmA 2. Under the assumptions (A) and (B), let s(t) be a Lipschitz con-
tinuous, monotonic nondecreasing function, and define

A= max{tg[}f)T(] | H()|, L}. 2.1

Then the solution u(x, t) of the corresponding auxiliary problem is such that

— A < uy(s(t), t) <O. 2.2)
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Proof. Let us prove (2.2) for each fixed instant ¢, . First note that, from
the maximum principle, it follows that u(x, ) is non-negative and since
u(s(t), t) = O the second inequality in (2.2) is proved. For each ¢, € [0, T
consider the function

o(x, t) = A(s(t,) — x) — u(x, 1)
for 0 <t < ¢y, 0 < < s(2). Clearly,
Lv=v, —v,=0,
00,8) = — A — H(@) <0 by (2.1) and (A),
o(s(t), t) = A(s(ty) — s(t)) =0 by the monotonicity of s(z),
o(x, 0) = A(s(ty) — x) — D(x) >0 by (2.1) and (B).

Hence, by the maximum principle, o(x, £} > 0 in its domain of definition.
Since v(s(t,) 1) = 0, it follows that v,(s(z,) #,) << 0 which implies (2.2) for
each t, and completes the proof of the Lemma.

Next, we will apply the retarded argument technique to construct the
solution of the given problem. For each 8 € (0, b), let us define

= P(x), for 0<ae<b—18
6,
D) 1o, for b—0<x<b,

and find the solution #%(x, #) of the auxiliary problem (1.1)-(1.4), where ®(x)
is replaced by @%(x), s(t) is replaced by s%(¢) = b, and T by 6. In this case it is
easy to show that u,2(b, t) = u,(s%(¢), t) exists and is continuous in {0, 6]
and that by Lemma 2 we have — 4 < #,%(s%(¢), ¢) < 0. In the second time-
interval § <C ¢ < 20 let us define:

() = b — f : 4,5 — 6), r — 0) dr 2.3)

and solve the auxiliary problem for this choice of s%(t); these are the first steps
of an inductive process that we can perform for each 8, 0 < § < b. We prove
the following result.

Lemma 3. For each 0 (0, b), there exists a solution (s, u°) of (1.1)-(1.4)
where D(x) = D(x). The function s°(t) is equal to b in t € [0, 0], satisfies (2.3)
tnte[6, T] and is Cin [0, T). Moreover,

0 < () < A. 2.4)

Proof. Suppose that by the method given above we have constructed a
pair (s%, uf) for 0 <C £ <C nf. Assume that s%(¢) € C* and & > 0. By Lemma 1
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of [2], u,%(s%(t), t) exists, is continuous and satisfies (2.2). Suppose finally that
(5%, uf) satisfy (2.3) for O < ¢ <{ nf. In the next step nf <<t < (n + 1) 9, let
us define s® by (2.3) and solve the auxiliary problem until £ = (n 4- 1) 6. By
the hypothesis on #,(s%(2), t) in [0, n6], °(¢) is C* in [n8, (n 4 1) 6] and satisfies
(2.4). Hence, u,%(s%(t), t) is continuous in the same time interval and, by
Lemma 2, satisfies (2.2).

We can now prove the main result of this section.

TrEOREM 1. Under the assumptions (A) and (B), there exists a solution
(s, u) for the Stefan problem (1.1)-(1.5) when b > Q. The free boundary is C* in
(0, T, is monotonically nondecreasing and satisfies :

0<sty<<d foro<t < T, (2.5)

where A is defined by (2.1).

Proof. By (2.4), the functions s%(¢) form an equicontinuous, uniformly
bounded family. Hence Ascoli-Arzela’s theorem holds and we can select a
subsequence s%¢) that converges uniformly to a monotonic Lipschitz continu-
ous function s() as  tends to zero. Let u(x, t) be the unique solution of the
auxiliary problem with that choice of 5. It is easy to show that, given any e > 0,
it is possible to find a 6* such that, for all 8 < 0% | Wf(x, 1) — u(x, 1)} < e.
Indeed consider the difference #9 — # = w in the region

0 < » < max(s%(¢), s(2)), 0t <17,

(where the two functions are extended by setting them identically zero outside
their domain of definition). Since w,(0, t) = 0, we can reflect the domain of
definition about the line ¥ = 0. Then, the maximum principle gives:

| ¥, 1) — u(x, 1)) < max{sup | @ — D |, || us(r), 7)l¢ , || u(s%(7), 7)lichs

where for any function f = f (&)

I flle = oiggtlf(f)l-

By the continuity of #° and u the right side of the inequality can be made
less than ¢, provided §* is chosen such that | s%(t) — s(¢)| is sufficiently small.
So we have shown that the subsequence #?, corresponding to the s? tending to
s, converges uniformly to u. In order to prove that (s, %) is a solution of the
Stefan problem, we must prove (i), (iii), (iv) of the Definition 2; (iii) follows
directly by the Lipschitz continuity of s(¢). By Lemma 1 in order to prove (iv)

409/35/2-9
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it suffices to prove that (s, «) satisfies (1.6). Integrating (1.1) over its domain
of definition, it is easy to see

> t s8(t)
Ot - 0) = b+ f O(x) dx — f H(z)dr — f () d.
[

Taking the limit as 8 tends to zero it follows from the uniform convergence
of s to s, of @? to @ and of # to u that (s, #) satisfies (1.6). Consequently (iv)
is demonstrated and (i) follows directly by (1.5).

3. StaBILITY AND UNIQUENESS (b = 0)
TueoreM 2. If (s;, u;) ¢ a solution of (1.1)-(1.5) for data H{t), D(x),

b; (2 = 1, 2) satisfying assumptions (A) and (B) by == by == 0, then there exists a
constant C = C(A4, T) such that :

by by
|00 = @) < C|1b—bol + [ 194() — Pl dv + [ | P(o)] e

i f:|Hl(T) —Hyn)d,  te[o, T]. (3.1)

Proof. 'The proof is given in [1] and will not be repeated here.

THEOREM 3. Under the assumptions (A) and (B), the solution to the Stefan
problem (1.1)-(1.5) with b = 0 is unique.

Proof. Theorem 3 is an immediate corollary of Theorem 2.

4. Ex1sTENCE (b = 0)

THEOREM 4. Under assumptions (A) and (B), there exists a solution (s, u)
to the Stefan problem (1.1)-(1.5) when b = 0. The free boundary is C* in (0, T,
is monotonically nondecreasing and satisfies (2.5).

Proof. Foreach 0 << b < by let (s?, u°) be the unique solution of the Stefan
Problem (1.1)-(1.5) with @(x) = 0. Note that the proof of Lemma 2 and
the constant A are independent on b. Hence, we have: 0 < $°(t) << 4 for
0 <t < T and b € (0, by). Consequently, the functions s?(t) form an equi-
continuous, uniformly bounded family. Choose a sequence of &’s tending
to zero and apply the Ascoli-Arzela Theorem to obtain an subsequence s
converging uniformly to s. Let u(x, ¢) be the unique solution of the auxiliary
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problem (1.1)-(1.4) for such a choice of s. With the same argument used in
Theorem 1, one can show that #*(x, #) converges uniformly to u(x, ¢). More-
over, from (1.6) for each b we have

sP(t) t
() = b — j (%, t) dx — f H(r) dr,
0 0

and from the uniform convergence of {s®(¢)} and {u’(x, t)}, we obtain that
(s, u) satisfies (1.6). Since s(¢) is a Lipschitz continuous function it follows
that #,(s(), t) exists and is continuous for # > 0. Consequently condition (iii)
of Definition 2 is fulfilled. Since Lemma 1 applies, (iv) and (i) are satisfied.
Since (ii) follows from the definition of u(x, ¢), the existence of a solution
is proved.

5. MoNoTONE DEPENDENCE (b == 0)

Consider two sets {H(t), Px), b} i =1,2 of Stefan data satisfving
assumptions (A) and (B). Theorem 1, 3 and 4 state the existence of an unique
solution (s; , #;) to each one of the two problems. We shall prove the following
result.

'THEOREM 5. Under the above assumptions, if

0<b <b,, D, < D,, H, > H,
then
5(2) < sl0) (5.1)
Proof. Consider first the case 0 <C b, < b, . We shall show that s;(2) <C s,(2).
If not, then there exists a first time ¢, such that

s1(to) = sa(to) and $1(te) = $o(t)- (52)
Consider the difference u(x, ) — uy(x, ) in 0 < & < 5y(8), 0 < # < ¢, . By
the maximum principle we have u,(x, t) — u,(x, t) < 0. Since
uy(s1(to), o) — us(s1{ty), ) =0,
14(81(to), fo) — Usa(8:(to), f0) > 0,
or §,(2y) << $x(t,). For the case b, = b, > 0, we define b8 = b, + 8 = b, - 8

and construct the solution (s,%, #,°) to the Stefan problem with data H,,
b,® and @,° where:
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By the previous argument, 5,° > s; , but, the stability theorem implies that
$5%(t) converges uniformly to s,(z) as § tends to zero. Hence, (5.1) is proved.

6. AsYMPTOTIC BEHAVIOR

Throughout this section we shall be concerned with the asymptotic
behavior of the free boundary x = s(¢) of the Stefan problem (1.1)-(1.5) as
t — 4+ oo. Under the assumptions (A) and (B), we have the existence and
uniqueness of the solution in either case b > 0 or & = 0.

TrEOREM 6. If

t
lim H('r) dr = — 0,
0

t>00

then
i ) = +oo.
If
1%:Hmm:—ﬂ 0<F < +oo,
then

@mg:b+fﬂ@m+F54 6.1)
>0 0

Proof. Consider first the case of H(¢) with compact support, i.e. suppose
H(t) = 0 for each ¢ > 2.
From (1.6) we have

s(t)
qoza—f u(x, 1) dx (6.2)

fort > 2.

By the maximum principle, u#(x, t) is- dominated by y,(x, t) + yu(x, ),
where y, and y, solve the heat equation in the half-space x > 0 with the
following conditions:

D(x), O0<x<h,

w0 =" PSIS 0 =0; (63)

and
¥a(x, 0) =0, 5240, ) = H(¢);
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respectively. But for t > 2|

Y 1) = ¢ f) [~ E“-;t—g)z] d¢ < bt/ max & (6.3)

and

Yolx, 1) == f \/ (T) [ Z(chi_r_)] dr < " HHE{\/t—_ V1 —(ji,)

From (6.4') and (6.3') we find that lim,_, #(x, t) = 0 and (6.1) is proved in
the case of H(t) with compact support.
For general H(t), set

H() 0<<t<n
(n) — ’
H™() = 0, n<t

and define the corresponding /™ and s*. Now lim,,,, s"™(¢) = 45™. Since
H, > H, it follows from Theorem 5 that s™(¢) < s(¢). But, from (1.6),
s(f) < £, . Hence,

£ = lim s)(t) < lim s(¢) < Tim s(8) <

Now, let # — co. Since 4™ — £, , the proof of Theorem 6 is complete.
Next, we shall perform a deeper analysis of the behavior of s(2) in the case
lim,.,, s(t) = oo. First we prove the following result.

THEOREM 7. Assume lim,_ j(t, H(7)dr = — oo and consider the solution
(s, u) of the given problem and the solution (o, v) of the Stefan problem

Ly =0, 0 <x<o(t), t, <<t < oo,
2,0, 1) = H(t), o(ty)) =0, t, <t 65)
o(o(t), ) = 0, '
&(t) = —uv,(a(t), t), fy < L
Then, as t — o0,
st) 1
=10 (@) (6.6)

which implies in particular that s(t) ~ o(t).
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Proof. From the monotone dependence it follows o(t) < s(2); and from
the maximum principle we have o(x, £) < u(x, £). Now,

sttg) £ 8(¢)
o(t) < s(t) = s(te) + f u(, t,) dx — f H(z) dr — f w(x, £) dx
0 t 0
s(y)
< oft) + s(t) + f u(x, 1) dx.
0
Hence,
s(t) s(ty)

LSt ot + [ uleto de

or, ie.,

;—((%.—.1+0(0~zt—)).

Next we demonstrate the following result.

TuroreM 8. If (s, u) is the solution of the given Stefan problem and if

(©) lim — f "Hir)dr =

i-c0 0
and

tHE)
® i [, 2 =0
then

t
s(t) ~ — j H@)dr (6.7)

as t— 0.

Proof. Consider o(t) as defined by (6.5) with £, = 0. We have
17 a(t) 1
— f H(r)dr — f Yo, 1) dx < ot) < — j H(r)dr,  (6.8)
0 0 0

where y,(x, £) is defined by (6.4) and (6.4'). From the first inequality in (6.8)
we get

_f:H(T)dT < oft) |1 +cj:‘—%’l_[—‘ildf§, (6.9)
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where ¢ is a positive constant. Hence, the result follows immediately from (C)
and (D).

Remark. 'The condition (C) and (D) are not contradictory. They express
the delicate area where the total energy input (C) is infinite and yet the
boundary temperature tends to zero as ¢ — 00. As an example, consider

-1, 0< <,
H(t) = —le 1 <t < oo
An elementary quadrature yields
¢ | H(z)| dr 1 l—\/l——l/t| 1
= — —=log| —————=—=| + 0 |—=).
fo Vi — 1 Vi ¢ 14+ V1 -+ 1/t (\/t)
Other examples are
—1, 0«1,
H(t) = | 1
— 1 <t < oo, §<‘)/<1

The details are left to the reader.
Next, we study some particular cases in which

i
lim _H()

bR JoVE— 1T

dr # 0.

THEOREM 9. Let (s, u) be the solution of the given Stefan problem. If

H(t) ~ — cexp[ct], ¢ >0, (6.10)
then
s(2) ~ct. (6.11)
And i,
Mo § EoTE e
then

st) ~ct. a1 (6.13)
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Proof. It is known that the formula [4, p. 434]

o, 1) = é (2—2),% [ — s(e) (6.14)

provides, whenever it makes sense, an explicit solution to the inverse Stefan
problem. Consequently the asymptotic behavior of H(#) corresponding to
(6.11) can easily be found:

w0

2,0,2) = — z_:l (2;2 i 2n — 1)(2n — 2) -+ (n) - 1™ = ¢ exp[c¥H]

Conversely, it is easy to prove that an asymptotic behavior like (6.10) generates
a solution whose boundary satisfies (6.11). The application of the same
method provides the proof of the second statement of the Theorem. Details
are omitted, as well as special cases of (6.12), as for example « = % in which

. ¢ H(7)
lim | —21=
o Joat — 7

> —,

i.e. the boundary temperature is asymptotically finite (but not equal to zero)
and the s(¢) goes to infinity approaching a parabola.

7. REGULARITY OF THE BOUNDARY
For the case that b > 0 and @(x) == 0, we can state the following result.

Treorem 10.  The free boundary s is infinitely differentiable if b > 0 and
D(x) = 0.

Proof. The techniques of [5] can easily be applied to yield the results of
the theorem.
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