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1. INTRODUCTION 

This paper is concerned with the following one-phase Stefan problem: 

Lu = 24,. - Ut = 0, in 0 < x < s(t), 0 < t d T, (1.1) 

u.40, t) = fqt), O<t<TT; (1.2) 

4% 0) = @p(x), O<x<b, (1.3) 

UW), 4 = 0, 0 < t < T, s(O) = b > 0, (1.4) 

i(t) = - %(S@>, 4, 0 < t -< T, (1.5) 

where T is an arbitrarily fixed positive number. 
As is well known, the problem (l.l)-(1.5) is a mathematical description for 

the unidimensional heat conduction in a plane infinite slab of homogeneous 
thermally isotropic material with a phase occurring at one limiting plane and 
the thermal flux prescribed on the other. 

For sake of simplicity, in writing down (1. l)-( 1.5) we choose a system of 
variables such that the thermal coefficients (conductivity, heat capacity, 
density, latent heat) disappear. 

* This research was supported in part by the National Science Foundation Contract 
G.P. 15724 and the NATO Senior Fellowship program. 
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Problems of this type have been considered by various authors [l, 6, 7, 9, 
10, 11, 12, 131. Our discussion of this problem applies the maximum principle 
as the major tool in a constructive existence proof via the method of retarding 
the argument in the free boundary condition (1.5). Hence, existence is 
obtained under minimal smoothness assumptions upon the data. In the follow- 
ing sections we shall discuss existence (global), uniqueness, stability, mono- 
tone dependence, and the asymptotic behavior of the solution of (l.l)-(1.5). 
The techniques used and the results obtained are similar to those in [2, 3, 
4, 51. 

The assumptions we shall require on the Stefan data are as follows: 

(A) H(t) is a bounded piecewise continuous nonpositive function; 

(B) Q(x) is a piecewise continuous function such that: 

0 < CD(X) <L(b - x). 

Obviously, the assumption (B) on the Lipschitz continuity of a(x) near 
x = b has a significance only in the case b > 0. 

The assumption on the sign of H(t) means that heat is entering the region, 
so that, for each t there is only one phase, say the liquid one (of course, the 
same reasoning holds if a(x) < 0 and H(t) 3 0). 

We make the following definitions: 

DEFINITION 1. We say that a real-valued function u(x, t) is a solution of 
the auxiliary problem (1. I)-( 1.4) f or a g iven real-valued function s(t) (s(t) > 0), 
if: 

(4 u,, and ut E C, u,, = ut , 0 < x < s(t), 0 < t < T; 

(b) u E C in 0 < x < s(t), 0 < t < T except at points of discontinuity 
of Q(x); 

(c) u(x, 0) = Q(x) at points of continuity of D(x) and 

0 < lim u(x, t) < iii% u(x, t) < co 
t+0 t-10 

at points of discontinuity; 

(4 lim,, 2 u (x, t) = H(t) at points of continuity of H and 

at points of discontinuity. 
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DEFINITION 2. By a solution of the given Stefan Problem (l.l)-(1.5) we 
mean a pair of real-valued functions (s(t), u(x, t)), such that s(O) = b, and for 
O<t<T: 

(i) s(t) E Cl, s(t) > 0; t > 0; 

(ii) U(X, t) is the solution of the corresponding auxiliary problem; 

(iii) uJs(t), t) exists and is continuous; 

(iv) (1.5) is satisfied. 

It is well known that (see [8, 2]), if s(t) is Holder continuous with Holder 
coefficient > 1, if (A) and (B) are satisfied and if b 3 0, the auxiliary problem 
has a unique solution. 

We state a useful result concerning the reformulation of the free boundary 
condition (1.5). 

LEMMA 1. Under assumptions (A) and (B), if s(t) is a Lipschitz continuous 
function for 0 < t < T, then condition (1.5) is equivalent to: 

s(t) = b + 1; CD(X) dx - 1; H(T) dT - ,I’“’ u(x, t) dx. U-6) 

Proof. Suppose (u, s) is a solution of (l.l)-(1.5) and integrate (1.1) over 
its domain of validity; using (1.2)-( 1.5), (1.6) follows directly. 

Suppose conversely that (u, s) satisfies (1 .l)-(1.4) and (1.6); by differentiat- 
ing (1.6), (1.5) follows directly if u%(s(t), t) exists and is continuous for 
0 < t < T. But this last assumption is guaranteed by Lemma 1 of [2]; con- 
sequently Lemma 1 is proved. 

2. EXISTENCE (b > 0) 

First, we need: 

LEMMA 2. Under the assumptions (A) and (B), let s(t) be a Lipschitx con- 
tinuous, monotonic nondecreasing function, and define 

A = max&a~, I Wt)l, Ll. (2.1) 

Then the solution u(x, t) of the corresponding auxiliary problem is such that 

- A < z&(s(t), t) < 0. (2.2) 
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Proof. Let us prove (2.2) for each fixed instant t,, . First note that, from 
the maximum principle, it follows that 11(x, t) is non-negative and since 
u(s(t), t) = 0 the second inequality in (2.2) is proved. For each to E [0, T] 
consider the function 

v(x, t) = A(&) - x) - u(x, t) 

for 0 < t < to , 0 < x < s(t). Clearly, 

Lv 3 v,, - vt = 0, 

~(0, t) = - A - H(t) < 0 by (2.1) and (A), 

v(s(t>, t) = A(+,) - s(t)) B 0 by the monotonicity of s(t), 

v(x, 0) = A(&) - x) - CD(x) 3 0 by (2.1) and (B). 

Hence, by the maximum principle, v(x, t) > 0 in its domain of definition. 
Since v(s(t,) to) = 0, it follows that v,(s(t,) to) < 0 which implies (2.2) for 
each to and completes the proof of the Lemma. 

Next, we will apply the retarded argument technique to construct the 
solution of the given problem. For each ti E (0, b), let us define 

CD”(x) 1 z y for O<x<b--8 
for b - 0 < x < b, 

and find the solution 18(x, t) of the auxiliary problem (l.l)-(1.4), where @P(X) 
is replaced by P(X), s(t) is replaced by s”(t) = b, and T by 8. In this case it is 
easy to show that ~,~(b, t) = u&s”(t), t) exists and is continuous in [0, 01 
and that by Lemma 2 we have - A < uze(se(t), t) < 0. In the second time- 
interval t9 < t < 28 let us define: 

I 
t 

se(t) = b - ~,ep(~ - e), T - e) dT (2.3) e 

and solve the auxiliary problem for this choice of s”(t); these are the first steps 
of an inductive process that we can perform for each 0,O < 8 < b. We prove 
the following result. 

LEMMA 3. For each 6’ E (0, b), there exists a sol&ion (se, ue) of (l.l)-(1.4) 
where Q(x) = Qe(x). The function se(t) is equal to b in t E [0, 01, satisfies (2.3) 
in t E [O, T] and is Cl in [0, T]. Moreover, 

0 < Se(t) < A. (2.4) 

Proof. Suppose that by the method given above we have constructed a 
pair (se, ue) for 0 < t < no. Assume that s@(t) E c1 and Se > 0. By Lemma 1 
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of PI, he(@), q exists, is continuous and satisfies (2.2). Suppose finally that 
(9, u”) satisfy (2.3) for 0 < t < no. In the next step no < t < (n + 1) 0, let 
us define se by (2.3) and solve the auxiliary problem until t = (rz + 1) 8. By 
the hypothesis on uo(Se(t), t) in [O, n6], se(t) is Cl in [no, (n + 1) 01 and satisfies 
(2.4). Hence, uZe(se(t), t) is continuous in the same time interval and, by 
Lemma 2, satisfies (2.2). 

We can now prove the main result of this section. 

THEOREM 1. Under the assumptions (A) and (B), there exists a solution 
(s, u) for the Stefun probEem (1 .l)-( 1 S) when b > 0. The free boundary is Cl in 
(0, T], is monotonically nondecreasing and satisjies: 

o < t(t) < A for 0 < t < T, (2-5) 

where A is defined by (2.1). 

Proof, By (2.4), the functions s”(t) form an equicontinuous, uniformly 
bounded family. Hence Ascoli-Arzela’s theorem holds and we can select a 
subsequence se(t) that converges uniformly to a monotonic Lipschitz continu- 
ous function s(t) as 0 tends to zero. Let U(X, t) be the unique solution of the 
auxiliary problem with that choice of s. It is easy to show that, given any E > 0, 
it is possible to find a 8* such that, for all 0 < 0* / z/(x, t) - u(x, t)l <; E. 
Indeed consider the difference ue - u = w in the region 

0 < x < max(se(t), s(t)), O<t<T, 

(where the two functions are extended by setting them identically zero outside 
their domain of definition). Since w&O, t) = 0, we can reflect the domain of 
definition about the line x = 0. Then, the maximum principle gives: 

I US@, t) - u(x, t>l < maxhp I Qe - @ I , II ~~(4~1, 41t , II u(se(4 TM 

where for any function f = f (t) 

By the continuity of Us and u the right side of the inequality can be made 
less than E, provided 0* is chosen such that 1 se(t) - s(t)1 is sufficiently small. 
So we have shown that the subsequence us, corresponding to the se tending to 
s, converges uniformly to u. In order to prove that (s, u) is a solution of the 
Stefan problem, we must prove (i), (iii), (iv) of the Definition 2; (iii) follows 
directly by the Lipschitz continuity of s(t). By Lemma 1 in order to prove (iv) 

409/35/=9 
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it suffices to prove that (s, U) satisfies (1.6). Integrating (1.1) over its domain 
of definition, it is easy to see 

s@(t + 0) = b + j”, Q”(x) dx - j: H(T) d7 - jr”’ uB(x, t) dx. 

Taking the limit as 0 tends to zero it follows from the uniform convergence 
of se to s, of @s to @ and of ue to u that (s, u) satisfies (1.6). Consequently (iv) 
is demonstrated and (i) follows directly by (1.5). 

3. STABILITY AND UNIQUENESS (b 2 0) 

THEOREM 2. If (si , ,) u. is a solution of (1. I)-(1.5) for data H,(t), Qi(x), 
bi(i=1,2) tfy g sa is in assumptions (A) and (B) b, 3 6, 3 0, then there exists a 
constant C = C(A, T) such that: 

I sl(t> - s&)1 < C 1 I b, - b, I + jb’ I @l(x) - @z(x)l dx + j:: I W4 dx 
0 

(3.1) 

Proof. The proof is given in [l] and will not be repeated here. 

THEOREM 3. Under the assumptions (A) and (B), the solution to the Stefan 
problem (1 .l)-( 1.5) with b > 0 is unique. 

Proof. Theorem 3 is an immediate corollary of Theorem 2. 

4. EXISTENCE (b = 0) 

THEOREM 4. Under assumptions (A) and (B), there exists a solution (s, u) 
to the Stefun problem (l.l)-( I .5) when b = 0. The free boundary is Cl in (0, T], 
is monotonically nondecreasing and satisJies (2.5). 

Proof. For each 0 < b < b, let (sb, u”) be the unique solution of the Stefan 
Problem (1.1)-( 1.5) with a(x) = 0. Note that the proof of Lemma 2 and 
the constant A are independent on b. Hence, we have: 0 < Sb(t) < A for 
0 < t < T and b E (0, b,). Consequently, the functions sb(t) form an equi- 
continuous, uniformly bounded family. Choose a sequence of b’s tending 
to zero and apply the Ascoli-Arzela Theorem to obtain an subsequence sb 
converging uniformly to s. Let u(x, t) be the unique solution of the auxiliary 
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problem (l.l)-(1.4) f or such a choice of s. With the same argument used in 
Theorem 1, one can show that z@(x, t) converges uniformly to U(X, t). More- 
over, from (1.6) for each b we have 

s s”(t) 9(t) = b - ub(x, t) dx - t H(T) d7, 
0 s 0 

and from the uniform convergence of {s”(t)> and (~~(2, t)}, we obtain that 
(s, U) satisfies (1.6). Since s(t) is a Lipschitz continuous function it follows 
that u=(s(~), t) exists and is continuous for t > 0. Consequently condition (iii) 
of Definition 2 is fulfilled. Since Lemma 1 applies, (iv) and (i) are satisfied. 
Since (ii) follows from the definition of U(X, t), the existence of a solution 
is proved. 

5. MONOTONE DEPENDENCE (b >, 0) 

Consider two sets {H,(t), Qi(x), bi} i = 1, 2 of Stefan data satisfying 
assumptions (A) and (B). Theorem I, 3 and 4 state the existence of an unique 
solution (si , ui) to each one of the two problems. We shall prove the following 
result. 

THEOREM 5. Under the above assumptions, if 

0 < b, < b, , @I G @z 7 f4 2 4 

then 

s1(t) < s&>. (5.1) 

Proof. Consider first the case 0 < b, < b, . We shall show that sl(t) < s2(t). 
If not, then there exists a first time to such that 

s&o) = S&o) and Go) 2 ~dto). (5.2) 

Consider the difference u,(x, t) - u2(x, t) in 0 < x < sl(t), 0 < t < to . By 
the maximum principle we have u,(x, t) - u~(x, t) < 0. Since 

~l(~l(to)~ to> - %WO)> to) = 0, 

%Mto), to) - %?rMto), to) > 0, 

or S,(t,) < S,(t,). For the case b, = b, > 0, we define b,* = b, + 6 = 6, + 6 
and construct the solution (s a*, ~a”) to the Stefan problem with data H, , 
bS6 and ‘Ibzs where: 

0 < x < b, = b, ; 
b, < x < 6, + 6. 
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By the previous argument, ss6 > s, , but, the stability theorem implies that 
sss(t) converges uniformly to ss(t) as 6 tends to zero. Hence, (5.1) is proved. 

6. ASYMPTOTIC BEHAVIOR 

Throughout this section we shall be concerned with the asymptotic 
behavior of the free boundary x = s(t) of the Stefan problem (l.l)-(1.5) as 
t -+ + cc. Under the assumptions (A) and (B), we have the existence and 
uniqueness of the solution in either case b > 0 or b = 0. 

THEOREM 6. If 

then 

If 

‘tiir 1” H(T) d7 = -co, 
0 

liIiIs(t) = +co. 

then 

lim 
s 

t H(T) d7 = -F, 
t-x o O<F<+co, 

li+is(t) =b++SP@(x)dx+F=lo (6.1) 
0 

Proof. Consider first the case of H(t) with compact support, i.e. suppose 
H(t) = 0 for each t > 2. 

From (1.6) we have 

s(t) = to - I:‘“’ u(x, t) dx (6.2) 

for t 2 Z. 
By the maximum principle, u(x, t) is dominated by yr(x, t) + ys(x, t), 

where yr and ys solve the heat equation in the half-space x > 0 with the 
following conditions: 

Y&9 0) = l;(xJv 
O<x<b, 
b<xxq Yl& 4 = 0; (6.3) 

and 

Y&9 0) = 0, ysx(O, t> = H(t); 
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respectively. But for t > 2, 

yl(x, t) == c Sr J$$ exp [ - (x - ?Y 4t ] d[ < cbt-r/a max @ (6.3’) 

and 

y2(x, t) =~== c’ 1: -$& exp [- &] dT < c” 11 H jlz{Z/t- v’tj. 

(6.4’) 

From (6.4’) and (6.3’) we find that lim,,, U(X, t) = 0 and (6.1) is proved in 
the case of H(t) with compact support. 

For general H(t), set 

and define the corresponding Ldn) and sfn). Now lim,, dn)(t) = tin). Since 
Ii, > H, it follows from Theorem 5 that W(t) < s(t). But, from (1.6) 
s(t) < to . Hence, 

P = lim s(“)(t) < lim s(t) < iii5 s(t) < 8, . 
0 t--x t+m t-=c 

Now, let n--f CO. Since &jnj --f to, the proof of Theorem 6 is complete. 
Next, we shall perform a deeper analysis of the behavior of s(t) in the case 

lb+, s(t) = co. First we prove the following result. 

THEOREM 7. Assume lim,,, $ H(T) dr = - CO and consider the solution 
(s, u) of the given problem and the solution (u, v) of the Stefan problem 

Lv = 0, 0 < x < a(t), to < t < co, 

v&t t) = H(t), u(t,) = 0, to < t 

44, t) = 0, 
(6.5) 

b(t) = -%c(u(t), t), to < t. 

Then, as t -+ CO, 

$$=l.,($)), (6.6) 

which implies in particular that s(t) N a(t). 
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Proof. From the monotone dependence it follows a(t) < s(t); and from 
the maximum principle we have V(X, t) < U(X, t). Now, 

u(t) < s(t) = s(to) + j,‘“’ u(x, to) dx - j;, H(T) dr - r:‘“’ u(x, t) dx 

< o(t) + s(t,) + ,:‘““’ u(x, to) dx. 

Hence, 

or, i.e., 

$j=1+0(-&). 

Next we demonstrate the following result. 

THEOREM 8. If (s, u) is the solution of the given Stefan problem and if 

(C) 

and 

‘,&ix - f H(T) dr = co 
0 

then 

s(t) - - 
s 

t H(T) dT 
0 

as t+cO. 

Proof. Consider o(t) as defined by (6.5) with to = 0. We have 

(6.7) 

- s” H(T) dT - j”“‘“’ yz(x, t) dx < u(t) < -1: H(T) dT, (6.8) 
0 0 

where y&x, t) is defined by (6.4) and (6.4’). F rom the first inequality in (6.8) 
we get 

(6.9) 
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where c is a positive constant. Hence, the result follows immediately from (C) 
and (D). 

Remark. The condition (C) and (D) are not contradictory. They express 
the delicate area where the total energy input (C) is infinite and yet the 
boundary temperature tends to zero as t + co. As an example, consider 

-1, 
l-9 

0<t<l, 
H(t) = -1 

t 
1<t<m. 

An elementary quadrature yields 

s t I ff(~)l dT -J- log 1 odt--d; 
Other examples are 

-1, 

i-- 

o<t<1, 
H(t) = 1 

ty ’ 1<t<oo, ;<,<1. 

The details are left to the reader. 
Next, we study some particular cases in which 

THEOREM 9. Let (s, u) be the solution of the given Stefan problem. If 

then 

And if, 

H(t) N - c exp[c2t], c > 0, (6.10) 

s(t) -ct. (6.11) 

H(t) 
O” +-lr(2na - cy + 1) ttnavn 

- -“-“nil F(2n) F(2ncr - 01 - n + 1) ’ (6.12) 

then 

s(t) - CP. 01 > g. (6.13) 
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Proof. It is known that the formula [4, p. 4341 

(6.14) 

provides, whenever it makes sense, an explicit solution to the inverse Stefan 
problem. Consequently the asymptotic behavior of H(t) corresponding to 
(6.11) can easily be found: 

w,(O, t) = - f C2n-1 
n=l (2n - l)! 

(2n - 1)(2n - 2) .-* (n) * P-l = c exp[&] 

Conversely, it is easy to prove that an asymptotic behavior like (6.10) generates 
a solution *hose boundary satisfies (6.11). The application of the same 
method provides the proof of the second statement of the Theorem. Details 
are omitted, as well as special cases of (6.12), as for example 01 = Q in which 

i.e. the boundary temperature is asymptotically finite (but not equal to zero) 
and the s(t) goes to infinity approaching a parabola. * 

7. REGULARITY OF THE BOUNDARY 

For the case that b > 0 and Q(x) 3 0, we can state the following result. 

THEOREM 10. The free boundary s is injinitely difSerentiable if b > 0 and 
qx> = 0. 

Proof. The techniques of [5] can easily be applied to yield the results of 
the theorem. 
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