
300 Adi Reoiews

Informationstheorie (Oldenbourg, 1960)) although the letter H has no relation to

the word entropy-a clear sign of Shannon’s respect for Boltzmann’s share in

information theory.

On page 180: Ortvay proposed an axiomatic method for the systems theory: the

same wrong line that McCulloch and Pitts pursued with their paper. Organic

structures-languages included-do not have axiomatic nature; a systems theory

cannot be built on such sharp logic (fuzzy logic is not much better). Logic and

mathematical models must be included, but their interconnection has to be open

or loose if the true idea of organization is to be modelled.

On page 186: A.D. Booth was not only a cristallographer; returned to England,

he started to develop computers for exactly this purpose-a relationship that would

deserve deeper investigation.

On page 187: Heinz von Foerster was charged by W.S. Culloch to edit the printed

second half of the symposia (6.. . 10). Von Foerster followed A. Samuel in the chair

for electronics at the University of Illinois in Urbana and in a certain way he

continued John von Neumann’s work on the brain and the computer.

On page 200: Multiplexing here is neither time nor frequency multiplexing, but

space multiplexing, an unusual application of the word multiplexing.

In summary: John von Neumann is a hero of computing-he does not need the

majority element. His weight and his influence, however, have distorted a little the

historic accounts. The public opinion majority elements have reduced the shares of

other contributors in them and have increased the (already big) share of John von

Neumann. A chapter on the weaknesses and on the negative influence of the hero

would be of no less importance.

And the European reader waits for a collection of John von Neumann anecdotes.

One can hear more than one in the US, but for some reason Americans do not

cultivate anecdotes (except as footnotes like the section in the Annals). A genius

like John von Neumann, I dare say, is difficult to present by his scientific achieve-

ments which extend beyond the horizon not only of the average reader. He could

get a much more distinctive profile by a baker’s dozen of anecdotes whose pointwise

flashes would produce a three-dimensional picture of the extraordinary human being

John von Neumann. A second volume by William Aspray?

Heinz ZEMANEK

Vienna, Austria

L.C. Paulson, ML for the Working Programmer (Cambridge University Press,

Cambridge, England, 1991), Price X27.50, $49.50 (hardcover), ISBN o-521-39022-2.

Based on his experience with teaching, the author has written a book for an

audience which he omits to identify clearly. The title indicates an audience of

Book Reoieu~ 301

working programmers, whoever that may be. One objective is to introduce functional

programming techniques based on ML. Another is to present ML rather extensively

as a programming language to people who haven’t been exposed to that kind of

languages before.

It is definitely a delightful book for the reviewer. Written in a very direct style

and organized differently from many other books on functional programming.

Besides the bulk of text contained in ten chapters the book contains a Preface, a

Bibliography, Standard ML Syntax Charts, an Index, and a list of Predefined

Identifiers: 430 pages altogether.

The first four chapters present the basic language primitives and illustrate program-

ming with a functional subset of ML and without higher-order functions. Some of

the problems used in the illustrations are refreshingly traditional: computation of

square roots, matrix multiplication, Gaussian elimination, topological sorting, ran-

dom number generation, and various sorting algorithms. The presentation of

language primitives is thorough, but marred in a few places by simple blunders (e.g.

“If the divisor is non-zero [. .] an error will be signalled” (page 55), and “The

collection of values denoted by a type scheme is essentially the intersection of all

its instances” (page 57)).

Chapters 5 through 8 treat more advanced issues of ML: higher-order functions,

proof principles, modules, references. Linguistic aspects are put into focus and the

examples are more in line with other presentations of functional programming.

Examples include lazy evaluation techniques, strategies for searching in trees, arrays,

priority queues, and cyclic data structures. The author explains in depth such

concepts as formal proofs, specifications, sharing among modules, assignments and

weak polymorphism. This is definitely one of the book’s strong points, but it is

tough reading. It may be a problem that modules are treated more from an imple-

menter’s view than from a users.

Each of the final two chapters is devoted to a large example: writing interpreters

for the lambda calculus, and a tactical theorem prover. It is hard to tell whether

the working programmer will find these relevant or interesting. The university

professor probably does, and the reviewer does so for sure.

In summary I find this an admirable book. Its coverage is very wide, and 1 would

like to use the first chapters for an early course in a computing science curriculum.

I have no doubt that the first four chapters can be studied by a working programmer

without assistance from an instructor. The remaining part of the book will fit nicely

into one or two university courses later on. I doubt whether it is suitable for self-study

except for a rather narrow audience.

Jorgen STEENSGAARII-MADSEN

Technical University of Denmark

Lingby, Denmark

