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1. Introduction

In [31], Nazarov introduced a class of infinite dimensional algebras called affine Wenzl algebras
when he studied the action of the Jucys–Murphy elements on the irreducible modules of Brauer
algebras. These algebras can be considered as the degenerate affine Birman–Murakami–Wenzl al-
gebras [22]. In order to study their finite dimensional representations, Ariki, Mathas and Rui [4]
considered the cyclotomic quotients of affine Wenzl algebras, called the cyclotomic Nazarov–Wenzl
algebras or cyclotomic NW algebras for brevity. They have proved that the cyclotomic Nazarov–Wenzl
algebras are cellular algebras in the sense of [19]. The representations of these algebras have been
studied in [4,32].

In [22], Häring-Oldenburg introduced the cyclotomic Birman–Murakami–Wenzl algebras or cyclo-
tomic BMW algebras for brevity in order to study the link invariants. Recently, such algebras have
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been studied extensively by Goodman and Hauschild, Wilcox and Yu, Xu and the authors in [12,17,
13,18,33,36,38–42]. In particular, it has been proved in [38] that the cyclotomic BMW algebras are
cellular algebras in the sense of [19].

A fundamental problem in the representation theory of cellular algebras is to determine whether
a cell module is equal to its simple head or not. Such a problem has been solved for Hecke alge-
bras [24], Ariki–Koike algebras [25] and Birman–Murakami–Wenzl algebras [35], etc. In this paper,
we address this problem for cyclotomic NW algebras and cyclotomic BMW algebras over an arbitrary
field. Equivalently, we need to determine whether the Gram determinant associated to a cell module
of such algebras is equal to zero or not.

The Birman–Murakami–Wenzl algebras (or BMW algebras) are introduced by Birman–Wenzl [5]
and independently Murakami [30] in order to study the link invariants. Such algebras can be consid-
ered as the q-analog of the Brauer algebras in [6]. Motivated by Cox, De Visscher and Martin’s work
on the blocks of Brauer algebras in characteristic zero [7], we have classified the blocks of BMW al-
gebras over the field κ which contains invertible parameters r and q such that o(q2), the order of q2,
is large enough and char(κ), the characteristic of the field κ , is not equal to 2 [35]. As a by-product,
we determine certain zero divisors of the Gram determinant associated to each cell module for BMW
algebras. We have proved the remaining zero divisors of such a Gram determinant can be determined
by those of the corresponding Gram determinant associated to the cell module of Hecke algebra of
type A. This enables us to use James–Mathas’s result in [24] to give a necessary and sufficient condi-
tion for each Gram determinant of BMW algebras being not equal to zero. The main purpose of this
paper is to use this method to settle the same problems for cyclotomic NW algebras and cyclotomic
BMW algebras over an arbitrary field.

The paper is organized as follows. In Section 2, we recall some results on cellular algebras with a
JM-basis and JM-elements [29]. We give a criterion to verify whether an element of a cell module
is in its radical or not. In Section 3, we recall the notion of cyclotomic NW algebras and cyclo-
tomic BMW algebras. We also recall some results for such algebras which will be used later on.
In Sections 4–5, we keep Assumption 4.1, which is equivalent to saying that the degenerate cy-
clotomic Hecke algebras [27] (resp. Ariki–Koike algebras [2]) are semisimple. Further, in the later
case, we assume char(κ) �= 2. We determine the structure of the cell modules for cyclotomic NW
and cyclotomic BMW algebras with respect to (1, λ), where λ ranges over all multipartitions of
n − 2. In particular, we give explicit formulae to compute the dimensions of the simple heads of
such cell modules. This generalizes Doran–Wales–Hanlon’s work on the Brauer algebras [10] and
our work on the BMW algebras [35]. Such results suggest the definition of ( f , λ)-admissible parti-
tions for all r-partitions λ of n − 2 f in Section 5. Via it, we classify the blocks of cyclotomic NW
and cyclotomic BMW algebras over the field κ under the additional Assumption 4.1. This general-
izes Cox–De Visscher–Martin’s work on Brauer algebras and our work on BMW algebras in [7,35].
Via such results, we determine certain zero factors of the Gram determinant associated to each
cell module for cyclotomic NW algebras and cyclotomic BMW algebras. In Section 6, we prove the
main result of this paper, which gives a necessary and sufficient condition for each cell module
of cyclotomic NW and cyclotomic BMW algebras being equal to its simple head over an arbitrary
field. We remark that we will give such a result for Brauer algebras by using Cox–De Visscher–
Martin’s work on the blocks of Brauer algebras in characteristic zero together with the corresponding
results for symmetric groups in [26]. In this case, we leave the details of the proof to the read-
ers.

2. Cellular algebras with JM-basis and JM-elements

Throughout this section, we assume that R is a commutative ring with multiplicative identity 1.
First, we recall the notion of cellular algebras in [19].

Definition 2.1. (See [19].) Let A be an R-algebra. Fix a partially ordered set Λ = (Λ, �) and for each
λ ∈ Λ let T (λ) be a finite set. Finally, fix mst ∈ A for all λ ∈ Λ and s, t ∈ T (λ).
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Then the triple (Λ, T , C) is a cell datum for A if:

a) {mst | λ ∈ Λ and s, t ∈ T (λ)} is an R-basis for A;
b) the R-linear map ∗ : A → A determined by (mst)

∗ = mts , for all λ ∈ Λ and all s, t ∈ T (λ) is an
anti-isomorphism of A;

c) for all λ ∈ Λ, s ∈ T (λ) and a ∈ A there exist scalars rtu(a) ∈ R such that

msta =
∑

u∈T (λ)

rtu(a)msu

(
mod A�λ

)
,

where A�λ = R-span{muv | μ�λ and u,v ∈ T (μ)}. Furthermore, each scalar rtu(a) is independent
of s.

An algebra A is a cellular algebra if it has a cell datum and in this case we call {mst | s, t ∈ T (λ), λ ∈ Λ}
a cellular basis of A.

Now, we briefly recall the representation theory of cellular algebras over a field in [19]. We remark
that all modules considered in this paper are right modules.

Every irreducible A-module arises in a unique way as the simple head of some cell module. For
each λ ∈ Λ fix s ∈ T (λ) and let mt = mst + A�λ . The cell modules of A can be considered as the
modules �(λ) which are the free R-modules with basis {mt | t ∈ T (λ)}. The cell module �(λ) comes
equipped with a natural symmetric bilinear form φλ which is determined by the equation

mstmt′s ≡ φλ(mt,mt′) · mss

(
mod A�λ

)
.

Note that φλ is independent of s. The bilinear form φλ is A-invariant in the sense that φλ(xa, y) =
φλ(x, ya∗), for x, y ∈ �(λ) and a ∈ A. Consequently,

Rad �(λ) = {
x ∈ �(λ)

∣∣ φλ(x, y) = 0 for all y ∈ �(λ)
}

is an A-submodule of �(λ) and Dλ = �(λ)/Rad�(λ) is either zero or absolutely irreducible. Gra-
ham and Lehrer [19] have proved that (a) {Dλ | Dλ �= 0} consists of a complete set of pairwise
non-isomorphic irreducible A-modules; (b) a cellular algebra is (split) semisimple if and only if
Rad�(λ) = 0 for all λ ∈ Λ [19].

We are going to recall some results on cellular algebras with JM-basis and JM-elements in [29, 2.4].

Definition 2.2. Suppose that {Li | 1 � i � n} is a set of commutative elements of A. {Li | 1 � i � n} are
called JM-elements of A with respect to the cellular basis {mst | s, t ∈ T (λ), λ ∈ Λ} if:

a) for each positive integer i � n, there is a finite subset Cλ(i) := {ct(i) | t ∈ T (λ), λ ∈ Λ} of R;
b) L∗

i = Li for all positive integers i � n;
c) for each λ ∈ Λ, there is a linear order � on T (λ);
d) for any λ ∈ Λ and any s, t ∈ T (λ),

mstLi ≡ ct(i)mst +
∑
u�t

aumsu

(
mod A�λ

)
, (2.3)

where au ’s are scalars in R .

In this case, {mst | λ ∈ Λ and s, t ∈ T (λ)} is called the JM-basis with respect to the JM-elements
{Li | 1 � i � n}. We remark that Definition 2.2 is the strong version of [29, 2.4] since we use linear
order � instead of the partial order in [29, 2.4]. Let s, t,u,v ∈ T (λ), write (s, t) � (u,v) if s � u, t � v

and (s, t) �= (u,v).
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Suppose that (O, K , κ) is a modular system for the cellular algebra A where O is a discrete val-
uation ring, K is the field of the fractions of O and κ is the residue field of O. Further, for s ∈ T (λ),
t ∈ T (μ) and λ,μ ∈ Λ, assume that s = t if and only if cs(i) = ct(i) in K for all positive integers i � n.
In other words, the “separation condition” in [29] holds over the field K . In this case, Mathas [29] has
proved that AK is semisimple. We will use Ax , x ∈ {O, K , κ} to emphasis A over the ground ring x.

It is possible that s �= t although cs(i) = ct(i) in κ for all positive integers i � n. In this case, we
need the notion of residue classes in [29].

Definition 2.4. (See [29, 4.1].) Given two s, t ∈ T (λ), s and t are said to be in the same residue class
and write s ≈ t if cs(i) = ct(i) in κ for all positive integers i � n.

Proposition 2.5. (See [29].) Given the residue class T in T (λ) which contains t ∈ T (λ), let FT = ∑
s∈T

Fs

where

Ft =
n∏

i=1

∏
c∈Cλ(i)
c �=ct(i)

Li − c

ct(i) − c
∈ AK .

We have

a) Fs Ft = δst Fs for any s, t ∈ T (λ);
b) FT ∈ AO and FT FS = δT,S FT where T, S are two residue classes which contain t and s, respectively.

Proposition 2.6. Let S, T be two residue classes which contain s, t ∈ T (λ), respectively. Define g̃st =
FSmst FT , fst = Fsmst Ft and gst = g̃st ⊗ 1κ .

a) {g̃ts | t, s ∈ T (λ)} is a cellular basis of AO . Further, it is the JM-basis of AO with respect to the JM-elements
L1, L2, . . . , Ln;

b) [29, 3.7] { fts | t, s ∈ T (λ)} is a cellular basis of AK ;
c) [29, 4.5] {gts | t, s ∈ T (λ)} is a cellular basis of Aκ .

Proof. By (2.3), for s, t ∈ T (λ),

mst ≡ fst +
∑

u,v∈T (λ)
(u,v)�(s,t)

auv fuv

(
mod A�λ

)
(2.7)

for some scalars auv ∈ K . Let T, S be the residue classes in T (λ) which contain t, s, respectively.
Acting FT , FS on both sides of (2.7) and using Proposition 2.5 yields

g̃st ≡ fst +
∑

u,v∈T (λ)
(u,v)�(s,t)
u≈s,v≈t

auv fuv

(
mod A�λ

)
. (2.8)

This proves that the transition matrix between { fts | t, s ∈ T (λ)} and {g̃ts | t, s ∈ T (λ)} is up-
per unitriangular over K . So is the transition matrix between the JM-basis {mts | t, s ∈ T (λ)} and
{g̃ts | t, s ∈ T (λ)} over K . Since both bases are well defined over O, the result is available over O.
This proves that {g̃ts | t, s ∈ T (λ)} is an O basis of AO . It is routine to check that such a basis is a
cellular basis. Further, the second part of Proposition 2.6(a) follows from (2.3). (b)–(c) have already
been proved in [29]. �
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We remark that the cell module �(λ) which is defined via the JM-basis {mst | s, t ∈ T (λ), λ ∈ Λ}
of Ax is the same as that defined via the cellular basis of Ax in Proposition 2.6. The following result
follows from the definition directly.

Lemma 2.9. If {t} is a residue class in T (λ), then g̃t = ft and g̃tLi = ct(i)g̃t for all positive integers i � n.

The following result has been proved for Birman–Murakami–Wenzl algebras in [35]. In general, it
can be proved by similar arguments.

Lemma 2.10. gt ∈ Rad�(λ) if {t} is a residue class in T (λ) and φλ(gt, gt) = 0.

At the end of this section, we remark that the notion of weakly cellular algebras were introduced
in [12], which can be obtained from Definition 2.1 by using (mst)

∗ ≡ mts (mod A�λ) instead of
Definition 2.1(b). Note that both cellular algebras and weakly cellular algebras are standardly based
algebras in the sense of [9]. From this, one can see that cellular algebras and weakly cellular alge-
bras share the similar results on representation theory. All the statements on cellular algebras above
remain valid for weakly cellular algebras. In this case, we also use the notion of “cell modules”, etc.

3. Cyclotomic NW algebras and cyclotomic BMW algebras

In this section, we recall the definitions of cyclotomic NW algebras and cyclotomic BMW algebras.
We also state some results which we will need later on.

Definition 3.1. (See [4].) Fix two positive integers r,n � 2. Let R be a commutative ring which con-
tains 1R , u1, u2, . . . , ur and the invertible element 2. Let Ω = {ωa | a � 0} ⊂ R . The cyclotomic NW
algebra Wr,n [4] is the unital associative algebra with generators {Si, Ei, X j | 1 � i < n and 1 � j � n}
and relations

a) (Involutions)
S2

i = 1, for 1 � i < n.
b) (Affine braid relations)

(i) Si S j = S j Si , if |i − j| > 1,
(ii) Si Si+1 Si = Si+1 Si Si+1,

for 1 � i < n − 1,
(iii) Si X j = X j Si , if j �= i, i + 1.

c) (Idempotent relations)
E2

i = ω0 Ei , for 1 � i < n.
d) (Commutation relations)

(i) Si E j = E j Si , if |i − j| > 1,
(ii) Ei E j = E j Ei , if |i − j| > 1,

(iii) Ei X j = X j Ei ,
if j �= i, i + 1,

(iv) Xi X j = X j Xi ,
for 1 � i, j � n.

e) (Skein relations)
Si Xi − Xi+1 Si = Ei − 1 and

Xi Si − Si Xi+1 = Ei − 1,
for 1 � i < n.

f) (Unwrapping relations)
E1 Xa

1 E1 = ωa E1, for a > 0.
g) (Tangle relations)

(i) Ei Si = Ei = Si Ei ,
for 1 � i � n − 1,

(ii) Si Ei+1 Ei = Si+1 Ei ,
for 1 � i � n − 2,

(iii) Ei+1 Ei Si+1 = Ei+1 Si ,
for 1 � i � n − 2.

h) (Untwisting relations)
Ei+1 Ei Ei+1 = Ei+1 and
Ei Ei+1 Ei = Ei , for 1 � i � n − 2.

i) (Anti-symmetry relations)
Ei(Xi + Xi+1) = 0 and
(Xi + Xi+1)Ei = 0, for 1 � i < n.

j) (X1 − u1)(X1 − u2) · · · (X1 − ur) = 0.

Wr,n ’s are cyclotomic quotient of affine Wenzl algebras which were introduced by Nazarov [31]
when he studied the action of “Jucys–Murphy” elements on the irreducible modules of Brauer alge-
bras. If we denote by I the two-sided ideal of Wr,n generated by E1, then Wr,n/I is isomorphic to the
degenerate cyclotomic Hecke algebras Hr,n of type G(r,1,n) [27]. It is proved in [4] that both Wr,n

and Hr,n are cellular over R .



H. Rui, M. Si / Journal of Algebra 335 (2011) 188–219 193
We need some combinatorics as follows.
A partition of m is a sequence of non-negative integers λ = (λ1, λ2, . . .) such that λi � λi+1 for all

positive integers i and |λ| := λ1 + λ2 + · · · = m. We call l(λ), the number of positive integers λi , the
length of λ. Similarly, an r-partition of m is an ordered r-tuple λ = (λ(1), . . . , λ(r)) of partitions λ(s)

with 1 � s � r such that |λ| := |λ(1)| + · · · + |λ(r)| = m. Let Λ+
r (n) be the set of all r-partitions of n.

We say that μ dominates λ and write λ � μ if

i−1∑
j=1

∣∣λ( j)
∣∣ +

l∑
k=1

λ
(i)
k �

i−1∑
j=1

∣∣μ( j)
∣∣ +

l∑
k=1

μ
(i)
k

for 1 � i � r and l � 0. Then (Λ+
r (n), �) is a poset. If λ � μ and λ �= μ, we write λ � μ.

Fix two positive integers r, n. Define

Λr,n = {
( f , λ)

∣∣ 0 � f � �n/2, λ ∈ Λ+
r (n − 2 f )

}
.

Given ( f , λ), (
,μ) ∈ Λr,n , we say that ( f , λ) dominates (
,μ) and write ( f , λ) � (
,μ) if f > 
 in
the usual sense or f = 
 and λ � μ. Then (Λr,n,�) is a poset. Write ( f , λ) > (
,μ) if ( f , λ) � (
,μ)

and ( f , λ) �= (
,μ).
Suppose that λ and μ are two r-partitions. We say that μ is obtained from λ by adding a box

(or node) and write λ → μ if there exists a pair (s, i) such that μ
(s)
i = λ

(s)
i + 1 and μ

(t)
j = λ

(t)
j for

(t, j) �= (s, i). In this case, we will also say that λ is obtained from μ by removing a box (or node).
In the remaining part of this paper, we denote by A (λ) (resp. R(λ)) the set of all addable (resp.
removable) nodes of λ.

Following [4], we say that a sequence of r-partitions t = (t0, t1, t2, . . . , tn) is an up–down λ-tableau
if t0 = ∅, tn = λ, and either ti → ti−1 or ti−1 → ti , 1 � i � n. Let T ud

n (λ) be the set of all up–
down λ-tableaux. When λ ∈ Λ+

r (n), any t ∈ T ud
n (λ) can be identified with the corresponding standard

λ-tableau t such that the entry i,1 � i � n, is in the node ti \ ti−1. In this case, we will use T std
n (λ)

instead of T ud
n (λ).

The Young diagram [λ] for a partition λ = (λ1, λ2, . . .) is a collection of boxes arranged in left-
justified rows with λi boxes in the i-th row of [λ]. For any λ = (λ(1), . . . , λ(r)) ∈ Λ+

r (n), the Young
diagram [λ] is an r-tuple Young diagrams ([λ(1)], . . . , [λ(r)]).

It is necessary to impose conditions on the parameters of the ground ring in order that the
cyclotomic NW algebras have a well-behaved representation theory. The suitable condition, called
u-admissibility was found by Ariki, Mathas and Rui in [4, 3.6]. The explicit conditions will not be
needed here. It was shown in [14, 5.2] that u-admissibility is equivalent to Wr,2 being free of rank 3r2.

In the remaining part of this paper, when we discuss the cyclotomic NW algebras, we always keep
the u-admissible conditions.

The following result, which is motivated by Enyang’s work on Brauer algebras and Birman–
Murakami–Wenzl algebras in [11], has been proved in [32]. We remark that the linear order ≺
for Wr,n needed in Definition 2.2 is defined in [32]. In this paper, we do not need the explicit defini-
tion.

Theorem 3.2. (See [32].) Fix two positive integers r,n � 2. Let R be a commutative ring which contains 1R ,
u1, u2, . . . , ur and invertible 2. Wr,n has a JM-basis {mst | s, t ∈ T ud

n (λ), ( f , λ) ∈ Λr,n} and JM-elements
X1, X2, . . . , Xn. The scalars ct(k), 1 � k � n which are needed in Definition 2.2 are defined as

ct(k) =
{

us + j − i, if tk = tk−1 ∪ (s, i, j),
−us − j + i, if tk−1 = tk ∪ (s, i, j),

where tk−1 ∪ (s, i, j) is the r-partition obtained from tk−1 by adding the node (s, i, j) which is in the i-th row,
j-th column of s-component of tk−1 ∪ (s, i, j).
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If p = (s, i, j) ∈ [λ], we define

cλ(p) = us + j − i. (3.3)

Since cλ(p) depends only on (s, i, j), we will use c(p) instead of cλ(p) in the remaining part of this
paper.

The irreducible Wr,n,κ -modules have been classified in [4, 8.5] for ω0 �= 0 and [32, 3.12] for the
remaining cases. Let e = char(κ) (resp. +∞) if char(κ) > 0 (resp. char(κ) = 0). The following result,
which will be needed in Section 5, is the special case of such results.

Theorem 3.4. (See [4,32].) Fix the positive integers r, n with r,n � 2. Suppose that κ is a field which contains
1, u1, . . . , ur such that e > n and |d| � n whenever ui − u j = d · 1κ for some d ∈ Z.

a) If either 2 � n or 2 | n with ωi �= 0 for some i, 0 � i � r − 1, then the irreducible Wr,n,κ -modules are
indexed by Λr,n.

b) If 2 | n and ωi = 0 for all i, 0 � i � r − 1, then the irreducible Wr,n,κ -modules are indexed by
Λr,n \ {(n/2,∅)}.

The following result gives a criterion for Wr,n,κ being semisimple over a field κ .

Theorem 3.5. (See [32, 7.9].) Fix two positive integers r,n � 2.

a) If (2ui − (−1)r)(ui + u j) = 0 for some i, j, with 1 � i, j � r and i �= j, then Wr,n,κ is not semisimple.
b) If (2ui − (−1)r)(ui + u j) �= 0 for any i, j, with 1 � i, j � r and i �= j,

1) Wr,2,κ is semisimple if and only if e > n and |d| � n whenever ui − u j = d · 1κ for any 1 � i < j � r
and d ∈ Z.

2) Suppose n � 3 and 2 � r. Then Wr,n,κ is semisimple if and only if
(a) e > n,
(b) |d| � n whenever ui − u j = d · 1κ for any 1 � i < j � r and d ∈ Z,
(c) 2ui /∈ ⋃n

k=3{3 − k,3 − 2k,k − 3},
(d) ui + u j /∈ ⋃n

k=3{2 − k,k − 2}.
3) Suppose n � 3 and 2 | r. Then Wr,n is semisimple if and only if

(a) e > n,
(b) |d| � n whenever ui − u j = d · 1κ for any 1 � i < j � r and d ∈ Z,
(c) 2ui /∈ ⋃n

k=3{3 − k,2k − 3,k − 3},
(d) ui + u j /∈ ⋃n

k=3{2 − k,k − 2}.

Now, we recall the recursive formulae of Gram determinants for all cell modules of the cyclotomic
Nazarov–Wenzl algebras in [32].

Let (a,b) and (c,d) be two pairs of positive integers. We write (a,b) � (c,d) if a > c or a = c and
b � d. Write (a,b) > (c,d) if (a,b) � (c,d) and (a,b) �= (c,d).

Definition 3.6. Given a λ ∈ Λ+
r (n −2 f ). For any removable (resp. an addable) node p = (s,k, λk) (resp.

(s,k, λk + 1)) of λ, define

a) R(λ)<p = {(h, l, λl) ∈ R(λ) | (h, l) > (s,k)};
b) A (λ)<p = {(h, l, λl + 1) ∈ A (λ) | (h, l) > (s,k)};
c) R(λ)�p = {(h, l, λl) ∈ R(λ) | (h, l) � (s,k)};
d) A (λ)�p = {(h, l, λl + 1) ∈ A (λ) | (h, l) � (s,k)}.

Unlike our previous definition of cλ(p) for p ∈ [λ], we define

cλ(p) = −us + i − j, if p = (s, i, j) ∈ R(λ),
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in [32]. In order to obtain Propositions 3.8, 3.10 and 3.12 from Propositions 6.17, 6.22 and 6.34 in [32],
respectively, we have to use −cλ(p) instead of cλ(p) in [32] when p is a removable node of [λ]. This
is the key difference between Propositions 3.8–3.12 and those in [32]. We remark that we will use
same wording for the cyclotomic Birman–Murakami–Wenzl algebras on page 198.

Suppose that ( f , λ) ∈ Λr,n . Let tλ ∈ T ud
n (λ) be such that tλ2i = ∅ and tλ2i−1 = ((1),∅, . . . ,∅) for

1 � i � f and tλj = tλj−2 f where tλ is defined below Proposition 5.2. Given t ∈ T ud
n (λ) with tn−1 = μ,

define u ∈ T ud
n−1(μ) such that ui = ti , 1 � i � n − 1, and v ∈ T ud

n (λ) with v j = t
μ
j for 1 � j � n − 1

and vn = tn = λ. In the remaining part of this paper, we also denote the previous u by t̂.

Proposition 3.7. (See [32, 6.15].) Suppose t ∈ T ud
n (λ) with ( f , λ) ∈ Λr,n. If tn−1 = μ with (
,μ) ∈ Λr,n−1 ,

then 〈 ft, ft〉 = 〈 fu, fu〉 〈 fv, fv〉
〈 ftμ , ftμ 〉 .

Proposition 3.8. (See [32, 6.17].) Let t ∈ T ud
n (λ) with ( f , λ) ∈ Λr,n. If t̂ = tμ with tn = tn−1 ∪ {p} and

p = (m,k, λ
(m)

k ), then

〈 ft, ft〉
〈 ftμ, ftμ〉 = (−1)r−m+1

∏
q∈A (λ)<p (−c(p) + c(q))∏
r∈R(λ)<p (−c(p) + c(r))

. (3.9)

Proposition 3.10. (See [32, 6.22].) Given a t ∈ T ud
n (λ) with tμ = t̂. If tn−1 = tn ∪ p with p = (s,k,μ

(s)
k ) such

that μ( j) = ∅ for all integers j, s < j � r and l(μ(s)) = k, then

〈 ft, ft〉
〈 ftμ, ftμ〉 =

r∏
j=s+1

(
us + μ

(s)
k − k + u j

) ∏
q∈R(λ)�p

c(p) − c(q)

c(p) + c(q)

∏
q �=p

q∈A (λ)�p

c(p) + c(q)

c(p) − c(q)
A, (3.11)

where

A =
{

(2us + 2μ
(s)
k − 2k − (−1)r), if λ

(s)
k = 0,

(2us + μ
(s)
k − 2k)(2us + 2μ

(s)
k − 2k − (−1)r), if λ

(s)
k > 0.

Proposition 3.12. (See [32, 6.34].) Let t ∈ T ud
n (λ) with ( f , λ) ∈ Λ+

r,n, λ = (λ(1), λ(2), . . . , λ(s),∅, . . . ,∅) and

l(λ(s)) = l. Suppose t̂ = tμ , and tn−1 = tn ∪ p with p = (m,k,μ
(m)

k ) such that (m,k) < (s, l). Then

〈 ft, ft〉
〈 ftμ, ftμ〉 = (−1)r−m+1

∏
q �=p

q∈A (λ)�p

c(p) + c(q)

c(p) − c(q)

∏
q∈R(λ)�p

c(p) − c(q)

c(p) + c(q)

×
∏

q∈A (μ)<p (−c(p) − c(q))∏
r∈R(μ)<p (−c(p) − c(r))

B

where

B =

⎧⎪⎨
⎪⎩

2um + 2μ
(m)

k − 2k − (−1)r, if (m,k, λ
(m)

k ) ∈ R(λ),

2um+2μ
(m)

k −2k−(−1)r

2um−2k+2λ
(m)

k +1
, if (m,k, λ

(m)

k ) /∈ R(λ).
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From now on, we recall the notion of cyclotomic BMW algebras in [22].

Definition 3.13. Fix two positive integers r,n � 2. Let R be an integral domain which contains the
multiplicative identity 1R , ωa , a ∈ Z and invertible elements q, u1, . . . , ur , �, δ such that δ = q − q−1

and ω0 = 1 − δ−1(�−�−1). The cyclotomic BMW algebra Br,n [22] is the unital associative R-algebra
generated by {Ti, Ei, X j, X−1

j | 1 � i < n and 1 � j � n} subject to the following relations:

a) Xi X−1
i = X−1

i Xi = 1, for 1 � i � n.
b) (Kauffman skein relation) 1 = T 2

i − δTi + δ�Ei , for 1 � i < n.
c) (Braid relations)

(i) Ti T j = T j Ti , if |i − j| > 1,
(ii) Ti Ti+1Ti = Ti+1Ti Ti+1, for 1 � i < n − 1,

(iii) Ti X j = X j Ti , if j �= i, i + 1.
d) (Idempotent relations) E2

i = ω0 Ei , for 1 � i < n.
e) (Commutation relations) Xi X j = X j Xi , for 1 � i, j � n.
f) (Skein relations)

(i) Ti Xi − Xi+1Ti = δXi+1(Ei − 1), for 1 � i < n,
(ii) Xi Ti − Ti Xi+1 = δ(Ei − 1)Xi+1, for 1 � i < n.

g) (Unwrapping relations) E1 Xa
1 E1 = ωa E1, for a ∈ Z.

h) (Tangle relations)
(i) Ei Ti = �Ei = Ti Ei , for 1 � i � n − 1,

(ii) Ei+1 Ei = Ei+1Ti Ti+1 = Ti Ti+1 Ei , for 1 � i � n − 2.
i) (Untwisting relations)

(i) Ei+1 Ei Ei+1 = Ei+1, for 1 � i � n − 2,
(ii) Ei Ei+1 Ei = Ei , for 1 � i � n − 2.

j) (Anti-symmetry relations) Ei Xi Xi+1 = Ei = Xi Xi+1 Ei , for 1 � i < n.
k) (Cyclotomic relation) (X1 − u1)(X1 − u2) · · · (X1 − ur) = 0.

We remark that there is a slight difference between Definition 3.13 and that given in [22]. It has
been pointed in [36] that such two definitions are equivalent when δ is invertible. Note that Häring-
Oldenburg did not assume that δ is invertible. However, he did assume that ω0 is invertible. Recently,
Br,n have been studying extensively by three groups of mathematicians in [12,17,18,13,36,33,41,38–
40,42], etc.

If we denote by I the two-sided ideal of Br,n generated by E1, then Br,n/I is isomorphic to the
cyclotomic Hecke algebras (or Ariki–Koike algebras) Hr,n of type G(r,1,n) [2]. It is proved in [8]
(resp. [38]) that Hr,n (resp. Br,n) is cellular over R . We remark that Goodman and Graber [15] give a
new proof of the cellularity of Br,n . In this paper, we will make use of JM-basis for Br,n [33] which
is a weakly cellular basis. Goodman and Graber [16] constructed JM-basis by using different method,
which recovers our results on JM-basis.

It is necessary to impose conditions on the parameters of the ground ring in order that the cy-
clotomic BMW algebras have a well-behaved representation theory. One suitable condition, called
u-admissibility was found by Rui and Xu in [36, 2.27] and another condition, called admissibility was
found by Wilcox and Yu in [38]. The explicit conditions are somewhat complicated and will not be
needed here. It was shown in [13, 4.4] that u-admissibility and admissibility are equivalent, under
the assumptions on the ground ring R adopted in Definition 3.13. Moreover, by [39], both conditions
are equivalent to Br,2 being free of rank 3r2. In this case, �−1 = εu1u2 · · · ur and ε ∈ {−1,1} (resp.
�−1 = εq−εu1u2 · · · ur ) if 2 � r (resp. 2 | r). For the simplification of notation, we use u1,r instead of
u1u2 · · · ur later on.

In the remaining part of this paper, we always assume the u-admissible conditions when we dis-
cuss the cyclotomic BMW algebras. The following result gives the JM-basis for Br,n . We remark that
the linear order for Br,n which is needed in Definition 2.2 is given in [33]. In this paper, we do not
need its explicit definition.
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Theorem 3.14. (See [33].) Fix two positive integers r,n � 2. Let R be an integral domain which contains
the multiplicative identity 1R , ωa, a ∈ Z and invertible elements q, u1, . . . , ur , �, δ such that δ = q − q−1 and
ω0 = 1−δ−1(�−�−1). Then Br,n has the JM-basis {mst | s, t ∈ T ud

n ( f , λ), ( f , λ) ∈ Λr,n} and JM-elements
X1, X2, . . . , Xn. The scalars ct(k), 1 � k � n which are needed in Definition 2.2 are defined as

ct(k) =
{

usq2( j−i), if tk = tk−1 ∪ (s, i, j),

u−1
s q−2( j−i), if tk−1 = tk ∪ (s, i, j).

We remark that the JM-basis mentioned in Theorem 3.14 is a weakly cellular basis. Note that
JM-basis and JM-elements for Birman–Murakami–Wenzl algebras have been constructed by Enyang
in [11]. This JM-basis is a cellular basis.

If p = (s, i, j) ∈ [λ], we define

cλ(p) = usq2( j−i). (3.15)

Since cλ(p) for both algebras with different definitions depend only on (s, i, j), we will use c(p)

instead of cλ(p) in the remaining part of this paper.
We set o(q2) = ∞ if q2 is not a root of unity. The following result, which will be needed in

Section 5, is a special case of [36, 5.3].

Theorem 3.16. Suppose that κ is a field which contains non-zero elements q, u1, . . . , ur and q −q−1 such that
o(q2) > n and |d| � n whenever uiu

−1
j = q2d for some d ∈ Z.

a) If either 2 � n or 2 | n and ωi �= 0 for some integers i � r, then the set of all pairwise non-isomorphic
irreducible Br,n,κ -modules are indexed by Λr,n.

b) If 2 | n and ωi = 0 for all positive integers i � r, then the irreducible Br,n,κ -modules are indexed by
Λr,n \ {(n/2,∅)}.

For convenience, we define

Q r,� =
{ {−εq, εq−1}, if 2 � r, �−1 = εu1,r,

{−qε,qε}, if 2 | r, �−1 = εq−εu1,r,
(3.17)

and

Sr,� =
{⋃n

k=3{±q3−k,±qk−3, εq3−2k,−εq2k−3}, if 2 � r, �−1 = εu1,r,⋃n
k=3{±q3−k,±qk−3,±q(2k−3)ε}, if 2 | r, �−1 = εq−εu1,r .

(3.18)

The following result is the generalization of Theorem 5.9 in [34].

Theorem 3.19. (See [33, 6.5].) Fix two positive integers n, r � 2. Let κ be a field which contains ωi , i ∈ Z and
non-zero ui , 1 � i � r, q,q − q−1 . Suppose that Ω ∪ {�} is u-admissible.

a) If either ui − u−1
j = 0 for different positive integers i, j � r or ui ∈ Q r,� for some positive integer i � r,

then Br,n,κ is not semisimple.
b) Assume ui − u−1

j �= 0 for all different positive integers i, j � r and ui /∈ Q r,� for all positive integers i � r.

(1) Br,2,κ is semisimple if and only if o(q2) > 2 and |d| � 2 whenever uiu
−1
j = q2d for any 1 � i < j � r

and d ∈ Z.
(2) Suppose n � 3. Then Br,n,κ is semisimple if and only if

(a) o(q2) > n,
(b) |d| � n whenever uiu

−1
j = q2d for any 1 � i < j � r and d ∈ Z,
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(c) ui /∈ Sr,� ,
(d) uiu j /∈ ⋃n

k=3{q4−2k,q2k−4} for all different positive integers i, j � r.

We recall the recursive formulae on Gram determinants for cyclotomic BMW algebras in [33],
which will be used later on. We remark that we defined

cλ(p) = u−1
s q−2( j−i), if (s, i, j) ∈ R(λ)

in [33]. In order to obtain Propositions 3.23, 3.25 and 3.27, we have to use cλ(p)−1 instead of cλ(p)

in Propositions 4.9, 4.10 and 4.11 in [33] when p is a removable node of [λ].
Assume s ∈ T ud

n (λ). If r is odd, we define

Ess(k) =
⎧⎨
⎩

1
�cs(k)

(
cs(k)−cs(k)−1

δ
+ 1)A1 B1, if �−1 = u1,r,

1
�cs(k)

(
cs(k)−cs(k)−1

δ
− 1)A1 B1, if �−1 = −u1,r,

(3.20)

where

A1 =
∏

α∈A (sk−1)

cs(k) − c(α)−1

cs(k) − c(α)
and B1 =

∏
α∈R(sk−1)

cs(k) − c(α)

cs(k) − c(α)−1

and α �= sk � sk−1. Here sk � sk−1 is the set difference between sk and sk−1.
If r is even, then we define

Ess(k) =
⎧⎨
⎩

1
�δ

(1 − q2

cs(k)2 )A1 B1, if �−1 = q−1u1,r,

1
�δ

(1 − 1
q2cs(k)2 )A1 B1, if �−1 = −qu1,r,

(3.21)

where A1 and B1 are defined above.

Proposition 3.22. (See [33, 4.8].) Suppose t ∈ T ud
n (λ) with ( f , λ) ∈ Λr,n. If tn−1 = μ with (
,μ) ∈ Λr,n−1 ,

then 〈 ft, ft〉 = 〈 fu, fu〉 〈 fv, fv〉
〈 ftμ , ftμ 〉 .

Proposition 3.23. (See [33, 4.9].) Suppose that t ∈ T ud
n (λ) with ( f , λ) ∈ Λr,n. If t̂ = tμ with tn = tn−1 ∪ {p}

and p = (m,k, λ
(m)

k ), then

〈 ft, ft〉
〈 ftμ, ftμ〉 = (−1)r−mq2k

um(1 − q2)

∏
a∈A (λ)<p (c(a) − c(p))∏
b∈R(λ)<p (c(b) − c(p))

. (3.24)

For each positive integer a, define the q-integer [a] = qa−q−a

q−q−1 .

Proposition 3.25. (See [33, 4.10].) Suppose that t ∈ T ud
n (λ) with λ ∈ Λ+

r (n − 2 f ) and tμ = t̂. If tn−1 =
tn ∪ {p} with p = (s,k,μ

(s)
k ) such that μ( j) = ∅ for all integers j, s < j � r and l((μ(s))) = k, then

〈 ft, ft〉
〈 ftμ, ftμ〉 = qa−1[a]Ett(n − 1)

r∏
j=s+1

(
usq2(μ

(s)
k −k) − u j

)
, (3.26)

where a = μ
(s)
k .
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For any μ ∈ Λ+
r (n), write [μ] = [b1,b2, . . . ,br] such that bi = ∑

j�i |λ( j)| for all positive integers
i � r.

Let Sn be the symmetric group in n letters. Then Sn is a Coxeter group with distinguished gen-
erators {s1, s2, . . . , sn−1} where si is the basic transposition (i, i + 1). We write si, j = si−1si−2 · · · s j if
i < j.

Suppose s ∈ T ud
n (λ) and sk ∈ Sn . If sk � sk−1 and sk � sk+1 are in different rows and in different

columns, we define

ssk = (s1, . . . , sk−1, tk, sk+1, . . . , sn),

where tk is the multipartition which is uniquely determined by the conditions tk � sk+1 = sk−1 � sk
and sk−1 � tk = sk � sk+1. If the nodes sk � sk−1 and sk+1 � sk are both in the same row, or both in
the same column, then ssk is not defined.

Proposition 3.27. (See [33, 4.11].) Suppose that λ = (λ(1), λ(2), . . . , λ(s),∅, . . . ,∅) ∈ Λ+
r (n − 2 f ) and

l(λ(s)) = l. Let t ∈ T ud
n (λ) with ( f , λ) ∈ Λr,n such that t̂ = tμ , and tn−1 = tn ∪ {p} with p = (m,k,μ

(m)

k )

and (m,k) < (s, l). Let [μ] = [b1,b2, . . . ,br]. We define u = tsn,a+1 with a = 2( f − 1) + bm−1 + ∑k
j=1 μ

(m)
j

and v = (u1, . . . ,ua+1). Then

〈 ft, ft〉
〈 ftμ, ftμ〉 = qc−1[c]Evv(a)

(
umq−2k − u−1

m q−2(μ
(m)

k −k)
)−1

A (3.28)

where c = μ
(m)

k and

A =
r∏

j=m+1

(umq2(μ
(m)

k −k) − u j)

(u j − u−1
m q−2(μ

(m)

k −k))

∏
a∈A (μ)<p (c(a) − c(p)−1)∏
b∈R(μ)<p (c(b) − c(p)−1)

.

At the end of this section, we recall some results on two functors, which will play an important
role in our work. Such results have been proved for the Brauer and BMW algebras in [10,35].

Let Ar,n,κ -mod be the category of right Ar,n,κ -modules where Ar,n,κ ∈ {Wr,n,κ ,Br,n,κ }. It has been
proved in [4,36] that

En−1 Ar,n,κ En−1 = En−1 Ar,n−2,κ .

By standard arguments in Section 6 in [21], one can define the exact functor Fr,n : Ar,n,κ -mod →
Ar,n−2,κ -mod and right exact functor Gr,n−2 : Ar,n−2,κ -mod → Ar,n,κ -mod. For the simplification of
notation, we will use F and G instead of Fr,n , Gr,n−2 respectively. The following results have been
proved for Br,n,κ in [33]. Further, one can prove them for Wr,n,κ by similar arguments in [33]. We
leave the details to the reader.

Proposition 3.29. For each ( f , λ), (
,μ) ∈ Λr,n, let �( f , λ) and �(
,μ) be the cell modules of Ar,n,κ where
Ar,n,κ ∈ {Wr,n,κ ,Br,n,κ }. We have:

a) F G = 1;
b) G(�( f , λ)) = �( f + 1, λ);
c) F (�( f , λ)) = �( f − 1, λ);
d) HomAr,n+2,κ (G(�( f , λ)),�(
,μ)) ∼= HomAr,n,κ (�( f , λ), F (�(
,μ))) as κ-modules;
e) If Ar,n,κ -homomorphism φ :�( f , λ) → N is non-trivial for 0 < f � �n/2, then F (φ) �= 0.
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4. The structure of �(1,λ)

In this section, we keep the u-admissible conditions with different definitions over the field κ
when we deal with Wr,n,κ and Br,n,κ . Further, we keep the additional constraint, Assumption 4.1.
The main purpose of this section is to study the structure of the cell modules �(1, λ) for Wr,n,κ

and Br,n,κ with respect to (1, λ) ∈ Λr,n .

Assumption 4.1. Let κ be a field. We set e = char(κ) if char(κ) > 0 and e = ∞ if char(κ) = 0.

a) For Wr,n,κ , e > n and |d| � n if ui − u j = d · 1κ for some d ∈ Z and 1 � i < j � r.

b) For Br,n,κ , e �= 2, o(q2) > n, and |d| � n if uiu
−1
j = q2d for some d ∈ Z and 1 � i < j � r.

Under Assumption 4.1(a) (resp. Assumption 4.1(b) without char(κ) �= 2), the degenerate cyclotomic
Hecke algebra Hr,n (resp. cyclotomic Hecke algebra Hr,n [2]) is split semisimple over κ [4] (resp. [1]).

The following result is well known. The key point is that Assumption 4.1 on κ implies that the
residues of the addable and removable nodes of [λ] are distinct so an s ∈ T std

n (λ) is uniquely deter-
mined by the sequence of residues cs(i), for i = 1, . . . ,n. We remark that cyclotomic Nazarov–Wenzl
algebras and cyclotomic Birman–Murakami–Wenzl algebras are being considered simultaneously in
Lemmas 4.2–4.4.

Lemma 4.2. For any s ∈ T std
n (λ) and t ∈ T std

n (μ), and λ,μ ∈ Λ+
r (n), we have s = t if and only if

cs(i) = ct(i) in κ , for all positive integers i � n.

Lemma 4.3. Suppose that λ ∈ Λ+
r (n) and p, p̃ ∈ [λ]. c(p) = c(p̃) if and only if p and p̃ are in the same

diagonal of some component of λ.

Lemma 4.4. For each λ ∈ Λ+
r (n) and μ ∈ Λ+

r (n − 2), �(0, λ) is a composition factor of �(1,μ) if

a) there is an s ∈ T std
n (λ) and a unique t ∈ T ud

n (μ), such that cs(i) = ct(i) for all positive integers i � n,
b) gt ∈ Rad�(1,μ).

Proof. This result can be proved by arguments similar to those for BMW algebras in [35]. We give
the details as follows.

Let Ar,n,κ ∈ {Wr,n,κ ,Br,n,κ } and let M be the cyclic Ar,n,κ -module generated by gt . Since gt ∈
Rad�(1,μ), M ⊂ Rad�(1,μ). So, there is a proper submodule N of M such that M/N ∼= D
,ν with
(
, ν) < (1,μ). Therefore, either 
 = 1, ν � μ or 
 = 0. In the first case, we apply the exact functor F
on both �(1, ν) and �(1,μ)/N and use Proposition 3.29(e) to obtain a non-trivial homomorphism
from �(0, ν) to �(0,μ)/F (N). Under Assumption 4.1(a) (resp. (b)), Hr,n,κ (resp. Hr,n,κ ) is semisim-
ple. So, �(0,μ), which can be considered as the cell module for either Hr,n−2,κ or Hr,n−2,κ , is
irreducible, forcing F (N) = 0 and ν = μ, a contradiction. In the later case, since N is a proper sub-
module of M , gt /∈ N . By Lemma 2.9, (gt + N)Li = ct(i)(gt + N). Note that { fu | u ∈ T std

n (ν)} is a basis
of �(0, ν) and fuLi = cu(i) fu for all u ∈ T std

n (ν) and all positive integers i � n. So, there is a unique
u ∈ T std

n (ν) such that cu(i) = ct(i) for all positive integers i � n. Since we are assuming ct(i) = cs(i)
for any 1 � i � n, by Lemma 4.2, u = s. In particular, ν = λ. This proves that �(0, λ) is a composition
factor of �(1,μ). �

We choose a modular system for either Wr,n,κ or Br,n,κ as follows. Note that we are keeping
Assumption 4.1.

Let κ[t] be the ring of polynomials in indeterminate t . Let O be the localization of κ[t] at t − 1.
Then O is a discrete valuation ring with the unique maximal ideal π generated by 1 − t in O. More-
over, κ ∼= O/π . Let K be the field of fractions of O. When we consider Wr,n,O or Wr,n,K , we need
to use uit instead of ui for 1 � i � r. In this case, the residue ct(i) for t ∈ T ud

n (λ) can be obtained
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from that in Theorem 3.2 by using uit instead of ui . It is easy to check that cs(i) = ct(i) in K for all
1 � i � n if and only if s = t.

Let κ[t, t−1] be the ring of Laurent polynomials in indeterminate t . Let O be the localization of
κ[t, t−1] at the maximal ideal generated by 1 − t . Then O is a discrete valuation ring with maximal
ideal π generated by 1 − t in O. Moreover, κ ∼= O/π . Let K be the field of fractions of O. When we
consider Br,n,O or Br,n,K , we need to use uit instead of ui for 1 � i � r. In this case, the residue ct(i)
for t ∈ T ud

n (λ) can be obtained from that in Theorem 3.14 by using uit instead of ui . It is easy to
check that cs(i) = ct(i) in K for all 1 � i � n if and only if s = t.

For Wr,n,O or Wr,n,K , the residue c(p) is defined to be ust + ( j − i) if p = (s, i, j) ∈ [λ]. Similarly,
for Br,n,O or Br,n,K , the residue c(p) is defined to be ustq2( j−i) if p = (s, i, j) ∈ [λ].

We define p+ = (k, i, j + 1) and p− = (k, i + 1, j) if p = (k, i, j). We say that two nodes p and p̃
consist of an admissible pair if c(p)c(p̃) = 1 (resp. c(p) + c(p̃) = 0) for Br,n,κ (resp. Wr,n,κ ).

The following definition is motivated by our formulae on Gram determinants for both Wr,n,κ

and Br,n,κ .

Definition 4.5. Suppose that λ ∈ Λ+
r (n) and μ ∈ Λ+

r (n − 2). We say that λ is (1,μ)-admissible over κ
if:

a) For Wr,n,κ , λ ⊃ μ and [λ/μ] consists of an admissible pair such that [λ/μ] �= {p, p−} (resp.
[λ/μ] �= {p, p+}) if 2 � r (resp. 2 | r).

b) For Br,n,κ , λ ⊃ μ and [λ/μ] consists of an admissible pair. Furthermore,
(i) if 2 | r and ρ−1 = q−1u1,r , then [λ/μ] �= {p, p+};

(ii) if 2 | r and ρ−1 = −qu1,r , then [λ/μ] �= {p, p−};
(iii) if 2 � r and �−1 = εu1,r , then [λ/μ] �= {p, p−} (resp. [λ/μ] �= {p, p+}) if r ∈ εqZ (resp.

r ∈ −εqZ), and qZ = {q
 | 
 ∈ Z}.

Since we are keeping Assumption 4.1, we have εq−1 /∈ {−εq−1,−εq} and q−1u1,r �= −qu1,r . So,
Definition 4.5 is well defined.

Lemma 4.6. Let (1,μ) ∈ Λr,n. If λ is (1,μ)-admissible, then �(0, λ) is a composition factor of �(1,μ).

Proof. By assumption, λ = μ ∪ {p, p̃} for some p ∈ A (μ). We consider the s ∈ T ud
n (μ) such that

tμ = (s0, s1, . . . , sn−2) and sn−1 = μ ∪ p and sn = μ. Then t = (t0, t1, . . . , tn) ∈ T std
n (λ) if ti = si ,

1 � i � n − 1 and tn = sn−1 ∪ {p̃}. Further, cs(i) = ct(i), 1 � i � n. By Lemma 4.3, the residue class
which contains s is {s}.

We want to compute φ1,μ(g̃s, g̃s) over O. First, we deal with Wr,n,O . Let u = (s0, s1, . . . , sn−1). By
Propositions 3.7–3.12,

φ1,μ(g̃s, g̃s) = γsn/sn−1φ0,sn−1(g̃u, g̃u)

where

γsn/sn−1 = b1
(
2c(p) − (−1)r) ∏

p1∈A (μ)
p �=p1

(
c(p1) + c(p)

) ∏
p̃1∈R(μ)

(
c(p) + c(p̃1)

)−1

for some b1 ∈ O whose image in κ is invertible. Further, by Proposition 3.8, φ0,sn−1(g̃u, g̃u) ∈ O whose
image in κ is invertible. There are two cases we have to discuss.

First, we assume 2 � r and p̃ �= p− . If p̃ = p+ , by Lemma 4.3, neither p1 ∈ A (μ) nor p̃1 ∈ R(μ)

such that the image of (c(p1) + c(p))(c(p) + c(p̃1)) in κ is zero. However, since p̃ = p+ , we have
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2c(p) + 1 = 0, forcing γsn/sn−1 = 0 in κ . If p̃ /∈ {p−, p+}, then p̃ ∈ A (μ). By Lemma 4.3, there is no
p̃1 ∈ R(μ) such that the image of (c(p) + c(p̃1)) in κ is zero. Since∏

p1∈A (μ)
p �=p1

(
c(p1) + c(p)

) = 0,

we have γsn/sn−1 = 0
Second, we assume 2 | r and p̃ �= p+ . If p̃ = p− , then there is neither p1 ∈ A (μ) nor p̃1 ∈ R(μ)

such that the image of (c(p1) + c(p))(c(p) + c(p̃1)) in κ is zero. However, since 2c(p) − 1 = 0, we
have γsn/sn−1 = 0 in κ . If p̃ /∈ {p−, p+}, then p̃ ∈ A (μ). By Lemma 4.3, there is no p̃1 ∈ R(μ) such
that the image of (c(p) + c(p̃1)) in κ is zero. So γsn/sn−1 = 0 in κ .

Now, we deal with Br,n,κ . We use Propositions 3.22–3.27 to obtain the following equality

φ1,μ(g̃s, g̃s) = γsn/sn−1φ0,sn−1(g̃u, g̃u)

where

γsn/sn−1 = b1 B
∏

p1∈A (μ)
p1 �=p

(
c(p1)c(p) − 1

) ∏
p̃1∈R(μ)

(
c(p)c(p̃1) − 1

)−1

for some b1 ∈ O whose image in κ is invertible, and

B =
{

(c(p) − εq−1)(c(p) + εq), if 2 � r and �−1 = εu1,r;
(c(p)2 − q−2ε), if 2 | r and �−1 = −εqεu1,r .

Further, by Proposition 3.23, φ0,sn−1(g̃u, g̃u) ∈ O whose image in κ is not zero.
In order to show φ1,μ(g̃s, g̃s) = 0, we have to deal with three cases as follows: (1) p̃ /∈ {p−, p+};

(2) p̃ = p+; (3) p̃ = p− . We remark that one can use similar arguments for Wr,n,κ to verify
φ1,μ(g̃s, g̃s) = 0. We leave the details to the reader. By Lemma 2.10, gs ∈ Rad�(1,μ). Using
Lemma 4.4 yields the result, as required. �

Let rλ,p,p̃ = dim�(0, λ ∪ p ∪ p̃) if λ ∪ p ∪ p̃ is an r-partition. For each ( f , λ) ∈ Λr,n , let det G f ,λ be
the Gram determinant associated to the cell module �( f , λ) with respect to the invariant form φ f ,λ ,
which is defined via its JM-basis.

Proposition 4.7. (See [33, 4.14].) Suppose λ ∈ Λ+
r (n − 2) and r � 2 and n � 2. If 2 � r and �−1 = εu1,rtr , we

define

B =
∏

λ∪p∪p+∈Λ+
r (n)

(
c(p) − εq−1)rλ,p,p+ ∏

λ∪p∪p−∈Λ+
r (n)

(
c(p) + εq

)rλ,p,p−
.

Otherwise, we define

B =
{∏

λ∪p∪p−∈Λ+
r (n)(c(p)2 − q2)

rλ,p,p− , if 2 | r, �−1 = q−1u1,rtr,∏
λ∪p∪p+∈Λ+

r (n)(c(p)2 − q−2)
rλ,p,p+ , if 2 | r, �−1 = −qu1,rtr .

Then there is an A ∈ O whose image in κ is invertible such that

det G1,λ = AB
∏

p,p̃∈A (λ)
p̃ �=p

(
c(p)c(p̃) − 1

)rλ,p,p̃ . (4.8)
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The following result has been proved in [37] by induction on n together with arguments similar
to those for Br,n,κ in [33].

Proposition 4.9. Let �(1, λ) be the cell module of Wr,n,O , which is defined by its JM-basis. We have

det G1,λ = AB
∏

p,p̃∈A (λ)
p �=p̃

(
c(p) + c(p̃)

)rλ,p,p̃

where A ∈ O whose image in κ is invertible and

B =
{∏

λ∪p∪p+∈Λ+
r (n)(c(p) + c(p+))

rλ,p,p+ , if r is odd,∏
λ∪p∪p−∈Λ+

r (n)(c(p) + c(p−))
rλ,p,p− , if r is even.

Theorem 4.10. For each (1,μ) ∈ Λr,n, let �(1,μ) be the cell module for either Wr,n,κ or Br,n,κ .

a) �(0, λ) is a composition factor of �(1,μ) if and only if λ is (1,μ)-admissible. Further, �(1,μ) is multi-
plicity free.

b) dimκ D1,μ = dimκ �(1,μ) − ∑
λ dimκ �(0, λ) where λ ranges over all (1,μ)-admissible r-partitions

of n.

Proof. By Lemma 4.6, �(0, λ) is a composition factor of �(1,μ) if λ is (1,μ)-admissible. Motivated
by the proof of Theorem 5.1 in [20], we use mult(det G1,μ) to denote the multiplicity of t − 1 in
det G1,μ . We have

mult(det G1,μ) =
∑
i>0

dim radi (4.11)

where radi denote the image under α :�(1,μ)O → �(1,μ)κ : v → v ⊗ 1 of the O-submodule
{v ∈ �(1,μ), φ1,μ(v, w) ∈ (t − 1)iκ∗ for any w ∈ �(1,μ)}. By Proposition 4 in [23], O is a prin-
cipal ideal domain, row and column operations can be used to reduce the Gram matrix G1,μ as
a diagonal matrix. Therefore, mult(det G1,μ) is no less than the dimension of the radical of �(1,μ).
When we discuss Br,n,O , we need the fact that char(κ) �= 2. In this case, t + 1 �= t − 1. By Lemma 4.6,
dim Rad �(1,μ) �

∑
λ dim�(0, λ), where λ ranges over all (1,μ)-admissible r-partitions. Now, ev-

erything follows from Propositions 4.7, 4.9. �
Corollary 4.12. If either n > 2 or n = 2 and ωi �= 0 for some 0 � i � r − 1, then �(1,μ) is irreducible if and
only if there is no (1,μ)-admissible r-partition λ.

Proof. It follows from Theorems 3.4 and 3.16 that each cell module �(1,μ) has a simple head under
our assumption. Now, everything follows from Theorem 4.10. �
Corollary 4.13. Suppose r � 2, n = 2 and ωi = 0 for all 0 � i � r − 1. Then:

a) If r > 2, then �(1,∅) is always reducible;
b) If r = 2, then Wr,2,κ -module �(1,∅) is irreducible if and only if u1 + u2 = 0;
c) If r = 2, then Br,2,κ -module �(1,∅) is irreducible if and only if u1u2 = 1.

Proof. By Theorem 4.10, any composition factor of �(1,∅) is of form �(0, λ) for some (1,∅)-
admissible r-partition λ of n. Since dim�(1,∅) = r, and the dimension of �(0, λ) is at most 2, �(1,∅)

is reducible when r > 2. If r = 2, �(1,∅) is irreducible if and only if �(0, ((1), (1))) is the unique
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Fig. 1.

composition factor of �(1,∅). This is equivalent to u1 + u2 = 0 in κ for Wr,2,κ and u1u2 = 1 in κ
for Br,2,κ . �
5. Blocks of WWW r,n,κ and BBBr,n,κ

In this section, we classify the blocks of cyclotomic NW algebras and cyclotomic BMW algebras
over the field κ under Assumption 4.1. This will give some descriptions about the non-invertible
factors of the Gram determinant associated to each cell module of such algebras.

First, we introduce the notion of ( f ,μ)-admissible partitions which can be considered as the
generalization of those for BMW algebras in [35]. We remark that all of our definitions for ( f ,μ)-
admissible partitions are motivated by Cox–De Visscher–Martin’s work on the blocks of the Brauer
algebras in characteristic zero in [7].

Definition 5.1. Let λ ∈ Λ+
r (n) and μ ∈ Λ+

r (n − 2 f ), 0 < f � �n/2.

a) For Wr,n,κ , we say that λ is ( f ,μ)-admissible over κ if λ ⊃ μ and [λ/μ] consists of admissible
pairs {pi, p̃i}, 1 � i � f , such that the following conditions hold.
(i) If 2 � r and {p, p−} is an admissible pair in the i-th component of [λ/μ], then any admissible

pair {p1, p̃1} with p̃1 ∈ {p−
1 , p+

1 } has to be in the i-th component of [λ/μ].
There are two possible configurations of paired boxes with residues c(p) and c(p−) in the
i-th component of [λ/μ] as follows. Further, the number of columns in Fig. 1(b) is even.

(ii) If 2 | r and {p, p+} is an admissible pair in the i-th component of [λ/μ], then any admissi-
ble pair {p1, p̃1} with p̃1 ∈ {p−

1 , p+
1 } has to be in the i-th component of [λ/μ]. Further, the

number of rows in Fig. 1(a) is even.
b) For Br,n,κ , we say that λ is ( f ,μ)-admissible over κ if λ ⊃ μ and [λ/μ] consists of admissible

pairs {pi, p̃i}, 1 � i � f , such that the following conditions hold.
(i) Suppose that 2 � r and �−1 = εu1,r .

(1) If {p, p−} is an admissible pair in the i-th component of [λ/μ] with c(p) = εq, then any
admissible pair {p1, p̃1} with p̃1 ∈ {p−

1 , p+
1 } and c(p1) ∈ {εq, εq−1} has to be in the i-th

component of [λ/μ]. Further, the number of columns in Fig. 1(b) is even;
(2) If {p, p+} is an admissible pair in the j-th component of [λ/μ] with c(p) = −εq−1, then

any admissible pair {p1, p̃1} with p̃1 ∈ {p−
1 , p+

1 } and c(p1) ∈ {−εq,−εq−1} has to be in
the j-th component of [λ/μ]. Further, the number of rows in Fig. 1(a) is even;

Note that (1) and (2) may occur simultaneously when i �= j.
(ii) Suppose that 2 | r and �−1 = q−1u1,r and α ∈ {1,−1}. If there is an admissible pair {p, p+}

in the i-th component of [λ/μ] with c(p) = αq−1, then any admissible pair {p1, p̃1} with
p̃1 ∈ {p−

1 , p+
1 } and c(p1) ∈ {αq−1,αq} has to be in the i-th component of [λ/μ]. Further, the

number of rows in Fig. 1(a) is even.
(iii) Suppose that 2 | r and �−1 = −qu1,r and α ∈ {1,−1}. If there is an admissible pair {p, p−}

in the i-th component of [λ/μ] with c(p) = αq, then any admissible pair {p1, p̃1} with p̃1 ∈
{p−

1 , p+
1 } and c(p1) ∈ {αq,αq−1} has to be in the i-th component of [λ/μ]. Further, the

number of columns in Fig. 1(b) is even.
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Since we are keeping Assumption 4.1, we have q−1u1,r �= −qu1,r and εq−1 �= −εq−1. Therefore,
Definition 5.1 is well defined. If we allow r = 1, then Definition 5.1 for W1,n,C (resp. B1,n,κ ) is the
same as the definition of balanced pair for Brauer algebras in [7] (resp. that for BMW algebras in [35]).
Finally, we remark that Definition 4.5 is a special case of Definition 5.1.

Given (
,μ) ∈ Λr,n−1, ( f , λ) ∈ Λr,n with f > 0, we write (
,μ) → ( f , λ) if either 
 = f and μ → λ

or 
 = f − 1 and λ → μ.
Let {( f i,μ

(i)) | 1 � i � m} be all elements in Λr,n−1 such that ( f i,μ
(i)) → ( f , λ). The partial or-

der � defined on Λr,n−1 gives rise to a linear order on the set {( f i,μ
(i)) | 1 � i � m}. We arrange

such elements as

(
f1,μ

(1)
)
>

(
f2,μ

(2)
)
> · · · > (

fm,μ(m)
)
.

For each t ∈ T ud
n (λ), we identify ti with (

i−|ti |
2 , ti). We write ti � ui if (

i−|ti |
2 , ti) � (

i−|ui |
2 ,ui). Note

that (
i−|ti |

2 , ti), (
i−|ui |

2 ,ui) ∈ Λr,i .
In Proposition 5.2, we assume that R is the commutative ring either in Definition 3.1 for Wr,n or

in Definition 3.13 for Br,n . We also keep the u-admissible conditions.

Proposition 5.2. (See [32,35].) Let �( f , λ) be the cell module for Ar,n,R where Ar,n,R ∈ {Wr,n,R ,Br,n,R}. Let

Mi = R-span
{
mt

∣∣ t ∈ T ud
n (λ), tn−1 � μ(i)}.

The cell module �( f , λ) has the Ar,n−1,R -filtration 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mm = �( f , λ) such that
Mi/Mi−1 ∼= �( f i,μ

(i)). In particular, this result is available over an arbitrary field.

Given a λ ∈ Λ+
r (n), let tλ (resp. tλ) be the λ-tableau obtained from [λ] by adding 1,2, . . . ,n from

left to right along the rows of [λ(1)], [λ(2)], etc. (resp. from top to bottom down columns of [λ(r)],
[λ(r−1)], etc.).

For example, if λ = ((3,2), (2,1), (1,1)) ∈ Λ+
3 (10), then

tλ =
(

1 2 3
4 5

6 7
8

9
10, ,

)
, tλ =

(
6 8 10
7 9

3 5
4

1
2, ,

)
.

In this case, tλ (resp. tλ) can be identified with (t0, t1, t2, . . . , tn) ∈ T ud
n (λ) such that (tλ)i

(resp. (tλ)i ) is the ti-tableau, where (tλ)i (resp. (tλ)i ) is obtained from tλ (resp. tλ) by removing
its entries which are strictly greater than i.

Given two positive integers a, b, let (ab) be the partition (λ1, λ2, . . . , λb) of ab such that λi = a for
1 � i � b.

Lemma 5.3. Let λ be ( f ,μ)-admissible where μ ∈ Λ+
r (n − 2 f ) with 0 < f � �n/2 such that λ(i) = (ab)

with ab = n for some i, 1 � i � r. Let p0 = (i,b,a), p1 = (i,b − 1,a) and p2 = (i,b,a − 1). If {p0, p1} (resp.
{p0, p2}) is an admissible pair in [λ/μ], we define t := tλ (resp. t = tλ). Then there is a unique s ∈ T ud

n (μ)

such that cs(i) = ct(i) in κ for any 1 � i � n.

Proof. First, we prove the result for Br,n,κ . Suppose s ∈ T ud
n (μ) such that cs(i) = ct(i) in κ for all

positive integers i � n. If there is a j � n such that the 
-component of s j is not empty and 
 �= i, we
pick the minimal j. So, cs( j) = u
 . Note that ct( j) = cs( j). By the definition of t, we have u
 = uiq2d

for some d ∈ Z with |d| < n. This contradicts our Assumption 4.1. In other words, if such an s exists,
the 
-th component of each s j has to be empty provided 
 �= i. Thus, it suffices to prove our result
for r = 1. We have done it for BMW algebras in [35, 4.3]. This completes the proof for Br,n,κ .

Finally, one can construct s for Wr,n,κ by similar arguments in the proof of [35, 4.3]. We leave the
details to the reader. �
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Recall that {gs | s ∈ T ud
n (λ)} (resp. { fs | s ∈ T ud

n (λ)}) is a κ-basis (resp. K -basis) of the cell module
�( f , λ) either for Wr,n,κ or for Br,n,κ (resp. either for Wr,n,K or for Br,n,K ). Write

gsEi =
∑

t∈T ud
n (λ)

Ẽst(i)gt and fsEi =
∑

t∈T ud
n (λ)

Est(i) ft. (5.4)

Lemma 5.5. Let s, p0 , p1 and p2 be defined in Lemma 5.3. For Wr,n,κ , Ẽss(n − 1) �= 0 if sn−2 = sn and one of
the following conditions holds:

a) 2 � r, and c(p0) + c(p1) = 0;
b) 2 | r and c(p0) + c(p2) = 0.

Proof. For any t ∈ T ud
n (μ), by (2.8)

ft = g̃t +
∑

u∈T ud
n (μ)

u�t
u≈t

cu g̃u (5.6)

for some scalars cu ∈ K . By Lemma 5.3, the residue class in T ud
n (μ) which contains s is {s} forcing

g̃s = fs . So, g̃s can not appear on the right-hand side of (5.6) with non-zero coefficient in K whenever

s �= t. Write u
k∼ v if u j = v j for any j �= k and u,v ∈ T ud

n (μ). By [32, 6.9] for Wr,n,κ ,

fsEn−1 = Ess(n − 1) fs +
∑

u
n−1∼ s
u �=s

Esu(n − 1) fu = Ess(n − 1)g̃s +
∑
v�=s

bv g̃v, (5.7)

for some scalars bv ∈ O. So, Ẽss(n − 1) is equal to the image of Ess(n − 1) in κ . By [4, 4.8],

Ess(n − 1) =
{

b1 B1(−2c(α1) − (−1)r), if sn−1 = μ/α1,

b2 B2(2c(α2) − (−1)r), if sn−1 = μ ∪ α2,

where b1,b2 ∈ O such that the images of b1, b2 in κ are invertible and

B1 =
∏

p̃∈R(μ)
p̃ �=α1

(
c(α1) + c(p̃)

) ∏
p̃∈A (μ)

(
c(α1) + c(p̃)

)−1
,

B2 =
∏

p̃∈A (μ)
p̃ �=α2

(
c(α2) + c(p̃)

) ∏
p̃∈R(μ)

(
c(α2) + c(p̃)

)−1
.

By Lemma 4.3, neither removable node p̃ with p̃ �= α1 nor addable node p̃ with p̃ �= α2 of μ
has residue −c(α1) (resp. −c(α2)) where α1 ∈ R(μ) (resp. α2 ∈ A (μ)) with c(α1) = c(p0) (resp.
c(α2) = −c(p0)), forcing the image of B1 (resp. B2) in κ is not equal to zero.

Note that we are assuming that char(κ) �= 2. It is routine to check that 2c(α1) + (−1)r �= 0 in κ if
sn−1 = μ/α1 and 2c(α2) − (−1)r �= 0 in κ if sn−1 = μ ∪ α2. In any case, Ẽss(n − 1) �= 0. �
Lemma 5.8. Let s, p0 , p1 and p2 be defined in Lemma 5.3. For Br,n,κ , Ẽss(n − 1) �= 0 if sn−2 = sn and one
of the following conditions holds:
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a) 2 � r, �−1 = εu1,r , and either c(p1) = εq with c(p0)c(p1) = 1 or c(p2) = −εq−1 with c(p0)c(p2) = 1;
b) 2 | r and �−1 = q−1u1,r and c(p0)c(p2) = 1;
c) 2 | r and �−1 = −qu1,r , and c(p0)c(p1) = 1.

Proof. We write fsEn−1 = ∑
t

n−1∼ s
Est(n − 1) ft over K , where (O, K , κ) is the modular system

for Br,n,κ which we constructed in Section 4. We remark that we have to use uit instead of ui ,
1 � i � r in the definition of Br,n,x with x ∈ {O, K }.

If 2 � r, �−1 = εu1,rtr , by [33, 4.20],

Ess(n − 1) =
{

b1 B1(c(α1)
−1 − εq−1)(c(α1)

−1 + εq), if sn−1 = μ/α1,

b2 B2(c(α2) − εq−1)(c(α2) + εq), if sn−1 = μ ∪ α2,

where b1,b2 ∈ O such that the images of b1, b2 are in κ∗ and⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

B1 =
∏

p̃∈R(μ)
p̃ �=α1

(
c(α1)c(p̃) − 1

) ∏
p̃∈A (μ)

(
c(α1)c(p̃) − 1

)−1
,

B2 =
∏

p̃∈A (μ)
p̃ �=α2

(
c(α2)c(p̃) − 1

) ∏
p̃∈R(μ)

(
c(α2)c(p̃) − 1

)−1
.

(5.9)

If 2 | r and �−1 = −εqεu1,rtr , by [33, 4.21],

Ess(n − 1) =
{

b1 B1(c(α1)
2 − q2ε), if sn−1 = μ/α1,

b2 B2(c(α2)
2 − q−2ε), if sn−1 = μ ∪ α2,

where b1,b2 ∈ O such that the images of b1, b2 are in κ∗ and B1, B2 are given in (5.9).
By arguments similar to those in the proof of Lemma 5.5, one can verify Ẽss(n − 1) �= 0 in κ . We

leave the details to the reader. �
For each Ar,n,κ -module M and each irreducible Ar,n,κ -module N , define [M : N] to be the multi-

plicity of N in M . The following result is motivated by Cox–De Visscher–Martin’s work on the blocks
of the Brauer algebras in characteristic zero in [7]. Such a result has been proved for the BMW alge-
bras in [35].

Proposition 5.10. If [�( f ,μ) : �(0, λ)] �= 0 for (0, λ), ( f ,μ) ∈ Λr,n with 0 < f � �n/2, then λ is ( f ,μ)-
admissible.

Proof. We prove our result by induction on n. The result for n = 2 follows from Theorem 4.10. Now,
we assume n > 2.

By our Assumption 4.1(a) (resp. (b)) and [4, 6.11] (resp. [1]), Hr,n,κ (resp. Hr,n,κ ) for r � 2 is split
semisimple over κ . Further, �(0, λ) = D0,λ since �(0, λ) can be considered as the cell module for
either Hr,n,κ or Hr,n,κ . In the following, we use Ar,n,κ instead of either Wr,n,κ or Br,n,κ .

If [�( f ,μ) : �(0, λ)] �= 0, then there is a non-zero monomorphism

φ :�(0, λ) → �( f ,μ)/M

for some Ar,n,κ -submodule M of �( f ,μ). Acting
∑n

i=1 Xi (resp.
∏n

i=1 Xi) on Wr,n,κ -modules (resp.
Br,n,κ -modules) �(0, λ) and �( f ,μ), and using [32, 5.9] (resp. [33, 3.5b]) yields

∑
p∈[λ]

c(p) =
∑

p∈[μ]
c(p) (5.11)
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respectively

∏
p∈[λ]

c(p) =
∏

p∈[μ]
c(p). (5.12)

For each p ∈ R(λ), by Frobenius reciprocity and Proposition 5.2,

HomAr,n,κ

(
Ind

Ar,n,κ

Ar,n−1,κ
�

(
0, λ/{p}),�(0, λ)

) �= 0.

Since φ is injective and �(0, λ) is irreducible,

HomAr,n,κ

(
Ind

Ar,n,κ

Ar,n−1,κ
�

(
0, λ/{p}),�( f ,μ)/M

) �= 0.

By Frobenius reciprocity, Proposition 5.2 and (5.11)–(5.12) again, either

[
�

(
f ,μ/{p̃}) : �(

0, λ/{p})] �= 0

for some p̃ ∈ R(μ) with c(p) = c(p̃) or

[
�

(
f − 1,μ ∪ {p1}

) : �(
0, λ/{p})] �= 0

for some p1 ∈ A (μ) such that p, p1 is an admissible pair.
In the first case, we use induction assumption on n − 1 to get λ/{p} ⊃ μ/{p̃}. Since c(p) = c(p̃),

by Lemma 4.3, p and p̃ have to be in the same diagonal of some component of λ. So, λ ⊃ μ. By
induction assumption on n − 1, the skew Young diagram [λ/{p}/μ/{p̃}] consists of admissible pairs.
So is [λ/μ].

In the second case, λ ⊃ λ/{p} ⊃ μ∪ p1 ⊃ μ and {p, p1} is an admissible pair. In any case, we have
proved that λ ⊃ μ and [λ/μ] consists of admissible pairs.

We can assume that there is a unique component of λ, say λ(i) , such that |λ(i)| �= 0. Otherwise,
we can find two removable nodes of [λ], which are in different components of [λ]. In this case, the
results follow from induction assumption on n − 1 together with Frobenius reciprocity.

If there is at least one p ∈ R(λ) such that the admissible pair p, p̃ is neither of the form in
Definition 5.1(a)(i)–(ii) nor of the form in Definition 5.1(b)(i)–(iii), we can use Frobenius reciprocity
and induction assumption on n − 1 to get the result as required.

So, we can assume that λ(i) = (ab) ∈ Λ+
1 (n) for some 1 � i � r. In this case, λ has a unique remov-

able node say p1 = (i,b,a). We remark that p1 is denoted by p0 in Lemma 5.3.
Since λ ⊃ μ, we have p1 /∈ [μ]. Note that λ is ( f ,μ)-admissible, we can find p2 such that

a) p1 = p−
2 if p1, p2 is the admissible pair given in Definition 5.1(a)(i) or Definition 5.1(b)(i)(1) or

Definition 5.1(b)(iii);
b) p1 = p+

2 if p1, p2 is the admissible pair given in Definition 5.1(a)(ii) or Definition 5.1(b)(i)(2) or
Definition 5.1(b)(ii).

Using Frobenius reciprocity and induction assumption on n − 1, we have the results except the
case when

[
�( f − 1,μ) : �(

0, λ/{p1, p2}
)] �= 0.

We complete the proof by showing that

[
�( f − 1,μ) : �(

0, λ/{p1, p2}
)] = 0.



H. Rui, M. Si / Journal of Algebra 335 (2011) 188–219 209
In fact, we have �(0, λ) = D0,λ and {gt | t ∈ T ud
n (λ)} is a κ-basis of �(0, λ). Since [�( f ,μ) :

�(0, λ)] �= 0 and �(0, λ) is irreducible, there is a non-trivial Ar,n,κ -homomorphism φ :�(0, λ) →
�( f ,μ)/M such that

0 �= φ(gt) ≡
∑

u∈T ud
n (μ)

augu (mod M) (5.13)

for any t ∈ T std
n (λ). Let t ∈ T ud

n (λ) be given in Lemma 5.3. By Lemma 5.3, we find a unique
s ∈ T ud

n (μ) such that cs( j) = ct( j) for all positive integers j � n. Further, gt Fs = gt and gs ap-
pears on the right-hand side of (5.13) with non-zero coefficient. Otherwise, acting Fs on both sides
of (5.13) and using Proposition 2.5 yields φ(gt) = 0, a contradiction. So, φ(gt) ≡ as gs (mod M) with
as �= 0 and gs /∈ M .

By the uniqueness of s in Lemma 5.3, sn = sn−2. Since En−1 acts trivially on �(0, λ), φ(gt)En−1 = 0,
forcing gsEn−1 ∈ M . By (5.7),

fsEn−1 = Ess(n − 1)g̃s +
∑
v�=s

bv g̃v

for some scalars bv ∈ O. By base change,

gsEn−1 = Ẽss(n − 1)gs +
∑
v�=s

cvgv, (5.14)

for some scalars cv ’s in κ , where Ẽss(n − 1) is the image of Ess(n − 1) in κ . By Lemma 5.5 for Wr,n,κ

(resp. Lemma 5.8 for Br,n,κ ), Ẽss(n − 1) ∈ κ∗ , forcing gs ∈ M , and φ(gt) = 0, a contradiction. �
We give the following lemma which will be used in Definition 5.16.

Lemma 5.15. Assume (0, λ), ( f ,μ) ∈ Λr,n with 0 < f � �n/2 such that λ ⊃ μ.

a) If p, p̃ is an admissible pair in the i-th component of [λ/μ], then any node p1 in the i-th component of
[λ/μ] has to be paired with p̃1 which is in the i-th component of [λ/μ], too.

b) If p, p̃ is an admissible pair such that p (resp. p̃) is in the i-th (resp. j-th) component of [λ/μ], then any
node p1 in the i-th component of [λ/μ] has to be paired with p̃1 which is in the j-th component of [λ/μ].

Proof. Suppose that p̃1 is in the j-th component of [λ/μ] with j �= i. Note that two nodes in a Young
diagram [λ] have the same residues if they are in the same diagonal of a component of [λ]. So, we
need only to deal with the case when λ(i) is a hook and λ( j) is either (a) or (1a) where a = |λ( j)|. It
is routine to check that it will result in a contradiction since we are assuming Assumption 4.1. This
proves (a). (b) can be verified similarly. �

We need Definition 5.16 to describe some composition factors of cell modules for either Wr,n,κ

or Br,n,κ . This is motivated by Cox–De Visscher–Martin’s work on the blocks of Brauer algebras in
characteristic zero [7] together with our Theorem 4.10. Since our definition is similar to that for Brauer
algebras in [7], we copy the arguments in [7] and make some modification.

Definition 5.16. Let μ ∈ Λ+
r (n − 2 f ) for some 0 < f � �n/2. If λ is ( f ,μ)-admissible, we want

to define an r-partition νλ,μ such that λ is (
n−|νλ,μ|

2 , νλ,μ)-admissible, λ ⊃ νλ,μ ⊇ μ and |νλ,μ| is
maximal.

Pick a p ∈ R(λ) ∩ [λ/μ]. Since λ is ( f ,μ)-admissible, there is a node, say p̃ ∈ [λ/μ] such that
{p, p̃} is an admissible pair.



210 H. Rui, M. Si / Journal of Algebra 335 (2011) 188–219
Case 1. p (resp. p̃) is in the i-th (resp. j-th) component of λ and i �= j.
By Lemma 5.15, all nodes which can be paired with p have to be in the j-th component of [λ].

Further, by Lemma 5.15(a), we cannot find an admissible pair {p, p+} or {p, p−} either in i-th or j-th
component of [λ/μ]. Pick p̃ in the j-th component of λ such that the row index of p̃ is maximal. Let
(λ/μ)0 = {p, p̃}. Given (λ/μ)m , set

(λ/μ)m+1 = (λ/μ)m ∪ Am+1 ∪ Ãm+1

where Am+1 is the set of nodes p in the i-th (resp. j-th) component of λ such that p is to the
right of or below a node which is in the i-th (resp. j-th) component of (λ/μ)m , and Ãm+1 is the
set of nodes p̃ in the j-th (resp. i-th) component of [λ/μ] such that p, p̃ is an admissible pair for
some p ∈ Am+1, and the row index of p̃ is maximal with such residue among the nodes of [λ/μ] not
already in (λ/μ)m .

This iterative process eventually stabilizes, and we obtain (λ/μ)t which may be a disconnected
subset of the edge of [λ/μ], having width one. We define

λ/νλ,μ(p) = (λ/μ)t .

Case 2. p and p̃ are in the i-th component of λ.
By Lemma 4.3, all nodes which can be paired with p have to be in the i-th component of [λ]. We

pick p̃ such that the row index of p̃ is maximal among all nodes with such residues in [λ/μ] and
p �= p̃. Let (λ/μ)0 = {p, p̃}. Given (λ/μ)m , set

(λ/μ)m+1 = (λ/μ)m ∪ Am+1 ∪ Ãm+1

where Am+1 is the set of nodes p in the i-th component of λ such that p is to the right of or below a
node in (λ/μ)m , and Ãm+1 is the set of nodes p̃ with p �= p̃ in [λ/μ] such that p, p̃ is an admissible
pair for some p ∈ Am+1, and the row index of p̃ is maximal with such residue among the nodes of
[λ/μ] not already in (λ/μ)m . By Lemma 5.15, all nodes in Ãm+1 have to be in the i-th component
of [λ/μ].

This iterative process eventually stabilizes, and we obtain (λ/μ)t which is a possibly disconnected
subset of the edge of [λ/μ], having width at most two. We remark that (λ/μ)t has width two only
when (λ/μ)t contains an admissible pair p, p̃ such that c(p) = c(p̃). Since we are assuming Assump-
tion 4.1, we cannot find two admissible pairs with forms either {pl, p+

l } or {pl, p−
l }, l = 1,2, in the

i-th component of [λ/μ]. In this case, we define

λ/νλ,μ(p) = (λ/μ)t .

Suppose that the width of (λ/μ)t is one. If there is no pair {p, p−} (resp. (p, p+)) in (λ/μ)t

satisfying the conditions in Definition 5.1(a)(i), (b)(i)(1) and (b)(iii) (resp. Definition 5.1(a)(ii), (b)(i)(2)
and (b)(ii)), then we define

λ/νλ,μ(p) = (λ/μ)t .

Otherwise, we define λ/νλ,μ(p) for Wr,n,κ and Br,n,κ in Cases 3–4.

Case 3. Br,n,κ .

(a) Suppose that either 2 � r, ρ−1 = εu1,r and c(p) = εq or 2 | r and ρ−1 = −qu1,r . If {p, p−} is an
admissible pair in (λ/μ)t , we set (λ/μ)t+1 = (λ/μ)t ∪ {x, x−} where {x, x−} is an admissible pair
in [λ/μ] with residue c(x) = c(p) and x /∈ (λ/μ)t such that the row index of x is equal to the row
index of p minus 1.
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(b) Suppose that either 2 � r, ρ−1 = εu1,r and c(p) = −εq−1 or 2 | r and ρ−1 = q−1u1,r . If {p, p+} is
an admissible pair in (λ/μ)t , we set (λ/μ)t+1 = (λ/μ)t ∪ {x, x+} where {x, x+} is an admissible
pair in [λ/μ] with c(x) = c(p) and x /∈ (λ/μ)t such that the row index of x is equal to the row
index of p minus 1.

Since we are keeping Assumption 4.1, the cases (a) and (b) cannot occur simultaneously.

Case 4. Wr,n,κ .

(a) Suppose that 2 � r. If {p, p−} is an admissible pair in (λ/μ)t , we set (λ/μ)t+1 = (λ/μ)t ∪ {x, x−}
where x, x− are nodes in [λ/μ] with residue c(x) = c(p) and x /∈ (λ/μ)t such that the row index
of x is equal to the row of index of p minus 1.

(b) Suppose that 2 | r. If {p, p+} is an admissible pair in (λ/μ)t , we set (λ/μ)t+1 = (λ/μ)t ∪ {x, x+}
where x, x+ are nodes in [λ/μ] with residue c(x) = c(p) and x /∈ (λ/μ)t such that the row index
of x is equal to the row index of p minus 1.

Then (λ/μ)t+1 may not be stable under the process we have used in Cases 2. We apply the process
repeatedly until the skew r-partition eventually stabilizes at some step, say s. We set

λ/νλ,μ(p) = (λ/μ)s.

We remark that λ/νλ,μ(p) is a subset of λ/μ having width two.
Let νλ,μ be maximal in the sense that η = λ if η is an r-partition such that η is ( f1, νλ,μ)-

admissible, and η � νλ,μ . This is well defined since |λ| < ∞ and λ ⊃ νλ,μ(p) ⊇ μ for each p ∈ R(λ) ∩
[λ/μ], we will get νλ,μ after a finite number of previous processes. We remark that νλ,μ may not be
unique.

Lemma 5.17. Let ( f ,μ) ∈ Λr,n with 0 < f � �n/2. If λ is ( f ,μ)-admissible, we write 2
 = |λ| − |νλ,μ|
where νλ,μ is an r-partition defined in Definition 5.16. Define s ∈ T ud

n (νλ,μ) be such that:

a) si , n − 
 � i � n, is obtained from si+1 by adding the node pi such that si is maximal in the set {si+1 ∪ p |
p ∈ [λ/νλ,μ]};

b) si = (tη)i , for all positive integers i � n − 
, where sn−
 = η and |η| = n − 
.

We have:

(1) there exists a t ∈ T std
n (λ) such that ct(i) = cs(i) for any 1 � i � n;

(2) If u ∈ T ud
n (νλ,μ) with u ≈ s, then u = s.

Proof. Let t ∈ T std
n (λ) such that ti = si , 1 � i � n − 
 and t j is maximal in the set {t j−1 ∪ p | p ∈

[λ/νλ,μ]}, n − 
 + 1 � j � n. We want to prove ct(i) = cs(i) for 1 � i � n.
Suppose tn = tn−1 ∪ {p}, where p = (i, j,k). Then p ∈ R(λ) ∩ [λ/νλ,μ] and no node (i1, j1,k1) ∈

R(λ)∩[λ/νλ,μ] such that either i1 > i or i1 = i and j1 > j. Otherwise, tn−1 is not maximal among the
set {tn−2 ∪ {p} | p ∈ [λ/νλ,μ]}. Since [λ/νλ,μ] consists of admissible pairs, there is a p̃ ∈ [λ/νλ,μ] such
that {p, p̃} is an admissible pair. By Lemma 4.3, all such p̃ are in the same diagonal of a component
of [λ]. So, we pick the p̃ with minimal row index. We claim:

a) p̃ ∈ A (νλ,μ).
b) νλ,μ ∪ {p̃} is maximal in the set {νλ,μ ∪ {a} | a ∈ A (νλ,μ) ∩ [λ]}.

If so, by the definition of s in Lemma 5.17, sn−1 = sn ∪{p̃} and cs(n) = ct(n). Now, we use induction
assumption on n − 1 to obtain cs(i) = ct(i), 1 � i � n − 1.
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Fig. 2.

Fig. 3.

Recall that p = (i, j,k). We write α = (i, j − 1,k − 1) and p1 = (i1, j1 + 1,k1 + 1) if p̃ = (i1, j1,k1).
Let β− = p̃ and γ + = p̃. In order to prove (a)–(b), we have to discuss the four cases as follows.

Case 1. α+,α− /∈ [λ/νλ,μ].
We have p̃ ∈ R(λ) ∩ [λ/νλ,μ] and [λ/νλ,μ] = {p, p̃}. This proves (a)–(b).

Case 2. α+ /∈ [λ/νλ,μ], α− ∈ [λ/νλ,μ].
If p and p̃ are in the same row, then [λ/νλ,μ] is given in Fig. 2. This proves (a)–(b).
In the rest case, since α+ /∈ [λ/νλ,μ], we have p̃−, γ /∈ [λ/νλ,μ]. Note that α− ∈ [λ/νλ,μ] and the

scalar c(α−) appears once among the residues of the nodes in [λ/νλ,μ], either p̃+ or β is paired
with α− in [λ/νλ,μ]. In the later case, p̃ ∈ R(λ) and [λ/νλ,μ] = {p, p̃}, a contradiction. So p̃+ is
paired with α− in [λ/νλ,μ] and β /∈ [λ/νλ,μ], forcing p̃ ∈ A (νλ,μ).

If α1 ∈ [λ] such that α1 and p̃ are in the same row and α+
1 /∈ [λ], then α1 must be paired with

one node α̃1 in [λ/νλ,μ]. Since α /∈ [λ/νλ,μ], α̃1 and p are in the same row and α̃1 ∈ A (νλ,μ). This
shows that

[λ/νλ,μ] = {r0, r1, . . . , r
} ∪ {r̃0, r̃1, . . . , r̃
},

where r0 = p, r̃0 = p̃ and r+
i+1 = ri and r̃+

i = r̃i+1, 0 � i � 
 − 1, and α1 = r̃
 . This proves (b).

Case 3. α+ ∈ [λ/νλ,μ], α− /∈ [λ/νλ,μ].
If p and p̃ are in the same column, by the construction of νλ,μ , the transpose of [λ/νλ,μ] is given

as Fig. 2. So, both (a) and (b) follow.
In the rest case, β /∈ [λ/νλ,μ] and p̃+ /∈ [λ] since α− /∈ [λ/νλ,μ]. Note that α+ ∈ [λ/νλ,μ] and

c(α+) appears once among the residues of the nodes in [λ/νλ,μ]. Either p̃− or γ is paired with α+
in [λ/νλ,μ]. If γ is paired with α+ , then p̃ ∈ R(λ) and [λ/νλ,μ] = {p, p̃}, a contradiction. So p̃− is
paired with α+ in [λ/νλ,μ] and γ /∈ [λ/νλ,μ], forcing p̃ ∈ A (νλ,μ).

If there is a node with row index strictly less than that of p̃ in [λ/νλ,μ], then this node must be
paired with the node to the left of p. This is a contradiction since α− /∈ [λ/νλ,μ]. This proves (b).

Case 4. α+,α− ∈ [λ/νλ,μ].
There are two cases we have to discuss.

Subcase 4.1. α /∈ [λ/νλ,μ].
Then p and p̃ cannot be in the same row. Otherwise, since the multiplicity of c(p) is one, [λ/νλ,μ]

is given in Fig. 2, a contradiction. When the row number of p̃ is equal to that of p minus one,
[λ/νλ,μ] is one of skew Young diagram in Fig. 3. In the second diagram of Fig. 3, the nodes in dark
are in [νλ,μ]. It is impossible because α+ ∈ [λ/νλ,μ]. This proves (a)–(b).

In the rest case, we have β /∈ [λ/νλ,μ]. Otherwise, β must be paired with α− . Since c(α−) appears
once among the residues of the nodes in [λ/νλ,μ], p̃+ /∈ [λ/νλ,μ]. By the definition of νλ,μ , α− /∈
[λ/νλ,μ], a contradiction.
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Fig. 4.

If γ ∈ [λ/νλ,μ], then γ must be paired with α+ . Since c(α+) appears once among the residues
of the nodes in [λ/νλ,μ], p̃− /∈ [λ/νλ,μ]. By the definition of νλ,μ , {γ ,α+} /∈ [λ/νλ,μ], a contradiction.
This proves γ /∈ [λ/νλ,μ], forcing p̃ ∈ A (νλ,μ).

We cannot find any node in [λ/νλ,μ] whose row index is strictly less than that of p̃. Otherwise,
we can find {ã1, ã2, . . . , ãk} such that {ai, ãi} is an admissible pair for any 1 � i � k and λ is (
 − k,

νλ,μ ∪ {a1,a2, . . . ,ak} ∪ {ã1, ã2, . . . , ãk})-admissible, a contradiction. So (b) is proved in this case.

Subcase 4.2. α ∈ [λ/νλ,μ].
The width of [λ/νλ,μ] is 2. So, all the nodes in [λ/νλ,μ] have to be in the same component of [λ].

In [λ/νλ,μ], there exist two nodes with the residue c(p̃). Since the row number of p̃ is minimal,
another node in [λ/νλ,μ] which can be paired with p has to be p1 where p1 = (p̃+)− . We remark
that p and p̃ cannot be in the same row. Otherwise, the row index of p1 is equal to that of p plus
one. This is a contradiction since the row index of p in [λ(i)] is maximal.

Note that α ∈ [λ/νλ,μ]. When the row index of p̃ is equal to that of p minus one, [λ/νλ,μ] is one
of skew Young diagrams in Fig. 4. In each case, {r1, r2} is an admissible pair. This proves (a)–(b).

In the rest case, since the width of [λ/νλ,μ] is 2, by the definition of νλ,μ , we have p−
1 ∈ [λ/νλ,μ].

Further, since the scalar c(p−
1 ) appears twice, we have γ /∈ [λ/νλ,μ].

We want to prove that there is no node in [λ/νλ,μ] whose row index is strictly less than that
of p̃. Otherwise, let {a1,a2, . . . ,ak} be all nodes which are in the first row of the skew Young diagram
[λ/νλ,μ]. Since [λ/νλ,μ] consists of admissible pairs, we can find {ã1, ã2, . . . , ãk} such that each {ai, ãi}
is an admissible pair. Here the residues of c(ai), 1 � i � k are different. Further, we can choose ãi
such that it is either in the same row of p or in the same row with α. We take such ãi ’s such
that νλ,μ ∪ {ã1, . . . , ãk} ∪ {a1, . . . ,ak} is an r-partition. In this case, λ is (
 − k, νλ,μ ∪ {a1,a2, . . . ,ak} ∪
{ã1, ã2, . . . , ãk})-admissible, which contradicts the fact that |νλ,μ| is maximal. This proves (a) and (b).

We have proved (1) of this lemma. Suppose u is given in (2) of this lemma. By the definition
of s, sn−1 = sn ∪ {p} = νλ,μ ∪ {p} for some p ∈ A (νλ,μ). We claim that un−1 �= νλ,μ/{p1} for any
p1 ∈ R(νλ,μ). Otherwise, since we are assuming u ≈ s, {p1, p} is an admissible pair. Note that p1 /∈
[λ/νλ,μ]. The node which is paired with p is (p−

1 )+ . Write p2 := p−
1 . By Lemma 5.15, p̃2 and p are

in the same component of [λ]. Since p ∈ A (νλ,μ), by the construction of νλ,μ , p̃2 = p+ ∈ [λ/νλ,μ]
and {p2, p̃2} is an admissible pair, too. Since u ≈ s, un−2 can be obtained from un−1 by removing the
node p3 with p+

3 = p1. Note that the column index of p3 is strictly less than that of p1. We remark
that p3 and p1 are in the same component, the above statement makes sense. After a finite number
of steps, we will not find such a removable node which is similar to p3. This is a contradiction. So
sn−1 = νλ,μ ∪ {p1}. Since s ≈ u, by Lemma 4.3, p = p1. So, un−1 = sn−1. By induction assumption
on n − 1, si = ui for all 1 � i � n − 1, forcing s = u. �

The following result is for both Wr,n,κ and Br,n,κ .

Lemma 5.18. Let μ ∈ Λ+
r (n − 2 f ) with 0 < f � �n/2. If λ is ( f ,μ)-admissible and if νλ,μ is one of

r-partitions defined in Definition 5.16, we have φ
,νλ,μ (gs, gs) = 0 where 
 = n−|νλ,μ|
2 and s ∈ T ud

n (νλ,μ)

which is defined in Lemma 5.17.

Proof. We prove the result for Wr,n,κ . One can prove it for Br,n,κ by similar arguments.
Suppose sn−1 = sn ∪ p1 for the p1 ∈ A (νλ,μ) ∩ [λ/νλ,μ] such that the row index of p1 is minimal

in the skew Young diagram [λ/νλ,μ]. Since [λ/νλ,μ] consists of admissible pairs, there exists p̃1 ∈
[λ/νλ,μ] such that c(p1)+c(p̃1) = 0. We are going to compute φ
,νλ (g̃s, g̃s) over the ground ring O,
λ,μ



214 H. Rui, M. Si / Journal of Algebra 335 (2011) 188–219
where (O, K , κ) is the modular system for Wr,n,κ that we have constructed in Section 4. We write
〈g̃s, g̃s〉 instead of φ
,νλ,μ (g̃s, g̃s).

Write u = (s0, s1, . . . , sn−1), then fs = g̃s and fu = g̃u . By Propositions 3.7–3.12,

〈g̃s, g̃s〉 = γsn/sn−1φ
−1,sn−1(g̃u, g̃u)

where

γsn/sn−1 = b1
(
2c(p1) − (−1)r)∏

p∈A (νλ,μ), p �=p1
(c(p1) + c(p))∏

p̃∈R(νλ,μ)(c(p1) + c(p̃))

for some b1 ∈ O whose image in κ is invertible. Note that φ
−1,sn−1(g̃u, g̃u) ∈ O.
By the definition of s, there is an a ∈ R(λ) such that {p1,a} is an admissible pair. If [λ/νλ,μ] =

{p1,a}, then the result follows from the arguments in the proof of Lemma 4.6. Otherwise, cardinality
of the set of the nodes in [λ/νλ.μ] is strictly greater than 2.

If a = p−
1 , then 2 | r. If a = p+

1 , then 2 � r. In any case, 2c(p1)− (−1)r = 0. Note that λ/{a} is ( 1
2 (n −

1 −|sn−1|), sn−1)-admissible. By induction and the fact that 
− 1 > 0, φ
−1,sn−1(g̃u, g̃u) = 0. Note that
the multiplicity of zero divisor in

∏
p̃∈R(νλ,μ)(c(p1) + c(p̃)) is at most one. We have 〈gs, gs〉 = 0.

Now, we assume that a /∈ {p−
1 , p+

1 }. We need only discuss the case when the image of γsn/sn−1

in κ is not well defined. Otherwise, since λ/{a} is ( 1
2 (n − 1 − |sn−1|), sn−1)-admissible and 1

2 (n − 1 −
|sn−1|) > 0, by the previous arguments, we still have φ
−1,sn−1(g̃u, g̃u) = 0, forcing 〈gs, gs〉 = 0.

If γsn/sn−1 in κ is not well defined, then {p1, p+
1 } (resp. {p1, p−

1 }) is not an admissible pair in
[λ/νλ,μ] when r is odd (resp. even). In this case, there is a p̃ ∈ R(νλ,μ) such that c(p1) + c(p̃) = 0.

Let {p1, p2, . . . , pb} ∈ [λ/νλ,μ] such that pi = p+
i−1 and p+

b /∈ [λ]. We can find a minimal integer
i � b such that p̃i ∈ A (νλ,μ) and c(pi) + c(p̃i) = 0. Further, the row indexes of p̃ j for 1 � j � i are
the same.

By Propositions 3.10 and 3.12, we have, for 1 � k � i,

γsn−k+1/sn−k = b2
(
2c(pk) − (−1)r)∏

p∈A (sn−k+1), p �=pk
(c(pk) + c(p))∏

p∈R(sn−k+1)(c(pk) + c(p))
. (5.19)

Hence

γsn/sn−1γsn−i+1/sn−i = b1b2
(
2c(p1) − (−1)r)(2c(pi) − (−1)r)

×
∏

p∈A (νλ,μ), p �=p1
(c(p1) + c(p))∏

p∈R(νλ,μ), c(p) �=−c(p1)(c(p1) + c(p))

×
∏

p∈A (sn−i+1), p /∈{pi ,p̃i}(c(pi) + c(p))∏
p∈R(sn−i+1)(c(pi) + c(p))

. (5.20)

So, γsn/sn−1γsn−i+1/sn−i �= 0.
If k < i, we cannot find p ∈ A (sn−k+1) (resp. p ∈ R(sn−k+1)) such that p �= pk and c(p) +

c(pk) = 0. So,

γsn−1/sn−2 · · ·γsn−i+1/sn−i �= 0.

If there is another minimal integer, say i′ with b � i′ > i such that p̃i′ ∈ A (νλ,μ) and c(p̃i′ ) +
c(pi′ ) = 0, then we use previous arguments to verify

γsn−i/sn−i−1 · · ·γs ′ /s ′ �= 0

n−i +1 n−i
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in κ . After a finite number of steps, we cannot find such an addable node. Let p̃i be the addable node
with i maximal, then

γsn−1/sn−2 · · ·γsn−i+1/sn−i �= 0

in κ . By (5.19) for i + 1 � k � b, we have γsn−k+1/sn−k �= 0. So, γsn−1/sn−2 · · ·γsn−b+1/sn−b �= 0. By
Lemma 5.17, we can find a sequence of nodes a1,a2, . . . ,ab ∈ [λ] such that

νλ/{a1,...,ab},νλ,μ∪{p1,...,pb} = νλ,μ ∪ {p1, . . . , pb}.

By induction assumption φ
1,v(gv, gv) = 0 in κ where 2
1 = n − b − |sn−b| and v = (s0, s1, . . . , sn−b).
This proves φ
,νλ,μ (gs, gs) = 0 in κ , as required. �

The following result is motivated by Cox–De Visscher–Martin’s work on the blocks of Brauer alge-
bras in characteristic 0 [7]. However, the proof is different from that given in [7]. Note that we have
already generalized it for BMW algebras in [35].

Proposition 5.21. Let λ ∈ Λ+
r (n) and ( f ,μ) ∈ Λr,n with 0 < f � [n/2]. If λ is ( f ,μ)-admissible and if νλ,μ

is one of r-partitions for Ar,n,κ ∈ {Wr,n,κ ,Br,n,κ } in Definition 5.16, then

HomAr,n,κ

(
�(0, λ),�(
,νλ,μ)

) �= 0,

where 
 = n−|νλ,μ|
2 .

Proof. Let M be the cyclic Ar,n,κ -submodule of �(
,νλ,μ) generated by gs , where s is defined
in Lemma 5.17. By Lemmas 5.18 and 2.10, gs ∈ Rad�(
,νλ,μ). So 0 � M ⊂ Rad�(
,νλ,μ). Let
M1 be a maximal Ar,n,κ -submodule of M . Then M/M1 ∼= D(
1,η) , for some (
1, η) ∈ Λr,n with
(
1, η) < (
, νλ,μ). Further, 
 �= 
1. Otherwise, there is a non-trivial homomorphism from �(
1, η)

to �(
,νλ,μ)/M1. Using the exact functor F repeatedly yields a non-trivial homomorphism from
�(0, η) to �(0, νλ,μ), forcing η = νλ,μ , a contradiction.

Obviously, there is a non-zero epimorphism φ : M → D(
1,η) . Note that D(
1,η) = �(
1, η)/

Rad�(
1, η). We can write

0 �= φ(gs) =
∑

u∈T ud
n (η)

au gu + Rad �(
1, η).

We have

φ(gs)Li =
∑

u∈T ud
n (η)

auguLi + Rad �(
1, η). (5.22)

By Lemma 2.9, gsLi = cs(i)gs . Let σ ∈ T ud
n (η) be minimal with respect to � such that aσ �= 0,

where � is the linear order defined on the set T ud
n (η) (see the statements above Theorems 3.2

and 3.14).
Comparing the coefficients of gσ on both sides of (5.22) yields cs(i) = cσ (i) for any 1 � i � n. If

η � λ, then there is an i such that the multiplicities of cσ (i) in {cσ (i) | 1 � i � n} and {ctλ (i) | 1 �
i � n} are not equal, a contradiction. So η ⊆ λ.

Since [�(
,νλ,μ) : D(
1,η)] �= 0, we use the functor F for Ar,n,κ to obtain [�(
 − 
1, νλ,μ) :
D(0,η)] �= 0. Since 
 − 
1 > 0, by Proposition 5.10, η ⊃ νλ,μ and η is (
 − 
1, νλ,μ)-admissible. Note
that |νλ,μ| is maximal. We have λ = η, as required. �
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Definition 5.23. Suppose that ( f , λ), (
,μ) ∈ Λr,n . We say that ( f , λ) and (
,μ) is b-equivalent and

write ( f , λ)
b∼ (
,μ) if both λ is (
1, λ ∩ μ)-admissible and μ is (
2, λ ∩ μ)-admissible where 2
1 =

|λ| − |λ ∩ μ| and 2
2 = |μ| − |λ ∩ μ|.

Note that λ ∩ μ is an r-partition if both λ and μ are r-partitions. So, the above definition is well

defined. Further,
b∼ is an equivalence relation.

By Theorems 3.4 and 3.16, we have D( f ,λ) �= 0 for any ( f , λ) ∈ Λr,n if either ωi ∈ κ∗ , for some i,
0 � i � r − 1 or ωi = 0, for 0 � i � r − 1 and 2 � r. In the rest case, ( f , λ) �= (n/2,∅). When we
write D( f ,λ) in Theorem 5.24, we always assume that D( f ,λ) �= 0.

Theorem 5.24. Let Ar,n,κ ∈ {Wr,n,κ ,Br,n,κ } where κ is the field given in Assumption 4.1. Two irreducible

Ar,n,κ -modules D( f ,λ) and D(
,μ) are in the same block if and only if ( f , λ)
b∼ (
,μ).

Proof. In [19], Graham and Lehrer have proved that the cell blocks of a cellular algebra can be deter-
mined by the notion of cell linked. In our case, ( f , λ) and (
,μ) are said to be cell linked if there is
a sequence of elements ( f i, λ(i)) ∈ Λr,n , 1 � i � k such that ( f1, λ(1)) = ( f , λ), ( fk, λ(k)) = (
,μ) and
either D( f i ,λ(i)) is a composition factor of �( f i−1, λ(i − 1)) or D( f i−1,λ(i−1)) is a composition factor of
�( f i, λ(i)) for all possible i. Now, the result follows immediately from Propositions 5.10 and 5.21. �
6. Non-vanishing Gram determinants

In this section, we prove the main result of this paper, which is a necessary and sufficient condition
for the Gram determinant associated to each cell module of cyclotomic NW and cyclotomic Birman–
Murakami–Wenzl algebras being not equal to zero over an arbitrary field κ . This will give a necessary
and sufficient condition for each cell module of such algebras being equal to its simple head over an
arbitrary field.

First, we consider the cyclotomic Birman–Murakami–Wenzl algebras Br,n,κ over an arbitrary
field κ . Let R = Z[u±

1 , u±
2 , . . . , u±

r ,q±, (q − q−1)−1]. By Theorem 3.19, any non-invertible factor which
appears in det G f ,λ is one of the following forms:

a) q-integer [k] := qk−q−k

q−q−1 ;

b) ui − u jq2a for some a ∈ Z and 1 � i < j;
c) uiu jq2a − 1 for some a ∈ Z and 1 � i < j;
d) uiqa + ε where ε ∈ {1,−1} and a ∈ Z.

First, we explain how to use Theorem 5.24 to determine the non-invertible factors in (c) for fix i, j
with i �= j and the non-invertible factors in (d) for fix i. We consider Br,n,C where C is the complex
field. In order to determine uiu jq2a − 1 for some a ∈ Z and fixed i, j with i �= j, we assume that
ui = bqc and u j = b−1qd where b,q ∈ C∗ are not roots of unity and c,d ∈ Z such that b /∈ ±qZ and
b2 /∈ qZ where qZ = {q
 | 
 ∈ Z}. In this case, we also assume ul ∈ C∗ , l /∈ {i, j} such that both ui , ul ’s
and u j , ul ’s are algebraically independent. It is easy to see that Assumption 4.1 holds. Further, the
factors in (d) are invertible in C.

If there is an ( f − 
,λ)-admissible partition with 0 � 
 � f − 1, it implies that det G f ,λ = 0 when
uiu jq2a − 1 = 0 for some a ∈ Z. Since we are assuming that o(q2) = ∞, the integer a has to ap-
pear in the formula det G f ,λ ∈ R . Conversely, if uiu jq2a − 1 is a non-invertible factor of det G f ,λ ∈ R ,
then det G f ,λ = 0 in C if uiu jq2a = 1. Therefore, we can find a composition factor �(
,μ) such that
(
,μ)� ( f , λ). Further, 
 �= f . Otherwise, we use the exact functor F to show that λ = μ, a contradic-
tion. Acting the exact functor F repeatedly shows that �(0,μ) is a composition factor of �( f − 
,λ).
By Proposition 5.10, μ is an ( f − 
,λ)-admissible partition. In other words, the non-invertible fac-
tors uiu jq2a − 1 of det G f ,λ can be determined completely by ( f − 
,λ)-admissible partitions with
0 � 
 � f − 1 over the field C.
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In order to determine the non-invertible factor uiqa + ε, we assume that u j ∈ C∗ for j �= i such
that all such u j are algebraically independent. Further, we assume that ui = αqb for some b ∈ Z
and o(q2) = ∞ and α ∈ {1,−1}. It is easy to see that Assumption 4.1 holds. Further, the factors
in (c) are invertible in C. By the similar arguments as above, we see that the non-invertible factors
uiqa +ε of det G f ,λ can be determined by ( f − 
,λ)-admissible partitions with 0 � 
 � f − 1 over the
field C.

Similarly, for Wr,n,κ , by Theorem 3.5, any non-invertible factor which appears in det G f ,λ is one of
the following forms:

a) the integers k;
b) ui − u j − a for some a ∈ Z and i �= j;
c) ui + u j − a for some a ∈ Z and i �= j;
d) 2ui − a where a ∈ Z.

By similar arguments for Br,n,κ as above, we can determine the non-invertible factors of det G f ,λ ,
which appear in (c)–(d), by using ( f − 
,λ)-admissible partitions over the complex field C. Here
0 � 
 � f − 1.

We want to determine the non-invertible factors of det G f ,λ given in (a)–(b). In this case, we
consider Wr,n,C and Br,n,C . For Br,n,C , we assume that ui = mqbi , 1 � i � r for some bi ∈ Z and
m ∈ C∗ is not a root of unity. Further, q is a root of unity. For Wr,n,C , we assume that ui = m + bi

for some bi ∈ Z and m ∈ C \ R, where R is the field of real numbers. It is easy to see that all
factors in (c)–(d) are invertible. By standard arguments (see the proof of Proposition 4.13 in [35]), we
have det G f ,λ = 0 if and only if det G0,λ = 0. This implies that the factors of det G f ,λ which appear
in (a)–(b) can be determined completely by those of det G0,λ .

Lyle and Mathas [28] have given an explicit condition for the Gram determinant associated to
each cell module of Ariki–Koike algebras being not equal to zero over an arbitrary field. This enables
us to give an explicit condition for each det G f ,λ of Br,n,κ being not equal to zero over an arbi-
trary field, too. However, for degenerate cyclotomic Hecke algebras, there is no explicit condition for
each Gram determinant not being equal to zero over an arbitrary field. Mathas has told one of the
authors that such a result can be obtained by arguments similar to those for Ariki–Koike algebras
in [28].

Remark 6.1. Recently, X. Xu, a student of Rui in East China Normal University, is working on Gram de-
terminants for degenerate cyclotomic Hecke algebras. In order to determine the non-invertible factors
ui − u j − a which appears in any Gram determinant, he uses the previous ideas given by Mathas. In
order to determine the prime integers which appear in the Gram determinants, he uses Morita equiv-
alence between degenerate cyclotomic Hecke algebras and the group algebras of certain symmetric
groups. We remark that the result for Wr,n,κ which is similar to Theorem 6.3 will be formulated
elsewhere.

In order to formulate Theorem 6.3, we need some notions in [28] as follows. Suppose κ is a
field with characteristic p and q, u1, u2, . . . , ur ∈ κ∗ . Let t be an indeterminate over κ and let O =
κ[t, t−1]π be the localization of κ[t, t−1] at the prime ideal π generated by t − 1. Suppose X =
(X1, . . . , Xr) such that Xi = uitni . Note that we assume ui is invertible when we define Br,n . Let νπ

be the π -adic evaluation map on O∗ , i.e. νπ ( f (t)) = k, where k � 0 is maximal such that (t − 1)k

dividing f (t) ∈ κ[t, t−1].
Suppose λ ∈ Λ+

r (n) and p = (a, i, j) ∈ [λ]. Define a rim hook

rλ
x = {

(a,k, l) ∈ [λ] ∣∣ k � i, l � j and (a,k + 1, l + 1) /∈ [λ]}.
Let i′ be maximal such that (a, i′, j) ∈ [λ]. Define f λ

x = (i′, j,a) ∈ [λ] and rλ
x has leg length 
(rλ

x ) =
i′ − i. If x ∈ [λ], let λ \ rλ

x be the multipartition with diagram [λ] \ rλ
x . We say that λ \ rλ

x is the
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multipartition obtained by unwrapping the rim hook rλ
x from λ, and that λ is the multipartition

obtained from λ \ rλ
x by wrapping on the rim hook rλ

x .
Define the O-residue of the node x = (a, i, j) to be resO(x) = (qt) j−i Xa . The following definition is

due to Lyle and Mathas [28].

Definition 6.2. (See [28, 2.5].) Suppose λ = (λ(1), . . . , λ(r)) and μ = (μ(1), . . . ,μ(r)) are r-multipartitions
of n. The Jantzen coefficient Jλμ is the integer, which can be computed by the following formula

Jλμ =
{∑

x∈[λ]
∑

y∈[μ], [μ]\rμy =[λ]\rλ
x
(−1)
(r

λ
x )+
(rμy )νπ (resO( f λ

x ) − resO( f μ
y )), if λ � μ,

0, otherwise.

Note that Jλμ can be computed explicitly by [28, 3.6, 4.2, 4.5] over an arbitrary field.

Theorem 6.3. Suppose that κ is a field with characteristic p. Let ( f , λ) ∈ Λr,n and let det G f ,λ be the Gram de-
terminants associated to the cell modules �( f , λ) of Br,n,κ . Then det G f ,λ �= 0 if and only if �( f , λ) = D f ,λ

if and only if the following conditions hold:

a) uiu jq2a �= 1 for 1 � i, j � r, i �= j and a ∈ Z, which are determined by ( f − 
,λ)-admissible partition
(see our arguments in page 216);

b) ui �= αqa where α ∈ {1,−1} and a ∈ Z are determined by ( f − 
,λ)-admissible partitions with 0 � 
 �
f − 1 (see our arguments in page 217);

c) λ is a Kleshchev-multipartition in [3];
d) Jλν = 0 for any ν ∈ Λ+

r (n − 2 f ).

Proof. By [28, 2.5], (c)–(d) is equivalent to det G0,λ �= 0. So, Theorem 6.3 follows from Theorem 5.24
and the arguments in pages 216–217. �

The Brauer algebras [6] can be considered as W1,n . We formulate the result for the Brauer algebras
which is similar to Theorem 6.3 as follows. This result can be proved by similar arguments for BMW
algebras, cyclotomic NW algebras and cyclotomic BMW algebras. Of course, we need Cox–De Visscher–
Martin’s results on the blocks of the Brauer algebras in characteristic 0 together with the results for
the symmetric groups in [26]. We leave the detailed arguments to the reader. First, we recall some
combinatorics.

Given a λ ∈ Λ+
1 (n) and a node (i, j) ∈ [λ], define hλ

i j to be the (i, j)-hook length in [λ] by

hλ
i j = λi − j + λ′

j − i + 1,

where λ′ is the dual partition of λ.

Theorem 6.4. Suppose κ is a field with characteristic p. Let det G f ,λ be the Gram determinant associated to
the cell module �( f , λ) of the Brauer algebra W1,n,κ . Then det G f ,λ �= 0 if and only if the following conditions
hold:

a) λ is e-restricted in the sense that λi − λi+1 < e for all i � 1;
b) νp(hλ

ac) = νp(hλ
ab) for any (a, c), (a,b) ∈ [λ], where νp(z) is the exponent of p dividing z;

c) the parameter u1 �= a1κ such that a ∈ Z is determined by the notion of “balanced pairs” in [7] over the
field C.

At the end of the paper, we remark that we have proved the result for BMW algebras which is
similar to Theorem 6.3 in [35].
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