
Physics Letters B 638 (2006) 531–537

www.elsevier.com/locate/physletb

Calculating four-loop tadpoles with one non-zero mass
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Abstract

An efficient method to calculate tadpole diagrams is proposed. Its capability is demonstrated by analytically evaluating two four-loop tadpole
diagrams of current interest in the literature, including their O(ε) terms in D = 4 − 2ε space–time dimensions.
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1. Introduction

Calculations of higher-order corrections are very important for precision tests of the Standard Model in present and future
high-energy-physics experiments. The complexity of such calculations and the final results strongly increases with the number
of quantum loops considered, and one rapidly reaches the limits of the present realm of possibility when one attempts to exactly
account for all mass scales of a given problem, already at the two-loop level. To simplify the calculations and also the final ex-
pressions, various types of expansions were proposed during the last couple of years (see Refs. [1–3] and references cited therein).
These approaches usually provide a possibility to reduce the problem of evaluating complicated Feynman integrals to the calcula-
tion of tadpoles T0,m(α1, α2) and loops with massless propagators Lq(α1, α2), defined in Eqs. (2) and (4), respectively, which have
simple representations.

As a first step, let us to introduce some definitions to be used below. All the calculations are performed in Euclidean momentum
space of dimension D = 4−2ε using dimensional regularisation with ’t Hooft mass scale μ. For the Euclidean integral measure, we
use the short-hand notation Dk ≡ μ4−DdDk/πD/2. The dotted and solid lines of any diagram correspond to massless and massive
Euclidean propagators, represented graphically as

(1)
1

(k2)α
= ,

1

(k2 + m2)α
= ,

where α and m denote the index and mass of the considered line, respectively. Unless stated otherwise, all solid lines have the same
mass m. Lines with index 1 and mass m are not marked.

Let us now discuss the rules used in our calculation. Firstly, massive tadpoles T0,m(α1, α2) are integrated according to the identity

(2)T0,m(α1, α2) ≡
∫

Dk

(k2)α1(k2 + m2)
α2

≡ = R(α1, α2)

(m2)α1+α2−D/2
,
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where

(3)R(α1, α2) = �(D/2 − α1)�(α1 + α2 − D/2)

�(α2)�(D/2)

and � is Euler’s gamma function. Secondly, massless loops Lq(α1, α2) with the external momentum q are integrated according to
the identity

(4)Lq(α1, α2) ≡
∫

Dk

(k2)α1(k − q)α2
≡ = A(α1, α2) ,

where

(5)A(α1, α2) = a(α1)a(α2)

a(α1 + α2 − D/2)
, a(α) = �(D/2 − α)

�(α)
.

Recently, two examples of four-loop tadpoles were calculated in Ref. [4]. Certain O(ε0) parts of these results, denoted as N10
and N20, were presented there only numerically.2 Also the O(ε) terms beyond N10 and N20 are of current interest in the literature [6]
and so far only known numerically. In conjunction with the results of Ref. [7], they allow us to derive analytic results for several
four-loop master integrals which are indispensable for modern calculations at this level of accuracy [8].

The subject of this Letter is to advertise a powerful technique to evaluate such tadpoles analytically. The simplifications encoun-
tered in the examples at hand suggest that this technique might also be useful for more complicated diagrams. Therefore, we wish
to introduce it to the interested reader.

The content of this Letter is as follows. Section 2 explains the calculational technique in general. Sections 3 and 4 describe
its application to the two integrals N10 and N20 of Ref. [4], respectively, also including their O(ε) terms. A summary is given in
Section 5.

2. Technique

The core of the technique is a master formula to represent a loop with two massive propagators as an integral whose integrand
contains a new propagator with a mass that depends on the variable of integration. This formula has the following form:

(6)= �(α1 + α2 − D/2)

�(α1)�(α2)

1∫
0

ds

(1 − s)α1+1−D/2sα2+1−D/2
.

It was introduced in Euclidean and Minkowski spaces in Refs. [9] and [10], respectively. Here, we are working in Euclidean space
and will, thus, follow Ref. [9]. Some recent applications in Minkowski space may be found in Ref. [11]. Special cases of Eq. (6)
were considered in Ref. [12], where a differential-equation method [12,13] was introduced. The latter only requires that quite
simple diagrams are calculated directly. The results for more complicated diagrams may be reconstructed by integrating the results
for simpler diagrams over external parameters. In many cases, the results for complicated diagrams may be obtained by integrating
the one-loop tadpoles of Eq. (2). The method is now very popular for the calculation of complicated Feynman integrals; for recent
articles, see Ref. [14] and references cited therein.

Here, we shall follow a similar strategy. Applying Eq. (6), we shall represent the results of Ref. [4] as integrals over one-
loop tadpoles, which in turn contain propagators with masses that depend on the variable of integration. The case of N10 will be
considered in detail.

We would like to note that Eq. (6) can be applied successfully to diagrams containing one-loop self-energy subdiagrams. Such
subdiagrams are frequently generated by the application of the integration-by-parts technique [15]. Such an application [12,13]
leads to a differential equation for the original diagram (in exceptional cases, the equation degenerates to an algebraic relation) with
an inhomogeneous term that depends on less complicated diagrams usually containing one-loop self-energy subdiagrams (see, for
example, Refs. [9,10]).

2 During the preparation of this article, we were informed by K.G. Chetyrkin about a paper [5] which also contains analytic results for N10 and N20. Our results
are in full agreement with those of Ref. [5].
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3. First example

As the first example, we consider the case of N10 in Ref. [4], which may be represented graphically as3

(7)m2 + m2(1−ε)�(ε) = �4(1 + ε)

(m2)4ε
N10(ε),

where N10(ε) = [N10 + M10ε + O(ε2)]/(1 − ε). For ε = 0, we recover N10 = N10(0). Applying Eq. (4) to the massless loop in the
left diagram and Eq. (6) with α1 = 1 and α2 = 2 to the interior massive loops and to the loops with exterior propagators, we easily
obtain the following representation for N10(ε):

(8)N10(ε) = m2

ε

[
1

m2ε
J1(0) − �2(1 − ε)

�(1 − 2ε)
J1(1)

]
,

where

(9)J1(a) = (1 − ε)(m2)4ε

�(1 + ε)

1∫
0

ds1

s1η
ε
1

1∫
0

ds2

s2η
ε
2
T0,M1,M2(1 + aε,1 + ε,1 + ε),

M2
i = m2/ηi , ηi = si(1 − si), and TM1,M2,M3(α1, α2, α3), where the index αi belongs to the mass Mi , is the one-loop tadpole

involving three massive propagators,

(10)TM1,M2,M3(α1, α2, α3) = .

Expanding the propagator (k2 + M2
2 )−α2 in T0,M1,M2(α3, α1, α2) as

(11)
1

(k2 + M2
2 )α2

=
∞∑

n=0

�(n + α2)

n!�(α2)

μn
12

(k2 + M2
1 )n+1+ε

,

where μij = M2
i − M2

j , and using Eq. (2) for the tadpole T0,M1(α1, α2), we obtain

(12)T0,M1,M2(α3, α1, α2) = R(α3, α1 + α2)

(M2
1 )ᾱ−D/2 2F1(ᾱ − D/2, α2;α1 + α2; x̄),

where ᾱ = α1 + α2 + α3, x̄ = 1 − x, x = M2
2/M2

1 = η1/η2, and 2F1 denotes a hyper-geometric function [16]. Setting αi = 1 + aiε

and expanding the hyper-geometric function, we have

T0,M1,M2(1 + a3ε,1 + a1ε,1 + a2ε)

= 1

(M2
1 )1+(ā+1)ε

�(1 + ε)

x̄(1 − ε)

{
− lnx + ε

[
a2 + a3 + 1

2
ln2 x − (a1 + a2)Li2(x̄)

]

+ ε2
[
(a2 + a3 + 1)2

6
ln3 x − (

(a3 + 1)(ā + 1) − 1
)
ζ(2) lnx + a1(a3 + 1) lnx Li2(x̄) + (a1 + a2)

2 Li3(x̄)

(13)− (
a2(ā + 1) − a1(a3 + 1)

)
S1,2(x̄)

]}
+ O

(
ε3),

where ā = a1 + a2 + a3 and

(14)Sn,m(x) = (−1)n+m−1

(n − 1)!m!
1∫

0

dy

y
lnn−1(y) lnm(1 − xy), Lin(x) = Sn−1,1(x)

denote the generalised and ordinary polylogarithms (see, for example, Ref. [17]), respectively. Thus, we obtain

3 The graphic representations of N10 and N20 are adopted from Ref. [4]. A propagator with a point is equal to one with the index 2.
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N10(ε) =
1∫

0

ds1

s1η
ε
1

1∫
0

ds2

s2η
ε
2

η1

x̄

{
−1

2
ln2 x + lnx lnη1

(15)+ ε

[
19

6
ln3 x + 4ζ(2) lnx − lnx Li2(x̄) − (

3 ln2 x − 2 Li2(x̄)
)

lnη1 + 7

2
lnx ln2 η1

]}
+ O

(
ε2).

Exploiting the s1 ↔ s2 symmetry, we find

N10(ε) = 1

8

1∫
0

ds1

1∫
0

ds2

η2 − η1

{
lnx ln(η1η2) + ε

[
61

12
ln3 x + 8ζ(2) lnx +

(
Li2(x̄) − Li2

(
− x̄

x

))
ln(η1η2)

(16)+ 3

4
lnx ln2(η1η2)

]}
+ O

(
ε2).

We first concentrate on the O(ε0) term N10. Using the standard replacement si = (1 + ξi)/2, we obtain

N10 = 1

2

1∫
0

dξ1

1∫
0

dξ2

ξ2
1 − ξ2

2

(
ln2 1 − ξ2

1

4
− ln2 1 − ξ2

2

4

)

(17)= 1

2

1∫
0

dξ1

1∫
0

dξ2

ξ2
1 − ξ2

2

{[
ln2(1 − ξ2

1

) − 2 ln 4 ln
(
1 − ξ2

1

)] − [ξ1 ↔ ξ2]
}
.

Exploiting the ξ1 ↔ ξ2 symmetry, we find

(18)N10 =
1∫

0

dξ1
[
ln2(1 − ξ2

1

) − 2 ln 4 ln
(
1 − ξ2

1

)] 1∫
0

dξ2

ξ2
1 − ξ2

2

= −1

2

1∫
0

dξ1

ξ1
ln

1 − ξ1

1 + ξ1

[
ln2(1 − ξ2

1

) − 2 ln 4 ln
(
1 − ξ2

1

)]
.

Evaluating the r.h.s. of Eq. (18), we obtain

(19)N10 = 17π4

720
+ 7

2
ζ(3) ln 2 − 4S1,3(−1) = 49π4

720
− 1

2
b4,

where

(20)b4 = −1

3

(
π2 − ln2 2

)
ln2 2 + 8 Li4

(
1

2

)
.

Eq. (19) coincides with the result obtained in Ref. [5].
The evaluation of the O(ε) term M10 is rather tedious and cannot be described in this brief communication. Here, we merely list

the result, which reads

(21)M10 = −149π4

180
ln 2 + 279

8
ζ(5) − 7b5,

where

(22)b5 = 1

45

(
5π2 − 3 ln2 2

)
ln3 2 + 8 Li5

(
1

2

)
.

We note in passing that also the other master integrals presented in Ref. [5] can be written in a more compact form if the combina-
tions b4 and b5 of Eqs. (20) and (22), respectively, are introduced.

4. Second example

Let us consider the second example of Ref. [4], which may be graphically represented as

(23)m2 = �4(1 + ε)

(m2)4ε
N20(ε),

where N20(ε) = [N20 + M20ε + O(ε2)]/(1 − ε). For ε = 0, we recover N20 = N20(0). Applying Eq. (6) with α1 = 1 and α2 = 2
to the two interior massive loops and to the loops involving exterior propagators, we easily obtain the following representation for
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N20(ε):

(24)N20(ε) = (1 − ε)(m2)4ε

�(1 + ε)

1∫
0

ds1

s1η
ε
1

1∫
0

ds2

s2η
ε
2

1∫
0

ds3

s3η
ε
3
TM1,M2,M3(1 + ε,1 + ε,1 + ε).

Expanding the propagators (k2 + M2
2 )−α2 and (k2 + M2

3 )−α3 in TM1,M2,M3(α1, α2, α3) as in Eq. (11) and using Eq. (2) for the
tadpole T0,M1(0, α2), we obtain

TM1,M2,M3(α1, α2, α3) =
∞∑

n=0

�(n + α2)

n!�(α2)

∞∑
l=0

�(l + α3)

l!�(α3)

�(l + n + ᾱ − D/2)

�(l + n + ᾱ)

μn
12μ

l
13

(M2
1 )n+l+ᾱ−D/2

= R(0, ᾱ)

(M2
1 )ᾱ−D/2

F1
(
ᾱ − D/2, α2, α3; ᾱ; x̄,μ13/M

2
1

)
,

where F1 denotes an Appel hyper-geometric function [16]. Expanding the hyper-geometric function, we have

TM1,M2,M3(1 + a1ε,1 + a2ε,1 + a3ε)

= 1

(M2
1 )(ā+1)ε

�(1 + ε)

μ32(1 − ε)

{
M2

2

μ12
ln

M2
2

M2
1

+ ε

[
−a2 + 1

2

M2
2

μ12
ln2 M2

2

M2
1

+
(

ā
M2

1

μ12
− a1 − a3

)
Li2

(
μ12

M2
1

)

(25)+ a3
M2

1

μ12
Li2

(
μ13

M2
1

)
+ a3

M2
2

μ12

(
Li2

(
μ21

M2
2

)
− Li2

(
μ23

M2
2

))]
+ O

(
ε2)} + (2 ↔ 3).

As in the previous section, we describe the evaluation of the O(ε0) term in some detail, while we merely list the final result for
the O(ε) term for reasons of space. At O(ε0), the right-hand side of the Eq. (24) contains the tadpole TM1,M2,M3(1,1,1), which
can be calculated in an essentially simpler way. Indeed, using

(26)
1

(k2 + M2
1 )(k2 + M2

2 )
= 1

μ21

(
1

k2 + M2
1

− 1

k2 + M2
2

)

and Eq. (2), we find

(27)TM1,M2(1,1) = �(ε − 1)

μ21

[(
M2

1

)1−ε − (
M2

2

)1−ε] = 1

μ2ε

�(1 + ε)

1 − ε

(
1

ε
+ M2

1

μ21
ln

M2
1

μ2

)
+ (M1 ↔ M2) + O(ε),

(28)TM1,M2,M3(1,1,1) = 1

μ32

[
TM1,M2(1,1) − TM1,M3(1,1)

] = M2
1

μ12μ13
ln

M2
1

μ2
+ (M1 ↔ M2) + (M1 ↔ M3) + O(ε).

Notice that the right-hand side of Eq. (28) is m2 and μ2 independent. Moreover, it coincides with Eqs. (24) and (25) at O(ε0). Every
term in Eqs. (27) and (28) contains only one logarithm depending on the variable ηi . Thus, the integrals

∫ 1
0 dsi can be evaluated at

the end of the calculation (see Eq. (18), for a similar procedure). After some algebra, we obtain

(29)N20 = 9

2
ζ(3),

which agrees with Ref. [5].
Lack of space prevents us from going into details with our derivation of the O(ε) term M20, and we merely list our result,

(30)M20 = −4π4

15
− 27ζ(3) + 3b4,

where b4 is defined in Eq. (20).

5. Conclusion

We demonstrated the usefulness of a simple technique for the analytic evaluation of four-loop tadpoles, which allows one to
obtain the results by integrating one-loop tadpoles with masses that depend on integration variables. By means of this method, we
calculated two Feynman diagrams which were presented in Ref. [4] in numerical form. Our results are in full agreement with the
analytic results obtained just recently in Ref. [5].

We note that the integral N10 was found in Ref. [5] with the aid of the PSLQ program [18], which is able to reconstruct the
rational-number coefficients multiplying a given set of transcendental numbers from a high-precision numerical result, i.e. the
algebraic structure of the result must be known a priori. Such structures are often more complicated, and they are in general not
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known from other considerations (see, for example, Ref. [19]), so that the PSLQ program cannot be applied. The method presented
here does not suffer from such a limitation and should be applicable also for more complicated tadpoles depending on one [5] or
two [20] non-zero masses. Moreover, it can be applied in combination with the PSLQ program. In fact, by evaluating some part of
a complicated Feynman diagram by means of this method, the underlying set of transcendental numbers may emerge and can then
be injected into the reconstruction of the full analytic result with the help of the PSLQ program.
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