
Global Properties of Tensor Rank 

Thomas D. Howell* 

Department of Electrical Engineering and Computer Sciences 

Computer Science Divi.siun 
University of California 

Berkeley, California 94720 

Submitted by Marvin Marcus 

ABSTRACT 

The dependence of tensor rank on the underlying ring of scalars is considered. It 
is shown that the integers are, in a certain sense, the worst scalars. A ring of scalars 
can be improved by adjoining algebraic elements but not by adjoining inde- 
terminates. The real closed fields are the best scalars among ordered rings, and the 
algebraically closed fields are best among all rings. Let B (R m x ” xP) be the maximum 
tensor rank of any m x n x p array of elements from the ring R. A generalization of 
Gaussian elimination shows that B (R “,“,“) < an2 for most useful rings R. For every 
R, B(R mxnxp) > mnp/(m+ n +p), and slightly stronger lower hounds are proven 
for R a field. 

1. INTRODUCTION 

The number of multiplications needed to evaluate a set of bilinear forms 
in noncommuting indeterminates depends on the coefficients of the bilinear 
forms and on the ring R from which the constants used in the computation 
are drawn. Tensor rank is an algebraic function expressing this dependence. 
LetthesetofbilinearfoormsbeD={f,(x,y)lfk(x,y)=Ci,itiikxiyi, l<k< p}, 
where the t+‘s are constants from R. Throughout this paper the ring R is 
assumed to be a commutative ring with identity. The multiplications to be 
counted are those between functions of the xi’s and yj’s, sometimes called 
active multiplications. It is assumed that R-linear combinations of the xi’s 
and yj’s can be evaluated at a comparatively low cost. This problem has been 
studied quite extensively [l&3, 5, 7-10, 121. The reasons for the above 

assumptions are explained in many of these references and will not be 
repeated here. 
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Let T=(t+) be an mXnXp array of elements of R. Let R&(T) be the 
least integer r such that the following decomposition can be made: 

where the U’S, u’s, and w’s are elements of R. The number Rk, (T) is called 
the tensor rank of T over R. 

A basic result appearing in several of the above references states that the 
tensor rank of T over R is exactly equal to the number of active multiplica- 
tions necessary and sufficient to evaluate a set of bilinear forms in noncom- 
muting indeterminates using constants from R. This number, in turn, de- 
termines the asymptotic running time of algorithms for a variety of computa- 
tions, most notably matrix multiplication. Thus, the computational complex- 
ity of an important class of problems is determined by tensor rank, a purely 
algebraic concept. 

Note that when T is a matrix ( p = l), the tensor rank of T coincides with 
the usual linear algebraic rank of T when R is a field. In this sense tensor 
rank extends the notion of rank used in linear algebra. The word “tensor” is 
suggested by the fact that tensor rank is invariant under invertible changes 
of coordinates. 

LEMMA 1. Let A=((uii)~RmXm, B=(,8ii)ER”X”, and T=(yii)~RPXP 
be invertible matrices. Let T and T’ E R mxnxp be related by 

t&! = c tijkaii’ pij’ykk’. 
i,i,k 

Then Rk, (T) = Rk, (T’). 

proof. If t+ = ~;=1u&jjw&, then t,~k=~;,,(~A),,(uR),(wT),. If tSik= 
&+r$$jwrk, then tiik=C;=l(uA-l)lj(vB-l)lj(Wr-‘)lk.. n 

Tensor rank is a function whose domain consists of pairs (R, T) where R 
is a ring and T is an m X n X p array of elements from R. This array can have 
any number of dimensions, but the three-dimensional case is most interesting 
because of the connection with bilinear forms. Previous work on tensor rank 
has developed techniques for obtaining upper and lower bounds on the value 
of Rk, (T) for specific R and T. This can be viewed as trying to evaluate the 
tensor rank function at a particular point (R, T) in its domain. 
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A new approach to the study of tensor rank consists of investigating 
properties of the tensor rank function other than its values at individual 
points. The results reported here are of two types. The first type involves the 
dependence of tensor rank on the ring R. The second type concerns the 
dependence of tensor rank on the dimensions of T. In particular, bounds on 
the function B(Rmx”XP)=maXTER”““XP{RJCA(T)} are determined. 

2. DEPENDENCE ON RING OF CONSTANTS 

Two simple observations can be made concerning the dependence of 
R&(T) on R. 

LEMMA 2. If R is a s&ring of S, then Rk, (T) > Rk, (T). 

LEMMA 3. Zf S is the image of R under a honwmorp hism 9, then 
Rk,( T) > Rk,(+( T)), +(T) perjbnned elementwise. 

The proofs of Lemmas 2 and 3 follow directly from the definition of 
tensor rank. 

Lemma 3 has several applications. Let Z4 be the ring of integers modulo 
q. One can often take advantage of finiteness to compute R%(+( T)) for an 
integer array T, where G(n) = nmodq. By Lemma 3, this yields a lower 
bound for Rk, (T), the tensor rank of T over the integers. Hopcroft and Kerr 
used this technique to obtain lower bounds on the complexity of matrix 
multiplication using integer constants [6]. 

Another application of Lemma 3 is in proving a theorem which sets the 
integers apart from other rings of constants used to evaluate sets of bilinear 
forms. Every commutative ring with identity R contains a homomorphic 
image of the integers. The homomorphism & maps n E Z to X7= ,l, E R, 
where 1, is the multiplicative identity element in R. Having made this 
observation, the next theorem follows from Lemmas 2 and 3. 

THEOREM 1. Let TEZmxnxp. The tensor rank of c#J~(T) over R is 
maximized when R is the ring of integers, Z-i.e., Rk,(T) > Rk,(&(T)). 

Almost every set of bilinear forms which is important for computing has 
integer coefficients, in fact { - IO, l} coefficients. If r active multiplications 
are sufficient to evaluate such a set using integer scalars, then Theorem 1 
says that T active multiplications are sufficient using scalars from any 
commutative ring with identity. In a sense, the ring of integers is the worst 
possible ring of scalars. 
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If the integers are the worst possible scalars, which rings are better? The 
relation Rk, ( T) < Rk, (T) means that a certain set of polynomials with 
integer coefficients has a solution in R but not in 2. It is easy to see how this 
can happen if R is a ring obtained by adjoining elements which satisfy 
polynomials over 2. For example, let R = 2 [i] = 2 [x1/(2x- 1) be the ring of 
polynomials in i with integer coefficients. Let 

/ ‘0 1 
/ 

T= /’ I 1 1 0 , EZo”2x2 

/ / 10 ,’ 
[ 1 0 1 /’ 

It is not difficult to show that Rk, (T) = 3, while Rk, (T) = 2. The correspond- 
ing decompositions use 

W=(w,)= 

and 

I 1 1 
U= 

1 -1 1 ) v= 

I 0 1 1 -1 -1 1 

1: _:I7 w=[ f _;I 

1 in 2, 

in R. 

Irrational algebraic numbers can also be used to decrease tensor rank. 
Consider the following example. 

Let R=Z[+] and S=R[v%]. Th en Rk,(T’)=3 and Rk,(T’)=2. /The 
corresponding decompositions are 

u=[: y], V=\p y], W=[i I:] inR(orZ), 
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More detailed information on the effect of algebraic numbers on tensor rank 
is contained in [4, 8, 141. 

Suppose an indeterminate x is adjoined to R. Then x satisfies no nontri- 
vial polynomial over R, and therefore it never affects tensor rank. 

THEOREM 2. If S = R [x] is the ring of polynomials in x with coefficients 
from R, then Rk,(T)=Rk,(T) for all TERmXnXP. 

Proof. By Lemma 2, R&(T) < Rk, (T). Let +: S+R be the homomor- 
phism whose kernel is generated by x. By Lemma 3, Rk, ( T) < Rk, (T). n 

Starting from the integers and adjoining rational numbers, one obtains Q, 
the field of rational numbers. The first example above shows that this action 
decreases the ten_sor ranks of certain arrays. Extending Q by algebraic 
numbers yields Q, the field of algebraic numbers. Again, tensor ranks 
decrease, as evidenced by the second example. Can this process go further? 
There are no algebraic extensions of Q, and Theorem 2 shows that simple 
transcendental extensions do not decrease tensor ranks. This suggests a 
negative answer-to the question. The next theorem proves thatno array with 
elements from Q has lower tensor rank in an extension R of Q than it has in 

@ 

THEOREM 3. Let K be an algebraically closed field. Let T be an element 

ofK , 
mxnxp and let R be a ring containing K. Then Rk,(T)= Rk,(T). 

Proof. By Lemma 2, Rk,( T) < Rk, (T). Consider the system of mnp 
polynomials in the u,, 4, w,. 

Let Xl,..., x6 be the U’S, v’s, and w’s, where [ = r(m + n + p). If Rk, (T) > r, 
the pi+ have no common zero in K. By Hilbert’s Nullstellensatz, the piik have 
no common zero in K if and only if the ideal generated by them in 

K 1~ i, . . . , xc] contains 1 [13]. But then the ideal generated by the p+ in 
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R tx,,..., rJ also contains I, so the p$ have no common zero in R, either. 
Therefore Rk, (T) < Rk, (T), and the proof is complete. 1 

One implication of Theorem 3 is that if a set of bilinear forms with 
algebraic coefficients can be evaluated with T active multiplications using 
complex scalars, then the same job can be done using algebraic scalars. One 
need not worry about possible improvements using nonalgebraic complex 
numbers. This fact leads one to conjecture that a similar theorem might be 
true for the real numbers. Such a theorem is true, and its proof rests on the 
following real version of the Nullstellmsatz. 

THEOREM 4 (Real NuZlsteZZmsatz). Let Q be the rational numbers, and 
let Q be its real algebraic closure. Let ‘, c Q [xl,. . . ,x,,] be an ideal. Then the 
elements of I have a common zero in Q if and only if I does not contain an 
element of the fm 

Proof. See [ll]. n 

The real version of Theorem 3 follows from the real NuZlsteZZmsatz in the 
same way that Theorem 3 follows from Hilbert’s Nullstellensatn. 

THEORE! 5. Let 6 be the real algebraic closure of Q. Let T be an 
element of Qmxnxp, and let R be the real numbers. Then Rk,( T) = R$( T). 

Proof. By Lemma 2, Rk,( T) < Rb( T). Let xi,. . . ,x6 be the u’s, v’s, and 
w’s, and let I c Q [xi,. . . , xc] be the ideal generated by the p+‘s defined in 
(1). If R@(T)>r, Z must contain an element of the form g = 1 + 2 aifi2 by 
Theorem 4. Any common zero of the pijk’s in R would also be a zero of g. 
Since g > 0 for xi,. . . , xt E R, RkR( T) > r, and the proof is complete. n 

The real algebraic closure of Q is Q = Q n R, the real algebraic numbers. 
The interpretation of Theorem 5 is that any set of bilinear forms which can 
be evaluated with r active multiplications using real scalars can also be 
evaluated using real algebraic scalars and the same number of active 
multiplications. Transcendental numbers such as v and e do not help. 
Theorems 4 and 5 can be ge_neraJized by making the following substitutions: 
QtF= any ordered field, QfF=the real algebraic closure of F, RtR = 
any ordered ring containing F. 
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This completes our discussion of the dependence of tensor rank on the 
ring of scalars. The main conclusions of this section are summarized as 
follows. The tensor rank of an integer array is maximized in the integers. It is 
minimized over ordered rings in the real algebraic numbers and over all rings 
in the algebraic numbers. 

3. MAXIMUM VALUES OF TENSOR RANK 

Let B(R mx”xp) be the maximum tensor rank of any array in Rmxnxp. 
This function is useful in studying the dependence of tensor rank on the 
array dimensions, m, n, and p. Trivial bounds on B (R mxnxp) are given by 
the following lemmas. Since tensor rank is unchanged by permutations of 
subscripts, we will always assume m < n < p, without loss of generality. 

LEMMA 4. B(Rmxnxp) < mn. 

Proof. Let T ER~~“~P. Then tiik=X.l;II1uliuliwlk, where u,= aai, qi= 
6 ‘> w, = tolfik whenever Z=(a--l)n+P, and where l<a<m, l< /%n, 

azd 6 is the Kronecker delta. w 

LEMMA 5. 

(i) R (R mXnxp)>p if p<mn. 

(ii) B(R mxnxp)=mn if p>mn. 

Proof. Let the k-planes (k-plane = matrix of t@‘s with a fixed value of k) 
of T be chosen from the set Eii c R” Xn of matrices with 1 in the (i, i) 
position and zeros elsewhere. The tensor rank of T is then the number of 
different k-planes it contains. This number can be made to be min{ mn, p}. 

The other half of (ii) comes from Lemma 4. W 

A better upper bound on B (R mxnxp) can be obtained by a generaliza- 
tion of Gaussian elimination. Gaussian elimination on an m X n matrix A can 
be described as follows. Let rt = (row 1 of A) and c = (column 1 of A)/a,,. 
Then CT’ is a rank-one matrix which “matches” A in the first row and 
column: 

A=&+ _!j___?_- 
[ 1 0 / A(‘) ’ 
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where A (‘) is an (m - 1) X (n - 1) matrix. Repeating the process on A(‘) 
eventually leads to a decomposition of the form 

This process required division of some elements of A by others. Care must be 
taken to ensure that this division can be done in R. 

THEOREM 6. Let R be a principal ideal domain (PZD), 

(1) R(R mx”xF’)< p+B(R(“-‘)X(“-l)XP). 

(2) B(R mxnxp)(,+B(R(m-1)XnX(p-l)). 

(3) B(R mxnxp)(m+B(Rmx(n-l)x(P-l)). 

Proof We prove only (1). Proofs of (2) and (3) are similar. Let M be an 
array in Rmxnxp. The first step is to find N such that Rk, (N) = Rk, (M) and 

that %lk divides every entry of N for 1 < k < p. Let g be the greatest 
common divisor of the entries of M. We begin by showing that there is an 
invertible change of coordinates (see Lemma 1) relating M to some M’ whose 
(1, 1,l) entry is g. If the ideal (mill) contains every entry of M, there is 
nothing to prove. If miik @ (m,,,), one can construct an invertible change of 
coordinates (A,& I) relating M to M(l), where (m#) properly contains 

(%J 
The matrices A, B,T are constructed by composing several simple 

matrices. An identity matrix with one nonzero off-diagonal element added is 
called an “elementary plane operator” because it adds a multiple of one 
plane of M to another. An identity matrix in which a principal submatrix is 

modified to be i i 
[ 1 is called a “gcd producer for x and y” if a and b are 

chosen so that xa + yb = gcd(x, y), and c and d are chosen so that ad - bc = 1 

= gcd(a, b). Note that 
[ 1 it : is invertible and that 

[x Y][; f;]=[g+,y) xc+yd]. 

If miik B(m,,,) can be chosen on a “line” containing mill (i.e., 2 of the 3 
coordinates i, i, k are l), then A, B, and P may be chosen to be two identity 
matrices and a gcd producer for mill and miik. If milk can be chosen in a 

one of i, j, k is l), then two elementary plane 
this case to the first case. If none of i, j, k 

more elementary plane operations reduce this 
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If (m,(t),) contains every entry of M (‘) the process terminates. Otherwise 
it repeats on A4 . (‘) It must eventually tekinate because an ideal in a PID 
can be properly extended only finitely many times. Let this final array be 
M’. 

Another invertible change of coordinates adds multiples of the front 
plane to every other plane, causing the (1, 1, k)-elements to become g for 
1 < k < p. Let this array be N; Rk(N) = Rk(M) by Lemma 1, since they are 
related by an invertible change of coordinates. The procedure for obtaining 
M’ is constructive as long as for every pair x, y of elements of R, another pair 
a, b can be constructed such that m + yb is the greatest common divisor of x 
and y. This condition holds in the integers, for example. 

Perform one step of Gaussian elimination on each plane of N. The 
required divisions can be done, because g divides every element of N. The 
result is 

where E = (elk) is a p X p identity matrix, and 

/ 
/ ‘0; 0 

--7------ 
/ I 1 0 \ NF' 

/ . / 
--_I------ 

, / ’ ’ ’ 

Let N(‘)E R(“-‘)X(“-l)Xp be the array formed by dropping the first row and 
column of each plane of N -cl). Obviously, RkR(Ncl)) = Rk,(N(‘)). Therefore, 
Rk,(M)=Rk,(N)<p+Rk,(N(‘)) = P+R~,(N(~))~~+B(R(“-‘)~(“-‘)~P). 
This holds for all M ERmXnXp, so Z3(ZSmxnxP) < p+B(R cm-w-WP)* . 

THEOREM 7. Let R be a PZZI. Then’ 

B(R nXnXn )+q. 

‘The symbols Irl and 1%) denote the least integer greater than or equal to r and the greatest 
integer less than or equal to r, respectively. 
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Proof. Apply part (1) of Theorem 6 [n/2] times. I? (R” X”X”) < nln/21 
+B(R lnPlxLn/2Jxn ). By Lemma 4, B(R Ln/‘J x Ln/‘l ’ “) < [n/2]‘. Therefore, 

B(R .x,x”) < nrn/21+ lfl/2]2= r#. W 

Theorem 7 gives an upper bound on the tensor rank of n X n X n arrays 
over a PID. A theorem of Dobkin [2] gives the same bound when R is the 
field of complex numbers and n is even. 

Theorem 6 has the following generalization for d-dimensional arrays. 

THEOREM 8. 

ii ni 

V n,x~~~xtI<~ < ) $+B(R n,X...X(n,-1)X... X(lL-l)X... xnd 
). 

Proof. Similar to Theorem 6. n 

Theorem 8 can be used to prove the following d-dimensional analog of 
Theorem 7. 

THEOREM 9. Let R be a PID, and let Rnx ‘.. Xn denote he set of all 
d-dimensionul arrays of size n x . * . X n. Then 

W “X “’ xn 

lim 
)l 1 

n+m rid-l %+2(&1)’ 

Proof. Apply Theorem 8 d times with j and k taking the values 
ji=2i-1 mod d, and 4=2i mod d, for 1< i < d. The result is 

BP “X”‘X” ) < dnd-2+B(R(“-2)X”. X(n-2)). 

The solution to this recurrence with appropriate initial values is of the form 

B(R “X ... XR ) d ’ 2(d- 1) 
~ n d- ’ + (lower-order terms). 

The theorem follows after dividing this equation by ndpl and taking the 
limit as n-+03. n 
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Lower bounds for B(Rmxnxp) can be obtained by counting arguments 
when R is finite. 

THEOREM 10. Let R be a finite commutative ring with identity. Then 

B(R ““““P)>mnp/(m+n+p). Zf, in addition, R is a field with q elements, 
then B(R “X”XP)>mnp/[m+fl+p-210g~(q-1)]. 

Proof. There are q mnP elements in R m x n xP. The number of these whose 
tensor rank is one is at most q”‘+“+p, because any such element has a 
decomposition T= (t+) = uivjwk for some u E R ‘“, v E R “, w E RP. The nwn- 
ber of elements of tensor rank not exceeding k is at most qkcm+“+p), which 
implies B (R mxnxp)(m + fl +‘p) > mnp. 

Let R be a field. If the tensor rank of T is one, T= ( tijk) = uivjwk = 

(d%)(~-‘V~)(P -‘q)* A s a and p range over the q - 1 nonzero elements of 
R, (q - 1)2 different decompositions of T are produced. The number of 
different arrays of tensor rank one is at most qm+“+P/(q - 1)2. The number 
of different arrays of tensor rank not exceeding k is at most q ‘(“‘+“+p)/( q - 
1)2k. Therefore, 

[ 4 
m+n+p (q _ l)-7B(f-xP ) > q""P, 

and 

BP mxnxp ) > m*p 
m+n+p-Blog,(q-1) . n 

It can easily be shown using the mean-value theorem that log, (q - 1) 
behaves roughly as 1 - (q log q) - ’ as q gets large. In fact, log, (q - 1) = l- 
(0 logq) - ’ for some 0 between q - 1 and q. Thus, the second lower bound 
for B(Rmxnxp ) quickly approximates mnp/(m+ n + p -2) as q increases. 
The advantage of this bound over the first lower bound is illustrated by the 
following example. Let R be a finite field with at least four elements. The 
first bound gives B (R 4x4x “) > 6, while the second gives B (R 4x4x “) > 7. 

Lower bounds for B (Rmxnxp) similar to those of Theorem 10 can be 
obtained when R is infinite. 

THEOREM 11. Let R be an infinite commutative ring with identity. 
Then B(R “““““)>mnp/(m+n+p). 
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Proof. Let r = B (R mxnxp). Let s=m+n+p. Consider the following 
system of mnp polynomials in TS variables: 

I G i G m, I G i < n, 1 < k < p. For convenience, let the variables also be 
called xi, . . . , xrs. 

If TS <mnp, there are more polynomials than variables, so the polynomi- 
als are algebraically dependent. Hence, one can construct a nontrivial 
polynomial Q( yi, . . . , y,,,,) such that 

Q(fi11(~1,...,~~~),...,fmn~(~1,...,~,))=0 

as a polynomial in xi, . . . , xrs. Since R is infinite and Q is nontrivial, some 
mnp-tuple of values (t,,,, . . . , tmnp) from R satisfies Q( t,,,, . . . , tmnp) #O. Con- 
sider the array T = (t+) E R mxnxp. By the definition of T, Rk, (T) ( T. 

Therefore t+ =f;ik( Xl*. . . , x,) for some values of xi,. . . , xm, by the definition 
of tensor rank and j& Hence Q (t,,,, . . . , 
of T. The conclusion is that r > mnp/s. 

t,,,) = 0 contradicting the choice 
H 

A special case of Theorem I1 says that B (Rnxnxn) > in”. The theorem 
can be strengthened if R is a field. 

THEOREM 12. Let R be un infinite field. Then B(R”x”x~)>mnp/(m 

+n+p-2). 

Proof. Let r=B(R mxnxp), and s=m+n+p. Let fiik and xi,...,;r, be 
as in the proof of Theorem 11. Let q=(ql ,..., ?I,) and K=(K~ ,..., K,) be 
sequences of r integers, 1 < TJ~ < n, 1 < K[ Q p. Let E = r(s - 2). For each pair 
(77, K), form a new set of polynomials j$‘)(%i,. . . , Xs) from j&(x1,. . . , x,) by 
replacing uli with Eli, vii with i$ for j# TJ~, vr% with 1, wlk with 6rk for k# K~, 

and y, with 1 in (2). As before, let the x’s be new names for the u’s, G’s, and 
W’S. 

Suppose t< mnp. Then for each pair (17, K) there are more polynomials 
than variables in the set j$*)(Xi, . . . , XJ. As in the proof of Theorem 11, 
construct for each (77, K) a nontrivial polynomial Q (9*K)( yi, . . . , IJ~,,~) such that 
Q(;.Jt?ji+i )..., 2,) )...) f$$( - x,,...,$))=O as a polynomial in the x’s. 

i, . . . , y,,,,) be the product of all the Q (9,“)‘s, and choose T =( tiik) 

such that Q(t,,, ,..., t,,,)#O. 
Since Rk, (T) < r, tiik =fijk (q, . . . , x,) for all i, j, k and some choice of u,, 

4, and w, (also called xi,. . . , x,) from R. We may assume each set { vlil 1 < i 
< n} and { wlkll < k < p} contains a nonzero element (otherwise, set uli =0 
for 1 < i < m, and vr, = wri = 1). Choose one nonzero element from each set: 
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to+ = q #O, q+=q #O. This defines q, K~, q, and q. Set Eli = v,o,u,, 
urj = uli / v,, and ii& = wlk/q. For these values of q, K, and the ii, 

@“‘(Xi )..., X[)=fi+i )..., x,)=t+. 

Hence Q(t,,, ,..., t,,,)=Q(fi’~i”)(Xi ,..., X5) ,..., f$$(X, ,..., ?[))=O, con- 
tradicting the choice of T. The conclusion is that E > mnp, so T > mnp/(s - 

2). n 

Generalizations of Theorems 10, 11 and 12 to d dimensions can be 
proven with no additional difficulties. 

THEOREM 13. Let B (R “1 x ” ““) be the maximum tensor rank of any 
array in R nlx”‘xnd. Let P=IIfCIni and S=2f=,ni. Then 

(9 B (R *lx ... x”d) > P/S if R is a commutative ring with identity; 
(ii) B(RnlX..-X 

elements; 
“) > P/[S-(d- l)log,(q- l)] if R is a finite field with q 

(iii) B(R “I~‘..~~)> P/(S-d+l) if R is an infinite field. 

The value of B (R “XnX”) is determined by Theorems 7, 10, and 12 to 
within a constant factor: in” < B (R”xnx”) < [an21 when R is a PID, and 
;n” ( ,(,“x”x”) < n2 in any case. For d dimensions, 

~nd-l<B(R”X-.X” 
d 

)<+(&)nd-l + (lower-order terms) 

when R is a PID, and 

Ind-l < ,(,W% ) < rid-l 

d 

in any case. The asymptotic rate of growth of B (R “X .” x”) is determined, 
but the constant is still unknown. 

4. CONCLUSION 

The main results of this paper are summarized by the following relations. 

(1) Rk,(T) > Rk,(T). 

(2) Rkfi (T) = Rk, [x](T). 
(3) Rk,(T)>Rk,,,,(T)~_Rk,,,,,,(T)>... >Rk~(T)fora,BEo 
(4) RkG(T)=Rk,(T) if QCR. 
(5) R%n R( T) = Rk,( T), R = real numbers. 



22 THOMAS D. HOWELL 

03) BP mx”xP)~min{m+B(R”X(“-‘)x(P-l)), n+B(R(“-‘)X”X(P-I)), 

p+B(R(“-‘)X(“-l)X~)} for R a PID. 

(7) B(R mx”xp) > mnp/(m + n + p). 

(8) B(F ““““P)>mnp/(m+n+p-2) for F an infinite field. 

(9) B (F “X”XP)>mnp/[m+n+p-2log,(q-1)]forFafinitefieldwith 
y elements. 

(IO) 

&d-l < ,(,-‘xTl 

d 
)<$$-)nd-1+o(n+l) 

for R a PID and d = number of dimensions. 

The following are some open problems related to the properties of tensor 
rank discussed here. 

(I) It has been shown that only algebraic numbers are needed to produce 
a minimum-rank decomposition of an integer array. Each algebraic number 
used in such a decomposition can be described by its irreducible polynomial 
over the integers. Give bounds on the degrees of these polynomials and on 
the sizes of their coefficients. 

(2) How much can the tensor rank decrease when complex scalars are 
used instead of reals? How about real scalars instead of rationals? 

(3) It has been shown that B(Rnxnx”)= O(n2). What is the constant? 
Conjecture: At least for algebraically closed fields R, lim,,, B (Rnxnxn)/n2 
= i, i.e., the lower bound is essentially correct. 

(4) Theorems IO-12 imply the existence of sets of n bilinear forms in 
“l,...>X” and yl,...,~” which require 0 (n”) active multiplications to 
evaluate. Current lower-bound techniques are limited to proving lower 
bounds of only 0 (n) active multiplications. Find families of examples 
requiring 0 (n”) multiplications and/or techniques for proving nonlinear 
lower bounds on the complexities of sets of bilinear forms. 

Much of the present paper is contained in my Ph.D. thesis [8]. Z wish to 
thank my thesis advisor, Professor John Hopcroft, for his guidance ‘and 
encouragement. Z am indebted to Professor Cay Queen for suggesting the 
proof of Theo-rem 3, to Professm T. Y. Lam for bringing the real Nullstellen- 
satz to my attention, and to the referee for several helpful suggestions. 
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