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1. Introduction

In [4], a theory of uniform covering maps and generalized uniform covering maps for uniform spaces is developed. In
particular, it is shown that a locally uniform joinable chain connected space has a universal generalized uniform covering
space and a path connected, uniformly locally path connected, and uniformly semilocally simply connected space has a
universal uniform covering space. This paper extends these results to match the corresponding result in the classical setting.
In this setting, one not only has a theorem about the existence of a universal covering space but a theorem about the
existence of a covering space corresponding to any subgroup of the fundamental group of the base space.

A good source for basic facts about uniform spaces is [2]. Let us recall some definitions and results from [4].
Given a function f : X → Y with X a uniform space, the function generates a uniform structure on Y if the family
{ f (E): E is an entourage of X} forms a basis for a uniform structure on Y . If Y already has a uniform structure, the function
generates that structure if and only if it is uniformly continuous and the image of every entourage of X is an entourage of Y .
Given an entourage E of X , an E-chain in X is a finite sequence x1, . . . , xn such that (xi, xi+1) ∈ E for each i � n. Inverses
and concatenations of E-chains are defined in the obvious way. The space X is chain connected if for each entourage E of
X and any x, y ∈ X there is an E-chain starting at x and ending at y. A function f : X → Y from a uniform space X has
chain lifting if for every entourage E of X there is an entourage F of X so that for any x ∈ X , any f (F )-chain in Y starting
at f (x) can be lifted to an E-chain in X starting at x. The function f has uniqueness of chain lifts if for every entourage E
of X there is an entourage F ⊂ E so that any two F -chains in X starting at the same point with identical images must be
equal. Showing that f has unique chain lifting amounts to finding an entourage of X that is transverse to f . An entourage
E0 is transverse to f if for any (x, y) ∈ E0 with f (x) = f (y), we must have x = y. The function has unique chain lifting if
it has both chain lifting and uniqueness of chain lifts.
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Like in the setting of paths, we wish to have homotopies of chains. Homotopies between chains were successfully defined
in [1]. The following is an equivalent definition from [4] that relies on homotopies already defined for paths. It utilizes Rips
complexes which are a fundamental tool for studying chains in a uniform space. Given an entourage E of X the Rips
complex R(X, E) is the subcomplex of the full complex over X whose simplices are finite E-bounded subsets of X . Any
E-chain x1, . . . , xn determines a homotopy class of paths in R(X, E). Simply join successive terms xi, xi+1 by an edge path,
i.e., a path along the edge joining xi and xi+1. Since only homotopy classes of paths will be considered any two such paths
will be equivalent. Two E-chains starting at the same point x and ending at the same point y are E-homotopic relative
endpoints if the corresponding paths in R(X, E) are homotopic relative endpoints.

We wish to consider finer and finer chains in a space and therefore come to the concept of generalized paths. A gen-
eralized path is a collection of homotopy classes of chains α = {[αE ]}E where E runs over all entourages of X and for
any F ⊂ E , αF is E-homotopic relative endpoints to αE . Inverses and concatenations of generalized paths are defined in
the obvious way. The set of generalized paths in X starting at x0 is denoted as GP(X, x0). GP(X, x0) is given a uniform
structure generated by basic entourages defined as follows. For each entourage E of X let E∗ be the set of all pairs (α,β),
α,β ∈ GP(X, x0), such that α−1

E βE is E-homotopic to the chain x, y where x is the endpoint of α and y is the endpoint
of β . Call such a generalized path E-short.

Analogously to the way the fundamental group is defined, define the group π̌1(X, x0) to be the group of all generalized
loops based at x0. It is isomorphic to lim←−(π1(R(X, E), x0)). Also, as the notation suggests, π̌1(X, x0) is isomorphic to the
first shape group for metric compacta [4, Corollary 6.5].

Rips complexes are used in the definition for uniform covering maps in [4]. Let us use a formulation that is proved
equivalent in that paper. A function f : X → Y is a uniform covering map if it generates the uniform structure on Y and
has unique chain lifting.

More definitions are needed in order to define a generalized uniform covering map. Suppose f : X → Y is a function
between uniform spaces. This function has approximate uniqueness of chain lifts if for each entourage E of X there is an
entourage F ⊂ E such that any two F -chains that start at the same point and have identical images under f are E-close.
Two chains x1, . . . , xn and y1, . . . , yn are E-close if (xi, yi) ∈ E for each i � n. The function f has generalized path lifting if
for any x ∈ X , any generalized path starting at f (x) lifts to a generalized path starting at x.

A map f : X → Y is a generalized uniform covering map if it generates the uniform structure on Y and has chain lifting,
approximate uniqueness of chain lifts, and generalized path lifting. The definition from [4] includes a useful property that is
later proved to be redundant. Given a uniform continuous map f : X → Y there is an induced function f∗ : GP(X) → GP(Y )

as described in [4].

Lemma 1.1. ([4]) Suppose f : X → Y is a generalized uniform covering map. Then for each entourage E of X there is an entourage F
of Y so that any two generalized paths in X starting at the same point are E∗-close if their images under f∗ are F ∗-close. In particular,
F -short generalized paths in Y lift to E-short generalized paths in X.

This property can be used to show that a generalized uniform covering map has uniqueness of generalized path lifts
provided X is Hausdorff. This result is proved for a special case in [4].

Proposition 1.2. Suppose f : X → Y is a generalized uniform covering map with X Hausdorff. Then f has uniqueness of generalized
path lifts.

Proof. Suppose two generalized paths α and β in X start at the same point and have f∗(α) = f∗(β). Given an entourage E
of X , by 1.1, α and β are E∗-close. Then the endpoints of α and β are E-close. Since X is Hausdorff this implies that the
endpoints are equal. Then α = β since αE and βE are E-homotopic relative endpoints for each entourage E of X . �

In fact if Y is Hausdorff, then a generalized uniform covering map f : X → Y having unique generalized path lifting is
equivalent to X being Hausdorff.

Proposition 1.3. Suppose f : X → Y is a generalized uniform covering map with Y Hausdorff. If f has uniqueness of generalized path
lifts then X is Hausdorff.

Proof. Suppose X is not Hausdorff. Then there is x, y ∈ X with (x, y) ∈ E for each entourage E of X but x �= y. Consider the
constant generalized path at x and the generalized path {[x, y]E}E . They are not equal since they have different endpoints
but they are both lifts of the constant generalized path at f (x). Indeed, f (x) = f (y) since ( f (x), f (y)) ∈ f (E) for each
entourage E of X and f generates the uniform structure on Y . �

The most important property of covering maps is the lifting lemma, and generalized uniform covering maps have this
property.
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Lemma 1.4. ([4]) Suppose f : X → Y is a generalized uniform covering map and g : Z → Y is uniformly continuous. Suppose X is
Hausdorff and Z is locally uniform joinable chain connected. Let x0 ∈ X, y0 ∈ Y , and z0 ∈ Z with f (x0) = g(z0) = y0 . Then there is a
unique uniformly continuous lift h : Z → X of g with h(z0) = x0 if and only if g∗(π̌1(Z , z0)) ⊂ f∗(π̌1(X, x0)).

Conditions for the endpoint map GP(X, x0) → X to be a generalized uniform covering map are introduced in [4]. A uni-
form space X is uniform joinable if any two points in X can be joined by a generalized path. A uniform space X is locally
uniform joinable if for each entourage E of X there is an entourage F ⊂ E such that if (x, y) ∈ F , x and y can be joined
by an E-short generalized path. It is easy to see that X is locally uniform joinable and chain connected if and only if X is
locally uniform joinable and uniform joinable. We will use the former description.

Proposition 1.5. ([4]) The endpoint map GP(X, x0) → X is a generalized uniform covering map if and only if X is locally uniform
joinable chain connected.

In particular there is the following equivalence.

Proposition 1.6. Suppose X is chain connected. Then the endpoint map GP(X, x0) → X generates the uniform structure on X if and
only if X is locally uniform joinable.

2. Generalized uniform covering maps relative to subgroups of the uniform fundamental group

Let us first classify generalized uniform covering spaces over X in terms of subgroups of π̌1(X, x0). The corresponding
theory for uniform covering spaces will follow.

We will construct, given a subgroup H of π̌1(X, x0), a generalized uniform covering space of X . It will be constructed as
the quotient of an action of H on GP(X, x0). Given h ∈ H and α ∈ GP(X, x0), let h ·α = hα. Let qH : GP(X, x0) → GP(X, x0)/H
be the induced projection. Given α ∈ GP(X, x0), let [α]H denote the orbit of α under the action.

Recall an action of a group G on a uniform space X is uniformly equicontinuous [5] if for each entourage E of X there
is an entourage F of X such that for each g ∈ G , F ⊂ g−1(E). Equivalently, X has a basis of G-invariant entourages [3]. An
entourage E is G-invariant if for each g ∈ G , g E = E .

Lemma 2.1. Given a subgroup H of π̌1(X, x0), the action of H on GP(X, x0) is uniformly equicontinuous. In particular, given an
entourage E of X , the entourage E∗ of GP(X, x0) is invariant under the action of H.

Proof. Let E be an entourage of X . Suppose (α,β) ∈ E∗ and h ∈ H . Then (hα)−1(hβ) = α−1h−1hβ = α−1β is E-short so
(h · α,h · α) ∈ E∗ . �

An action of G on X is neutral [5] if for each entourage E of X there is an entourage F of X such that if (x, gy) ∈ F
there is an h ∈ G with (hx, y) ∈ E . Since equicontinuous actions are neutral, qH has chain lifting and generates a uniform
structure on GP(X, x0)/H [3, Remark 3.2].

Proposition 2.2. Suppose f : X → Y generates the uniform structure on Y and g : Y → Z is any function between uniform spaces.

1. If g ◦ f generates the uniform structure on Z then g generates the uniform structure on Z .
2. If f has chain lifting and g ◦ f has approximate uniqueness of chain lifts then g has approximate uniqueness of chain lifts.
3. If g ◦ f has uniqueness of chain lifts then g has uniqueness of chain lifts.
4. If g ◦ f has chain lifting then g has chain lifting.

Proof. 1. First let us see that g is uniformly continuous. Given an entourage E of Z , (g ◦ f )−1(E) is an entourage of X . Then
f ((g ◦ f )−1(E)) is an entourage of Y . We have g( f ((g ◦ f )−1(E))) ⊂ E . Now, given an entourage E of Y , we wish to see
that g(E) is an entourage of Z . But g ◦ f ( f −1(E)) ⊂ g(E) and g ◦ f ( f −1(E)) is an entourage of Z .

2. Given an entourage E of Y , choose an entourage F ⊂ f −1(E) so that two F -chains starting at the same point are
f −1(E)-close if their images under g ◦ f are identical. Choose an entourage K ⊂ E so that K -chains lift to F -chains. Suppose
two K -chains start at a point y ∈ Y have identical images under g . Choose x ∈ f −1(y) and lift the two chains to F -chains
in X starting at x. These chains have identical images under g ◦ f so they are f −1(E)-close. Therefore the K -chains are
E-close.

3. Suppose E0 is an entourage of X that is transverse to g ◦ f . Then f (E0) is an entourage of Y that is transverse to g .
4. Given an entourage E of Y , choose an entourage F ⊂ f −1(E) so that g ◦ f (F )-chains lift to f −1(E)-chains. Notice

f (F ) ⊂ E . Let us see that g( f (F ))-chains in Z lift to E-chains in Y . Suppose x ∈ Y and (g(x), y) ∈ g( f (F )). Choose x′ ∈
f −1(x). Then there is a y′ ∈ X with g ◦ f (y′) = y and (x′, y′) ∈ f −1(E). Notice ( f (x′), f (y′)) = (x, f (y′)) ∈ E . �
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Proposition 2.3. Suppose X is a uniform space and H is a subgroup of π̌1(X, x0). Then X is locally uniform joinable chain connected
if and only if the endpoint map pH : GP(X, x0)/H → X is a generalized uniform covering map.

Proof. Suppose X is uniform joinable chain connected. Since pH ◦ qH = p where p : GP(X, x0) → X is the endpoint map,
according to 2.2, pH has chain lifting. Also according to 2.2, pH has approximate uniqueness of chain lifts. Finally, since p
has generalized path lifting, pH has generalized path lifting.

Now suppose pH is a generalized uniform covering map. In particular it generates the uniform structure on X so p =
pH ◦qH generates the uniform structure on X . Recall that p generates the uniform structure on X if and only if X is uniform
joinable chain connected 1.6. �

We wish to have that pH ∗(π̌1(GP(X, x0)/H, [α0]H )) = H where α0 is the constant generalized path at x0. For this proof
we need pH to have unique generalized path lifting. Recall that a generalized uniform covering map f : X → Y has unique
generalized path lifting if X is Hausdorff 1.2.

Proposition 2.4. Suppose X is Hausdorff. Then GP(X, x0)/H is Hausdorff if and only if H is a closed subgroup of π̌1(X, x0) where we
view π̌1(X, x0) as a subspace of GP(X, x0).

Proof. It is easy to see that for a uniform space X and a subset A ⊂ X , x ∈ X is in the closure of A if and only if B(x, E)∩ A
is nonempty for each entourage E of X . Recall B(x, E) = {y: (x, y) ∈ E}.

Given that X is Hausdorff, GP(X, x0)/H being Hausdorff means that if α,β ∈ GP(X, x0) end at the same point and for
each entourage E of X there is a γ (E) ∈ H with (α,γ (E)β) ∈ E∗ , then αβ−1 ∈ H . Now H being a closed subgroup of
π̌1(X, x0) means that if λ ∈ π̌1(X, x0) and for each entourage E of X there is a γ (E) ∈ H with (λ,γ (E)) ∈ E∗ , then λ ∈ H .
Since E∗ is invariant under the action of H , taking λ = αβ−1 shows the equivalence. �

The following indicates that H being closed in π̌1(X, x0) is equivalent to H being complete.

Proposition 2.5. π̌1(X, x0) is complete.

Proof. Suppose F is a Cauchy filter in π̌1(X, x0). Given an entourage E of X , there is an E∗-bounded set AE ∈ F . Since AE

is E∗-bounded, every element of AE has the same E-term, say cE . Define a generalized loop c = {cE}. To see that c is a
generalized path, suppose F ⊂ E are entourages of X . Since F is a filter, there is an α ∈ A F ∩ AE . Then cE = αE and cF = αF

so cF is E-homotopic to cE . Finally, F converges to c since AE ⊂ B(c, E∗). �
Corollary 2.6. A subgroup H of π̌1(X, x0) is closed in π̌1(X, x0) if and only if H is complete.

See Example 3.6 for a space X and a subgroup H of π̌1(X, x0) that is not complete.

Proposition 2.7. Suppose X is Hausdorff and H is a closed subgroup of π̌1(X, x0). Suppose pH is a generalized uniform covering map.
Then pH∗(π̌1(GP(X, x0)/H, [α0]H )) = H.

Proof. By the previous proposition GP(X, x0)/H is Hausdorff. Therefore pH has unique generalized path lifting. Suppose
α ∈ π̌1(X, x0). Now α ∈ pH∗(π̌1(GP(X, x0)/H, [α0]H )) if and only if α lifts to a generalized loop α̃H in GP(X, x0)/H . In that
case α̃H (1) = [α0]H . But α lifts to a generalized path α̃ in GP(X, x0) and α̃(1) = α. Then qH∗(α̃) is another lift of α in
GP(X, x0)/H so qH∗(α̃) = α̃H and α̃H (1) = [α]H . Therefore [α]H = [α0]H so α ∈ H . �
Proposition 2.8. Suppose a uniform space X is locally uniform joinable chain connected. Then for each closed subgroup H of π̌1(X, x0)

there is a Hausdorff, locally uniform joinable, and chain connected space Z and a generalized uniform covering map pH : Z → X such
that pH ∗(π̌1(Z)) = H.

Proof. According to 2.3, the endpoint map pH : GP(X, x0)/H → X is a generalized uniform covering map. Then by 2.7,
pH∗(π̌1(GP(X, x0)/H, [α0]H )) = H . Notice GP(X, x0)/H is Hausdorff by 2.4, locally uniform joinable by [4, Proposition 4.4],
and chain connected by [1, Corollary 9]. �

Recall the following theorem from the classical setting of topological covering maps: Suppose f : X → Y and g : Z → Y
are two covering maps. Suppose X , Y , and Z are path connected and locally path connected. Then f and g are equivalent
if and only if the groups f∗(π1(X, x0)) and g∗(π1(Z)) are conjugate in π1(Y ) [6]. Note saying that f and g are equivalent
means that there is a homeomorphism h : X → Z with f = g ◦ h. We wish to have an analog of this result for generalized
uniform covering maps.
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Lemma 2.9. Suppose f : X → Y is a map between uniform spaces with X uniform joinable. Let y0 ∈ Y and x0, x1 ∈ f −1(y0). Then
f∗(π̌1(X, x0)) and f∗(π̌1(X, x1)) are conjugate.

Proof. This lemma is proved in the same manner that it is proved in the classical setting. Let α be a generalized path in X
from x0 to x1. Consider the induced function f∗ : GP(X, x0) → GP(Y ). First suppose γ1 is a generalized loop in X at x1. Then
f∗(α) f∗(γ1) f∗(α)−1 = f∗(αγ1α

−1) so f∗(α) f∗(π̌1(X, x1)) f∗(α)−1 ⊂ f∗(π̌1(X, x0)). Now suppose γ0 is a generalized loop in
X at x0. Then f∗(γ0) = f∗(αα−1γ0αα−1) = f∗(α) f∗(α−1γ1α) f∗(α)−1 so f∗(π̌1(X, x0)) ⊂ f∗(α) f∗(π̌1(X, x1)) f∗(α)−1. �
Lemma 2.10. Suppose a map f : X → Y between uniform spaces has unique generalized path lifting and X is uniform joinable.
Let y0 ∈ Y and x0 ∈ f −1(y0). Given a subgroup H of π̌1(Y , y0) that is conjugate to f∗(π̌1(X, x0)), there is an x1 ∈ X so that
f∗(π̌1(X, x1)) = H.

Proof. Suppose αHα−1 = f∗(π̌1(X, x0)) for some α ∈ π̌1(Y , y0). Let α̃ be the lift of α in X and x1 be the endpoint of α̃.
By 2.9, α f∗(π̌1(X, x1))α

−1 = f∗(π̌1(X, x0)). Therefore f∗(π̌1(X, x1)) = H . �
We say two maps f : X → Y and g : Z → Y are uniform equivalent if there is a uniform equivalence h : X → Z with

f = g ◦ h.

Proposition 2.11. Suppose f : X → Y and g : Z → Y are two generalized uniform covering maps. Suppose X and Z are Hausdorff,
locally uniform joinable, and chain connected. Let x0 ∈ X, y0 ∈ Y , and z0 ∈ Z with f (x0) = g(z0) = y0 . Then f and g are uniform
equivalent if and only if the groups f∗(π̌1(X, x0)) and g∗(π̌1(Z , z0)) are conjugate in π̌1(Y , y0).

Proof. Suppose f and g are uniform equivalent with equivalence h : X → Z with f = g ◦ h. Therefore f∗(π̌1(X, x0)) =
g∗ ◦ h∗(π̌1(X, x0)) = g∗(π̌1(Z ,h(x0))). By 2.9 g∗(π̌1(Z ,h(x0))) is conjugate to g∗(π̌1(Z , z0)).

Now suppose the groups f∗(π̌1(X, x0)) and g∗(π̌1(Z , z0)) are conjugate. By 2.10 there is an x1 ∈ X with f∗(π̌1(X, x1)) =
g∗(π̌1(Z , z0)). Then by 1.4 there is a lift h : X → Z of f with respect to the uniform covering map g and there is a lift
k : Z → X of g with respect to the uniform covering map f . Now h ◦ k is the identity on X since it and the identity are
both lifts of f with respect to itself. Similarly k ◦ h is the identity on Y . Therefore h is a uniform equivalence. �

We wish to classify generalized uniform covering maps of a locally uniform joinable chain connected space in terms of
subgroups of its uniform fundamental group. We will only consider generalized uniform covering maps where the covering
space is Hausdorff, locally uniform joinable, and chain connected.

Proposition 2.12. Suppose f : X → Y is a generalized uniform covering map. Suppose X is Hausdorff. Let x0 ∈ X and set y0 = f (x0).
Then f∗(π̌1(X, x0)) is closed in π̌1(Y , y0).

Proof. Set H = f (π̌1(X, x0)). Suppose γ ∈ Cl(H). Lift γ to a generalized path γ̃ in X starting at x0. It suffices to show
that the endpoint of γ̃ is x0. Given an entourage E of X , choose an entourage F of X so that if α,β ∈ GP(X, x0) with
( f∗(α), f∗(β)) ∈ F ∗ , then (α,β) ∈ E∗ (see 1.2). Now there is an h ∈ H with (γ ,h) ∈ F ∗ . Let h̃ ∈ π̌1(X, x0) with f∗(h̃) = h.
Then (γ̃ , h̃) ∈ E∗ . In particular, (x, x0) ∈ E where x is the endpoint of γ̃ . Since X is Hausdorff, x = x0. �
Theorem 2.13. Suppose X is Hausdorff, locally uniform joinable, and chain connected. Then there is a bijective correspondence between
conjugacy classes of closed subgroups of π̌1(X, x0) and generalized uniform covering maps over X with the covering space being
Hausdorff, locally uniform joinable, and chain connected.

Proof. Let x0 ∈ X and f : Z → X be a generalized uniform covering map where Z is Hausdorff, locally uniform joinable and
chain connected. We identify f with the conjugacy class of the closed subgroup H = f∗(π̌1(Z , z0)) where z0 ∈ f −1(x0). This
identification is well defined and bijective by 2.11. The identification is surjective by 2.8. �
3. Uniform covering maps relative to subgroups of the uniform fundamental group

We already know that the endpoint map X̃ → X is a uniform covering map if and only if X is path connected, uniformly
locally path connected, and uniformly semilocally simply connected [4]. Let us see when the endpoint map GP(X, x0) → X
is a uniform covering map.

Definition 3.1. A uniform space is simply uniform joinable if every generalized loop is trivial.

Equivalently, a space X is simply uniform joinable if π̌1(X, x0) = 1 for each x0 ∈ X .
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Definition 3.2. A uniform space is semilocally simply uniform joinable if there is an entourage E so that a generalized loop
is trivial if its E-term is trivial.

Equivalently, a space X is semilocally simply uniform joinable if there is an entourage E so that the projection
π̌1(X, x0) → π1(R(X, E), x0) is a monomorphism for all x0 ∈ X .

Proposition 3.3. Suppose f : X → Y is a generalized uniform covering map with X Hausdorff. If Y is semilocally simply uniform
joinable then X is semilocally simply uniform joinable.

Proof. Suppose Y is semilocally simply uniform joinable with entourage E so that any generalized loop is trivial if its
E-term is trivial. Suppose c is a generalized loop at x0 with c f −1(E) trivial. Then f (c)E is trivial so f (c) is trivial. But then
c and the constant generalized path at x0 are two lifts of the same generalized path so they must be equal since X is
Hausdorff. �
Proposition 3.4. The following are equivalent.

1. The projection p : GP(X, x0) → X is a uniform covering map for some x0 ∈ X.
2. The projection p : GP(X, x0) → X is a uniform covering map for all x0 ∈ X.
3. X is locally uniform joinable, chain connected, and semilocally simply uniform joinable.

Proof. 1. ⇒ 3. Since p is surjective, X is uniform joinable. Since p generates the structure on X , by 1.6, X is locally uniform
joinable. To see that X is semilocally simply uniform joinable, let E∗

0 be a basic transverse entourage of X . Suppose γ is a
generalized loop in X at a point x ∈ X whose E0-term is trivial. Let α be a generalized path from x0 to x. Then (α,αγ ) ∈ E∗

0
and p(α) = p(αγ ) so α = αγ and γ is trivial.

3. ⇒ 2. Let x0 ∈ X . By 1.6 p : GP(X, x0) → X generates the structure on X (uniform joinability and local uniform joinabil-
ity are used here). Since X is semilocally simply uniform joinable there is an entourage E0 of X such that any generalized
loop in X is trivial if its E0-term is trivial. To see that E∗

0 is transverse to p, suppose (α,β) ∈ E∗
0 with p(α) = p(β). Then

α−1β is a generalized loop in X whose E-term is trivial so it is trivial. Therefore α = β . Finally, to see that p has chain
lifting, let E∗ be a basic entourage of GP(X, x0) and let F ⊂ E be an entourage of X so that any two x, y ∈ X with (x, y) ∈ F
can be joined by an E-short generalized path. Suppose α ∈ GP(X, x0) and (p(α), y) ∈ F . Join p(α) and y by an E-short
generalized path β . Then (α,αβ) ∈ E∗ . �

Now we wish to see that for a locally uniform joinable, chain connected, and semilocally simply uniform joinable
space X , for each subgroup H of π̌1(X, x0) there is a uniform covering map pH : Z → X with p∗(π̌1(Z , z0)) = H .

Proposition 3.5. If X is semilocally simply uniform joinable then every subgroup H of π̌1(X, x0) is complete.

Proof. Suppose α is a generalized loop in X at x0 and for each entourage E of X there is an h(E) ∈ H with (α,h(E)) ∈ E∗ .
There is an entourage E0 of X so that any generalized loop is trivial if its E0-term is trivial. Therefore αh(E0)

−1 is trivial,
i.e., α = h(E0) ∈ H . �

We now see an example of a space X and a subgroup H of π̌1(x) that is not complete.

Example 3.6. According to the previous proposition, our space X must be non semilocally simply uniform joinable. Consider
the Hawaiian Earring E . Let E be the union of circles Cn of diameter 1/2n in R

2 with center (0,1/2n+1) for n ∈ N. We use
the standard distance in R

2 and a basic entourage is of the form Eε = {(x, y): d(x, y) � ε}. Given a generalized path, we
refer to the term corresponding to the entourage E1/2n as its 1/2n-term for convenience.

Since an equilateral triangle inscribed in a circle of diameter d has side length (
√

3/2)d and 1/2n+1 < (
√

3/2)(1/2n),
a generalized path that runs around Cn has its 1/2n-term trivial but its 1/2n+1-term nontrivial. Thus it is more convenient
to use the sequence {1/2n} than {1/n}. We can see that E is not semilocally uniform joinable since a generalized loop that
runs around the circle Cn has trivial 1/2n term but is not trivial.

Given n ∈ N, let αn be the generalized loop that runs around the circle Cn , say counterclockwise. Let H be the subgroup
of π̌1(E, (0,0)) generated by {αn: n ∈ N}. Consider the sequence of generalized loops βn = ∏n

i=1 αi in H . This sequence
converges to a generalized loop β whose 1/2n-term is defined to be the 1/2n-term of βn . Note β is a generalized path
associated with a path in E that traverses each Cn .

We see that β /∈ H . Given any finite product α of αi ’s, let n be maximum in the product. Let En be the union of the
circles Ci , i > n and let f : E → En be the identity on Ci , i > n, and send each Ci , i � n, to the origin. Then the image of
α under the induced homomorphism f# : π̌1(E, (0,0)) → π̌1(En, (0,0)) is trivial but the image of β is nontrivial. Thanks to
Bob Daverman for suggesting this example.
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Theorem 3.7. Suppose a uniform space X is Hausdorff, locally uniform joinable, chain connected, and semilocally simply uniform
joinable. Suppose x0 ∈ X. Then for each subgroup H of π̌1(X, x0) there is a Hausdorff, locally uniform joinable, and chain connected
space Z , a uniform covering map pH : Z → X and a point z0 ∈ p−1

H (x0) such that pH∗(π̌1(Z , z0)) = H.

Proof. Consider the endpoint map pH : GP(X, x0)/H → X . According to 3.4, p : GP(X, x0) → X is a uniform covering map.
According to 2.1, qH : GP(X, x0) → GP(X, x0)/H generates the uniform structure on GP(X, x0)/H . Then, since p = pH ◦ qH ,
pH is a uniform covering map by 2.2. Notice GP(X, x0)/H is locally uniform joinable by [4, Proposition 4.4], and chain
connected by [1, Corollary 9]. Now H is closed by 3.5. Then GP(X, x0)/H is Hausdorff by 2.4. Also, pH∗(π̌1(GP(X, x0),α0)) =
H by 2.7. �

We wish to classify uniform covering maps of locally uniform joinable, chain connected, and semilocally simply uniform
joinable spaces. We will only consider uniform covering maps where the covering space is chain connected. Note that we
do not need to explicitly assume that the covering space is Hausdorff or locally uniform joinable since these properties are
inherited from the base space via uniform covering maps.

Lemma 3.8. Suppose f : X → Y is a uniform covering map.

1. If Y is Hausdorff then X is Hausdorff.
2. If Y is locally uniform joinable then X is locally uniform joinable.

Proof. 1. Suppose x, y ∈ X and (x, y) ∈ E for each entourage E of X . Then ( f (x), f (y)) ∈ f (E) for each entourage E and f
generates the uniform structure on Y so f (x) = f (y). But there is an entourage of X that is transverse to f so x = y.

2. Given an entourage E of X , there is an entourage F ⊂ E so that any two F -chains in X starting at the same point who
have identical images must be equal. By 1.1 there is an entourage K of Y so that K -short uniform generalized paths lift to
F -short uniform generalized paths. Since Y is locally uniform joinable there is an entourage D of Y so that if (x, y) ∈ D ,
x and y can be joined by a K -short uniform generalized path. Suppose (x, y) ∈ f −1(D) ∩ F . Then ( f (x), f (y)) ∈ D so f (x)
and f (y) can be joined by a K -short uniform generalized path. This uniform generalized path lifts to an F -short uniform
generalized path starting at x. But then a representative of the F -term of this uniform generalized path is an F -chain whose
image is f (x), f (y) so the chain must be x, y. �
Theorem 3.9. Suppose X is Hausdorff, locally uniform joinable, chain connected, and semilocally simply uniform joinable. Then there
is a bijective correspondence between the conjugacy classes of subgroups of π̌1(X, x0) and uniform covering maps over X with the
covering space being chain connected.

Proof. Let x0 ∈ X and f : Z → X be a generalized uniform covering map where Z is chain connected. Notice Z is
Hausdorff and locally uniform joinable by the previous lemma. We identify f with the conjugacy class of the subgroup
H = f∗(π̌1(Z , z0)) where z0 ∈ f −1(x0). Notice this subgroup is closed by 3.5. This identification is well defined and bijective
by 2.11. The identification is surjective by 3.7. �
4. Uniform covering maps relative to subgroups of the fundamental group

Now we consider the case of X being path connected, uniformly locally path connected, and uniformly semilocally simply
connected. Existence of uniform covering maps follows immediately since in this case, GP(X, x0) is uniformly equivalent to
X̃ and π̌1(X, x0) is isomorphic to π1(X, x0) [4].

Theorem 4.1. Suppose X is Hausdorff, path connected, uniformly locally path connected, and uniformly semilocally simply connected.
Suppose x0 ∈ X. Then for each subgroup H of π1(X, x0) there is a uniform covering map pH : Z → X and a point z0 ∈ p−1

H (x0) such
that pH∗(π1(Z , z0)) = H.

Proof. The natural map from X̃ to GP(X, x0) is a uniform equivalence [4] so GP(X, x0) → X is a uniform covering map
which implies that X is locally uniform joinable, chain connected, and semilocally simply uniform joinable. Therefore the
theorem follows from 3.7 since π̌1(X, x0) is isomorphic to π1(X, x0). �

The fact that if X is Hausdorff, path connected, uniformly locally path connected, and uniformly semilocally simply
connected then X is semilocally simply uniform joinable is nontrivial since it is not true that if X is uniformly semilocally
simply connected then X is semilocally simply uniform joinable, even for a path connected space (see Example 4.3 below).
Since it is nontrivial, let us formally state it.

Proposition 4.2. If X is Hausdorff, path connected, uniformly locally path connected, and uniformly semilocally simply connected then
X is semilocally simply uniform joinable.
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Example 4.3. We will consider a subspace of the Hawaiian Earring to show that a path connected uniformly semilocally
simply connected space need not be semilocally simply uniform joinable. Let the Hawaiian Earring be as in Example 3.6.
Obtain a space X by removing, for each n, the point of (0,1/2n) from circle Cn . Notice X is path connected and uniformly
semilocally simply connected (in fact X is simply connected). However X is not semilocally simply uniform joinable for the
same reason that the Hawaiian Earring is not.

Similarly, it is not true that a simply connected space is necessarily simply joinable (consider the circle with one point
removed). However, we do have the following.

Proposition 4.4. If X is Hausdorff, path connected, uniformly locally path connected, and simply connected then X is simply uniform
joinable.

Proof. If X is Hausdorff, path connected, uniformly path connected, and simply connected then X is uniformly equivalent
to X̃ . But X is path connected, uniformly locally path connected, and uniformly semilocally simply connected so X̃ is
uniformly equivalent to GP(X, x0). Since GP(X, x0) is simply uniform joinable [4, Proposition 4.13], so is X . �

Again, we have the analog to 3.9 for path connected, uniformly locally path connected, and uniformly semilocally simply
connected spaces.

Corollary 4.5. Suppose X is Hausdorff, path connected, uniformly locally path connected, and uniformly semilocally simply connected.
Then there is a bijective correspondence between the conjugacy classes of subgroups of π1(X, x0) and uniform covering maps spaces
of X .

Proof. As above, it follows from 4.1 and 2.11 since π1(X, x0) is isomorphic to π̌1(X, x0). �
We leave the issue of when X̃ → X (or X̃/H → X for some subgroup H of π1(X, x0)) is a generalized uniform covering

map as an open question.

Problem 4.6. Characterize when X̃ → X is a generalized uniform covering map.

Assuming that X is path connected, if X̃ → X is a generalized uniform covering map then X must be uniformly locally
path connected by [4, Proposition 2.12]. The following example shows that the converse (the analog of 2.3) need not hold.

Example 4.7. Consider the Hawaiian Earring E again (see 3.6). Let us see that Ẽ → E does not have approximate uniqueness
of chain lifts. Let the basepoint be at the origin (0,0). Given any 0 < δ � 1/2, we will find two E∗

δ -chains in H̃ starting at
the constant path at the origin with identical images in E that are not E∗

1/2-close. Choose n so that π/2δ < n < π/δ. For
the first chain, let α−1 and α0 be the constant path at the origin and for each i � n let αi be the path that starts at the
origin and goes counterclockwise around C1 so that it has length iδ. Then αn goes at least a quarter of the way around C1
but less than half way. For the second chain, again let β−1 be the constant path at the origin but let β0 be the path that
goes once around Cm where m is chosen so that 1/2m � δ. Then for each i � n let βi = β0αi .

These two chains are E∗
δ -chains and have identical images in E but αn and βn are not E∗

1/2-close. Indeed α−1
n βn =

α−1
n β0αn cannot be homotoped to a path that is E1/2-bounded since the distance between the endpoints of αn is at least√
2/2.
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