
Theoretical Computer Science 429 (2012) 247–257

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Reaction automata

Fumiya Okubo a, Satoshi Kobayashi b, Takashi Yokomori c,∗

a Graduate School of Education, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, Japan
b Graduate School of Informatics and Engineering, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan
c Department of Mathematics, Faculty of Education and Integrated Arts and Sciences, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku,
Tokyo 169-8050, Japan

a r t i c l e i n f o

Keywords:
Models of biochemical reactions
Reaction automata
Turing computability

a b s t r a c t

Reaction systems are a formalmodel that has been introduced to investigate the interactive
behaviors of biochemical reactions. Based on the formal framework of reaction systems,
we propose new computing models called reaction automata that feature (string) language
acceptors with multiset manipulation as a computing mechanism, and show that reaction
automata are computationally Turing universal. Further, some subclasses of reaction
automata with space complexity are investigated and their language classes are compared
to the ones in the Chomsky hierarchy.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, a series of seminal papers [7–9] has been published inwhich Ehrenfeucht and Rozenberg have introduced
a formal model, called reaction systems, for investigating interactions between biochemical reactions, where two basic
components (reactants and inhibitors) are employed as regulation mechanisms for controlling biochemical functionalities.
It has been shown that reaction systems provide a formal framework best suited for investigating in an abstract level the
way of emergence and evolution of biochemical functioning such as events and modules. In the same framework, they
also introduced the notion of time into reaction systems and investigated notions such as reaction times, creation times of
compounds and so forth. Two rather recent papers [10,11] continue the investigation of reaction systems, with the focuses
on combinatorial properties of functions defined by random reaction systems and on the dependency relation between the
power of defining functions and the amount of available resource.

In the theory of reaction systems, a (biochemical) reaction is formulated as a triple a = (Ra, Ia, Pa), where Ra is
the set of molecules called reactants, Ia is the set of molecules called inhibitors, and Pa is the set of molecules called
products. Let T be a set of molecules, and the result of applying a reaction a to T , denoted by resa(T), is given by Pa
if a is enabled by T (i.e., if T completely includes Ra and excludes Ia). Otherwise, the result is empty. Thus, resa(T)
= Pa if a is enabled on T , and resa(T) = ∅ otherwise. The result of applying a reaction a is extended to the set of
reactions A, denoted by resA(T), and an interactive process consisting of a sequence of resA(T)’s is properly introduced and
investigated.

In the last few decades, the notion of a multiset has frequently appeared and been investigated in many different
areas such as mathematics, computer science, linguistics, and so forth. (See, e.g., [2] for the reference papers written from
the viewpoint of mathematics and computer science.) The notion of a multiset has received more and more attention,
particularly in the areas of biochemical computing and molecular computing (e.g., [19,23]).

∗ Corresponding author.
E-mail addresses: f.okubo@akane.waseda.jp (F. Okubo), satoshi@cs.uec.ac.jp (S. Kobayashi), yokomori@waseda.jp (T. Yokomori).

0304-3975/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2011.12.045

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82139385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.tcs.2011.12.045
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:f.okubo@akane.waseda.jp
mailto:satoshi@cs.uec.ac.jp
mailto:yokomori@waseda.jp
http://dx.doi.org/10.1016/j.tcs.2011.12.045

248 F. Okubo et al. / Theoretical Computer Science 429 (2012) 247–257

Fig. 1. A graphic illustration of interactive biochemical reaction processes for accepting strings in the language L = {anbn | n ≥ 0} in terms of our reaction
automaton A.

Motivated by these two notions of a reaction system and a multiset, in this paper we will introduce computing devices
called reaction automata and show that they are computationally universal by proving that any recursively enumerable
language is accepted by a reaction automaton. There are two points to be remarked: on one hand, the notion of reaction
automata may be taken as a kind of an extension of reaction systems in the sense that our reaction automata deal with
multisets rather than (usual) sets as reaction systems do, in the sequence of computational process. On the other hand,
however, reaction automata are introduced as computing devices that accept the sets of string objects (i.e., languages over
an alphabet). This unique feature, i.e., a string accepting device based on multiset computing in the biochemical reaction
model can be realized by introducing a simple idea of feeding an input to the device from the environment and by employing
a special encoding technique.

In order to illustrate an intuitive idea of the notion of reaction automata and their behavior, we give in Fig. 1 a
simple example of the behavior of a reaction automata A that consists of the set of objects {p0, p1, a, b, a′, f } (with the
input alphabet {a, b}), the set of reactions {a0 = (p0, {a, b, a′

}, f), a1 = (p0a, {b}, p0a′), a2 = (p0a′b, ∅, p1), a3 =

(p1a′b, {a}, p1), a4 = (p1, {a, b, a′
}, f)}, where {p0} is the initial multiset and {f } is the final multiset. Note that in a reaction

a = (Ra, Ia, Pa), multisets Ra and Pa are represented by string forms, while Ia is given as a set. In the graphic drawing of
Fig. 1, each reaction ai is applied to a multiset (of a test tube) after receiving an input symbol (if any is provided) from
the environment. In particular, applying a0 to {p0} leads to that the empty string is accepted by A. It is seen, for example,
that reactions a1 and a2 are enabled by the multiset T = {p0, a′, a′

} only when inputs a and b, respectively, are received,
which result in producing R1 = {p0, a′, a′, a′

} and R2 = {p1, a′
}, respectively. Thus, we have that resa1(T ∪ {a}) = R1 and

resa2(T∪{b}) = R2. Once applying a2 has brought about a change of p0 into p1,Ahas no possibility of accepting further inputs
a’s, because of the inhibitors in a3 or a4. One may easily see that A accepts the language L = {anbn | n ≥ 0}. We remark
that reaction automata allow a multiset of reactions α to apply to a multiset of objects T in an exhaustive manner (what
we call a maximally parallel manner), and therefore the interactive process sequence of computation is nondeterministic
in that the reaction result from T may produce more than one product. The details for these are formally described in the
sequel.

This paper is organized as follows. After preparing the basic notions and notations from formal language theory in
Section 2, we formally introduce the main notion of reaction automata together with one language example in Section 3.
Then, Section 4 describes a multistackmachine (in fact, a two-stackmachine) whose specific property will be demonstrated
to be very useful in the proof of the main result in the next section. Thus, in Section 5 we present our main results: reaction
automata are computationally universal. We also consider some subclasses of reaction automata from a viewpoint of the
complexity theory in Section 6, and investigate the language classes accepted by those subclasses in comparison to the
Chomsky hierarchy. Finally, concluding remarks as well as future research topics are briefly discussed in Section 7.

2. Preliminaries

We assume that the reader is familiar with the basic notions of formal language theory. For unexplained details, refer
to [13].

Let V be a finite alphabet. For a set U ⊆ V , the cardinality of U is denoted by |U|. The set of all finite-length strings over V
is denoted by V ∗. The empty string is denoted by λ. For a string x in V ∗, |x| denotes the length of x, while for a symbol a in V
we denote by |x|a the number of occurrences of a in x. For k ≥ 0, let prefk(x) be the prefix of a string x of length k. For a string
w = a1a2 · · · an ∈ V ∗, wR is the reversal of w, that is, (a1a2 · · · an)R = an · · · a2a1. Further, for a string x = a1a2 · · · an ∈ V ∗,
x̂ denotes the hat version of x, i.e., x̂ = â1â2 · · · ân, where each âi is in an alphabet V̂ = {â | a ∈ V } such that V ∩ V̂ = ∅.

We use the basic notations and definitions regarding multisets that follow [4,15]. A multiset over an alphabet V is a
mapping µ : V → N, where N is the set of non-negative integers and for each a ∈ V , µ(a) represents the number of
occurrences of a in the multiset µ. The set of all multisets over V is denoted by V#, including the empty multiset denoted
by µλ, where µλ(a) = 0 for all a ∈ V . A multiset µ may be represented as a vector, µ(V) = (µ(a1), . . . , µ(an)), for an
ordered set V = {a1, . . . , an}. We can also represent the multiset µ by any permutation of the string wµ = aµ(a1)

1 · · · aµ(an)
n .

Conversely, with any string x ∈ V ∗ one can associate the multiset µx : V → N defined by µx(a) = |x|a for each a ∈ V . In
this sense, we often identify a multiset µ with its string representation wµ or any permutation of wµ. Note that the string
representation of µλ is λ, i.e., wµλ

= λ.

F. Okubo et al. / Theoretical Computer Science 429 (2012) 247–257 249

A usual set U ⊆ V is regarded as a multiset µU such that µU(a) = 1 if a is in U and µU(a) = 0 otherwise. In particular,
for each symbol a ∈ V , a multiset µ{a} is often denoted by a itself.

For two multisets µ1, µ2 over V , we define one relation and three operations as follows:
Inclusion : µ1 ⊆ µ2 iff µ1(a) ≤ µ2(a), for each a ∈ V ,
Sum : (µ1 + µ2)(a) = µ1(a) + µ2(a), for each a ∈ V ,
Intersection : (µ1 ∩ µ2)(a) = min{µ1(a), µ2(a)}, for each a ∈ V ,
Difference : (µ1 − µ2)(a) = µ1(a) − µ2(a), for each a ∈ V (for the case µ2 ⊆ µ1 only).

Amultisetµ1 is calledmultisubset ofµ2 ifµ1 ⊆ µ2. The sum for a family ofmultisetsM = {µi}i∈I is also denoted by


i∈I µi.
For a multiset µ and n ∈ N, µn is defined by µn(a) = n ·µ(a) for each a ∈ V . Theweight of a multiset µ is |µ| =


a∈V µ(a).

We introduce an injective function stm : V ∗
→ V# that maps a string to a multiset in the following manner:

stm(a1a2 · · · an) = a1a22 · · · a2
n−1

n (for n ≥ 1)
stm(λ) = λ.

3. Reaction automata

As is previously mentioned, a novel formal model called reaction systems has been introduced in order to investigate
the property of interactions between biochemical reactions, where two basic components (reactants and inhibitors) are
employed as regulation mechanisms for controlling biochemical functionalities [7–9]. Reaction systems provide a formal
framework best suited for investigating the way of emergence and evolution of biochemical functioning on an abstract
level.

By recalling from [7] basic notions related to reactions systems, we first extend them (defined on the sets) to the notions
on the multisets. Then, we shall introduce our notion of reaction automatawhich plays a central role in this paper.
Definition 1. For a set S, a reaction in S is a 3-tuple a = (Ra, Ia, Pa) of finite multisets, such that Ra, Pa ∈ S#, Ia ⊆ S and
Ra ∩ Ia = ∅.
The multisets Ra and Pa are called the reactant of a and the product of a, respectively, while the set Ia is called the inhibitor
of a. These notations are extended to a multiset of reactions as follows: for a set of reactions A and a multiset α over A,

Rα =


a∈A

Rα(a)
a , Iα =


a⊆α

Ia, Pα =


a∈A

Pα(a)
a .

In what follows, we usually identify the set of reactions Awith the set of labels Lab(A) of reactions in A, and often use the
symbol A as a finite alphabet.
Definition 2. Let A be a set of reactions in S and α ∈ A# be a multiset of reactions over A. Then, for a finite multiset T ∈ S#,
we say that
(1) α is enabled by T if Rα ⊆ T and Iα ∩ T = ∅,
(2) α is enabled by T in maximally parallel manner if there is no β ∈ A# such that α ⊂ β , and α and β are enabled by T .
(3) By Enp

A(T) we denote the set of all multisets of reactions α ∈ A# which are enabled by T in maximally parallel manner.
(4) The results of A on T , denoted by ResA(T), is defined as follows:

ResA(T) = {T − Rα + Pα | α ∈ Enp
A(T)}.

Note that we have ResA(T) = {T } if Enp
A(T) = ∅. Thus, if nomultiset of reactions α ∈ A# is enabled by T inmaximally parallel

manner, then T remains unchanged.
Remarks 1. (i) It should be also noted that the definition of the results of A on T (given in (4) above) is in contrast to the
original one in [7], because we adopt the assumption of permanency of elements: any element that is not a reactant for any
active reaction does remain in the result after the reaction.
(ii) In general, Enp

A(T) may contain more than one element, and therefore, so may ResA(T).
(iii) For simplicity, Ia is often represented as a string rather than a set.
Example 1. Let S = {a, b, c, d, e} and consider the following set A = {a, b, c} of reactions in S:

a = (b2, a, c), b = (c2, ∅, b), c = (bc, d, e).
(i) Consider a finite multiset T = b4cd. Then, α1 = a is enabled by T , while neither b nor c is enabled by T , because Rb ⊈ T
and Ic ∩ T ≠ ∅. Further, α2 = a2 is not only enabled by T but also enabled by T in maximally parallel manner, because no β
with α2 ⊂ β is enabled by T . Since Ra2 = b4, Pa2 = c2, and Enp

A(T) = {a2}, we have

ResA(T) = {T − Ra2 + Pa2} = {c3d}.
(ii) Consider T ′

= b3c2e. Then, β1 = ab and β2 = ac are enabled by T ′, while bc is not. Further, it is seen that both β1 and
β2 are enabled by T ′ in maximally parallel manner, and Enp

A(T
′) = {ab, ac}. Thus, we have

ResA(T ′) = {b2ce, c2e2}.
If we take T ′′

= bcd, then none of the reactions from A is enabled by T ′′. Therefore, we have ResA(T ′′) = T ′′.

250 F. Okubo et al. / Theoretical Computer Science 429 (2012) 247–257

Fig. 2. (a) Reaction diagram: interactive processes for accepting a2 , a4 and a8 in A. Some arrows are associated with a multiset of reactions applied at the
step.

We are now in a position to introduce the notion of reaction automata.

Definition 3 (Reaction Automata). A reaction automaton (RA) A is a 5-tuple A = (S, Σ, A,D0, f), where

• S is a finite set, called the background set of A,
• Σ(⊆ S) is called the input alphabet of A,
• A is a finite set of reactions in S,
• D0 ∈ S# is an initial multiset,
• f ∈ S is a special symbol which indicates the final state.

Definition 4. Let A = (S, Σ, A,D0, f) be an RA and w = a1 · · · an ∈ Σ∗. An interactive process in A with input w is an
infinite sequence π = D0, . . . ,Di, . . ., where

Di+1 ∈ ResA(ai+1 + Di) (for 0 ≤ i ≤ n − 1), and
Di+1 ∈ ResA(Di) (for all i ≥ n).

By IP(A, w) we denote the set of all interactive processes in A with input w.

In order to represent an interactive process π , we also use the ‘‘arrow notation’’ for π : (a1,D0) → · · · → (an,Dn−1) →

(Dn) → (Dn+1) → · · · , or alternatively, D0 →
a1 D1 →

a2 D2 →
a3 · · · →

an−1 Dn−1 →
an Dn → Dn+1 → · · · .

For an interactive process π in A with input w, if Enp
A(Dm) = ∅ for some m ≥ |w|, then we have that ResA(Dm) = {Dm}

and Dm = Dm+1 = · · · . In this case, considering the smallest m, we say that π converges on Dm (at the m-th step). When an
interactive process π converges on Dm, each Di of π is omitted for i ≥ m + 1.

Definition 5. Let A = (S, Σ, A,D0, f) be an RA. The language accepted by A, denoted by L(A), is defined as follows:

L(A) = {w ∈ Σ∗
| there exists π ∈ IP(A, w) that converges on
Dm at the m-th step for somem ≥ |w|, and f ⊆ Dm}.

Example 2. Let us consider a reaction automaton A = (S, Σ, A,D0, f) defined as follows:

S = {a, b, c, d, e, f } with Σ = {a},
A = {a1, a2, a3, a4, a5, a6}, where

a1 = (a2, ∅, b), a2 = (b2, ac, c), a3 = (c2, b, b),
a4 = (bd, ac, e), a5 = (cd, b, e), a6 = (e, abc, f),

D0 = d.

Let w = aaaaaaaa ∈ S∗ be the input string and consider an interactive process π such that

π : d →
a ad →

a bd →
a abd →

a b2d →
a ab2d →

a b3d →
a ab3d →

a b4d → c2d → bd → e → f .

It can be easily seen that π ∈ IP(A, w) and w ∈ L(A). Fig. 2 illustrates the whole view of possible interactive processes in
A with inputs a2, a4 and a8. For instance, since a22 ∈ Enp

A(b
4d), it holds that c2d ∈ ResA(b4d). Hence, the step b4d → c2d is

valid. We can also see that L(A) = {a2
n
| n ≥ 1} which is context-sensitive.

4. Multistack machines

A multistack machine is a deterministic pushdown automaton with several stacks [13]. It is known that a two-stack
machine is equivalent to a Turing machine as a language accepting device.

F. Okubo et al. / Theoretical Computer Science 429 (2012) 247–257 251

Fig. 3. (a) Turing machine (TM); (b)Two-stack machineM simulating TM, where $ is the end marker for the input.

A k-stack machine M = (Q , Σ, Γ , δ, p0, Z0, F) is defined as follows: Q is a set of states, Σ is an input alphabet, Γ is
a stack alphabet, Z0 = (Z01, Z02, . . . , Z0k) is the k-tuple of the initial stack symbols, p0 ∈ Q is the initial state, F is a set
of final states, δ is a transition function defined in the form: δ(p, a, X1, X2, . . . , Xk) = (q, γ1, γ2, . . . , γk), where p, q ∈ Q ,
a ∈ Σ ∪ {λ}, Xi ∈ Γ , γi ∈ Γ ∗ for each 1 ≤ i ≤ k. This rule means that in state p, with Xi on the top of i-th stack, if the
machine reads a from the input, then go to state q, and replace the the top of each i-th stackwith γi for 1 ≤ i ≤ k. We assume
that each rule has a unique label and all labels of rules in δ is denoted by Lab(δ). Note that the k-stack machine can make a
λ-move, but there cannot be a choice of a λ-move or a non-λ-move due to the deterministic property of the machine. The
k-stack machine accepts a string by entering a final state.

In this paper, we consider a modification on a multistack (in fact, two-stack) machine. Recall that in the simulation of a
given Turing machine TM with an input w = a1a2 · · · aℓ in terms of a multistack machineM , one can assume the following
(see [13]):

(i) At first, two-stack machineM is devoted to making the copy of w on stack-2. This is illustrated in (a) and (b)-1 of Fig. 3,
for the case of k = 2. M requires only non-λ-moves.

(ii) Once the whole inputw is read-in byM , no more access to the input tape of M is necessary. After havingwR on stack-2,M
moves over wR (from stack-2) to produce w on stack-1, as shown in (b)-2. These moves only require λ-moves and after
this, each computation step of M with respect to w is performed by a λ-move, without any access to w on the input
tape.

(iii) Each stack has its own stack alphabet, each one being different from the others, and a set of final states is a singleton.
Once M enters the final state, it immediately halts. Further, during a computation, each stack is not emptied.

Hence, without changing the computation power, we may restrict all computations of a multistack machine that satisfies
the conditions (i), (ii), (iii). We call this modified multistack machine a restricted multistack machine.

In summary, a restricted k-stack machineMr is composed by 2k + 5 elements as follows:

Mr = (Q , Σ, Γ1, Γ2, . . . , Γk, δ, p0, Z01, Z02, . . . , Z0k, f),

where for each 1 ≤ i ≤ k, Z0i ∈ Γi is the initial symbol for the i-th stack used only for the bottom, f ∈ Q is a final state, and
its computation proceeds only in the above mentioned way (i), (ii), (iii). Especially, λ-moves are used after all non-λ-moves
in a computation ofMr .

Proposition 1 (Theorem 8.13 in [13]). Every recursively enumerable language is accepted by a restricted two-stack machine.

5. Main results

In this section we shall show the equivalence of the accepting powers between reaction machines and Turing machines.
Taking Proposition 1 into consideration, it should be enough for the purpose of this paper to prove the following
theorem.

Theorem 1. If a language L is accepted by a restricted two-stack machine, then L is accepted by a reaction automaton.

[Construction of an RA]
Let M = (Q , Σ, Γ1, Γ2, δ, p0, X0, Y0, f) be a restricted two-stack machine with Γ1 = {X0, X1, . . . , Xn}, Γ2 =

{Y0, Y1, . . . , Ym}, n,m ≥ 1, where Γ = Γ1 ∪ Γ2, X0 and Y0 are the initial stack symbols for stack-1 and stack-2, respectively,
and we may assume that Γ1 ∩ Γ2 = ∅.

We construct an RA AM = (S, Σ, A,D0, f ′) as follows:

S = Q ∪ Q̂ ∪ Σ ∪ Γ ∪ Γ̂ ∪ Lab(δ) ∪ {f ′
},

A = A0 ∪ Aa ∪ Âa ∪ Aλ ∪ Âλ ∪ AX ∪ ÂX ∪ AY ∪ ÂY ∪ Af ∪ Âf ,

D0 = p0X0Y0,

252 F. Okubo et al. / Theoretical Computer Science 429 (2012) 247–257

where the set of reactions A consists of the following 5 categories :

(1) A0 = {(p0aX0Y0, Lab(δ), q̂ · stm(x̂) · stm(ŷ) · r ′) | r : δ(p0, a, X0, Y0) = (q, x, y), r ′
∈ Lab(δ)},

(2) Aa = {(paXiYjr, Γ̂ , q̂ · stm(x̂) · stm(ŷ) · r ′) | a ∈ Σ, r : δ(p, a, Xi, Yj) = (q, x, y), r ′
∈ Lab(δ)},

Âa = {(p̂aX̂iŶjr, Γ , q · stm(x) · stm(y) · r ′) | a ∈ Σ, r : δ(p, a, Xi, Yj) = (q, x, y), r ′
∈ Lab(δ)},

(3) Aλ = {(pXiYjr, Σ ∪ Γ̂ , q̂ · stm(x̂) · stm(ŷ) · r ′) | r : δ(p, λ, Xi, Yj) = (q, x, y), r ′
∈ Lab(δ)},

Âλ = {(p̂X̂iŶjr, Σ ∪ Γ , q · stm(x) · stm(y) · r ′) | r : δ(p, λ, Xi, Yj) = (q, x, y), r ′
∈ Lab(δ)},

(4) AX = {(X2
k , Q̂ ∪ Γ̂ ∪ (Lab(δ) − {r}) ∪ {f ′

}, X̂2|x|

k) | 0 ≤ k ≤ n, r : δ(p, a, Xi, Yj) = (q, x, y)},

ÂX = {(X̂2
k ,Q ∪ Γ ∪ (Lab(δ) − {r}) ∪ {f ′

}, X2|x|

k) | 0 ≤ k ≤ n, r : δ(p, a, Xi, Yj) = (q, x, y)},

AY = {(Y 2
k , Q̂ ∪ Γ̂ ∪ (Lab(δ) − {r}) ∪ {f ′

}, Ŷ 2|y|

k) | 0 ≤ k ≤ m, r : δ(p, a, Xi, Yj) = (q, x, y)},

ÂY = {(Ŷ 2
k ,Q ∪ Γ ∪ (Lab(δ) − {r}) ∪ {f ′

}, Y 2|y|

k) | 0 ≤ k ≤ m, r : δ(p, a, Xi, Yj) = (q, x, y)},

(5) Af = {(f , Γ̂ , f ′)},

Âf = {(f̂ , Γ , f ′)}.

Proof. Weshall give an informal description onhow to simulateM with an inputw = a1a2 · · · aℓ in terms ofAM constructed
above.

M starts its computation from the state p0 with X0 and Y0 on the top of stack-1 and stack-2, respectively. This initial step
is performed in AM by applying a reaction in A0 to D0 = p0X0Y0 together with a1. In order to read the whole input w into
AM , applying reactions in (2) and (4) leads to an interactive process in AM : D0 →

a1 D1 →
a2 D2 →

a3 · · · →
aℓ Dℓ, where

Dℓ just corresponds to the configuration ofM depicted in (b)-1 of Fig. 3. After this point, only reactions from (3), (4) and (5)
are available in AM , becauseM makes only λ-moves.

Suppose that for k ≥ 1, after making k-steps M is in the state p and has αk ∈ Γ ∗

1 and βk ∈ Γ ∗

2 on the stack-1 and the
stack-2, respectively. Then, from the manner of constructing A, it is seen that in the corresponding interactive process in
AM , we have :

Dk = p · stm(αk) · stm(βk) · r (if k is even)
Dk = p̂ · stm(α̂k) · stm(β̂k) · r (if k is odd)

for some r ∈ Lab(δ), where the rule labeled by r may be used at the (k + 1)-th step. (Recall that stm(x) is a multiset, in
a special 2-power form, representing a string x.) Thus, the multisubset ‘‘stm(αk)stm(βk)’’ in Dk is denoted by the strings in
either Γ ∗ or Γ̂ ∗ in an alternate fashion, depending upon the value k. Since there is no essential difference between strings
denoted by Γ ∗ and its hat version, we only argue about the case when k is even.

Suppose that M is in the state p and has α = Xi1 · · · XitX0 on the stack-1 and β = Yj1 · · · YjsY0 on the stack-2, where the
leftmost element is the top symbol of the stack. Further, let r be the label of a transition δ(p, ak+1, Xi1, Yj1) = (q, x, y)
(if 1 ≤ k ≤ l − 1) or δ(p, λ, Xi1, Yj1) = (q, x, y) (if l ≤ k) in M to be applied. Then, the two stacks are updated as
α′

= xXi2 · · · XitX0 and β ′
= yYj2 · · · YjsY0. In order to simulate this move of M , we need to prove that it is possible in

AM , Dk →
ak+1 Dk+1 (if 1 ≤ k ≤ l − 1) or Dk → Dk+1 (if l ≤ k), where

Dk = p · stm(Xi1Xi2 · · · XitX0) · stm(Yj1Yj2 · · · YjsY0)r

Dk+1 = q̂ · stm(x̂X̂i2 · · · X̂it X̂0) · stm(ŷŶj2 · · · ŶjsŶ0)r ′

for some r ′
∈ Lab(δ). Taking a close look at Dk, we have that

Dk = pXi1Yj1r · X2
i2X

22
i3 · · · X2t−1

it X2t
0 · Y 2

j2Y
22
j3 · · · Y 2s−1

js Y 2s
0 ,

from which it is easily seen that a multiset of reactions z = rxi2 · · · x2t−2

it x2t−1

0 yj2 · · · y2s−2

js y2s−1

0 is in Enp
AM

(ak+1 + Dk) (if
1 ≤ k ≤ l − 1) or in Enp

AM
(Dk) (if l ≤ k), i.e., it is enabled by ak+1 + Dk (if 1 ≤ k ≤ l − 1) or Dk (if l ≤ k) in a maximally

parallel manner, where
r = (pak+1Xi1Yj1r, Γ̂ , q̂ · stm(x̂)stm(ŷ)r ′) ∈ Aa (if 1 ≤ k ≤ l − 1)
r = (pXi1Yj1r, Σ ∪ Γ̂ , q̂ · stm(x̂)stm(ŷ)r ′) ∈ Aλ (if l ≤ k),

for some r ′
∈ Lab(δ),

xi = (X2
i , Q̂ ∪ Γ̂ ∪ Lab(δ) − {r} ∪ {f ′

}, X̂2|x|

i) ∈ AX (for i = 0, i2, . . . , it),

yj = (Y 2
j , Q̂ ∪ Γ̂ ∪ Lab(δ) − {r} ∪ {f ′

}, Ŷ 2|y|

j) ∈ AY (for j = 0, j2, . . . , js).

F. Okubo et al. / Theoretical Computer Science 429 (2012) 247–257 253

The result of the multiset of the reactions z is

q̂ · stm(x̂)stm(ŷ)r ′
· X̂2|x|

i2 · · · X̂2t−2+|x|

it X̂2t−1+|x|

0 · Ŷ 2|x|

j2 · · · Ŷ 2s−2+|x|

js Ŷ 2s−1+|x|

0

= q̂ · stm(x̂X̂i2 · · · X̂it X̂0) · stm(ŷŶj2 · · · ŶjsŶ0)r ′

= Dk+1.

Thus, in fact it holds that Dk →
ak+1 Dk+1 (if 1 ≤ k ≤ l − 1) or Dk → Dk+1 (if l ≤ k) in AM .

We note that there is a possibility that undesired reaction r′ can be enabled at the (k + 1)th step, where r′ is of the form
r′ = (pak+1XiuYjvr, Γ̂ , q̂′ · stm(x̂′)stm(ŷ′)r ′) ∈ Aa (if 1 ≤ k ≤ l − 1)
r′ = (pXiuYjvr, Σ ∪ Γ̂ , q̂′ · stm(x̂′)stm(ŷ′)r ′) ∈ Aλ (if l ≤ k),

with u ≠ 1 or v ≠ 1, that is, the reactant of r′ contains a stack symbol which is not the top of stack. If a multiset of reactions
z′

= r′x′

1 · · · x′

t′y
′

1 · · · y′

s′ with x′

1, . . . , x
′

t′ ∈ AX , y′

1, . . . , y
′

s′ ∈ AY is used at the (k + 1)th step, then Dk+1 contains both the
symbols without hat (in Γ) and the symbols with hat (in Q̂ and Γ̂). This is because in this case, Xi1 or Yj1 in Dk which is not
consumed at the (k + 1)-th step remains in Dk+1 (since the total numbers of Xi1 and Yj1 are odd, these objects cannot be
consumed out by the reactions from (4)). Hence, no reaction is enabled at the (k + 2)-th step and f ′ is never derived after
this wrong step.

From the arguments above, it holds that for an input w ∈ Σ∗, M enters the final state f (and halts) if and only if there
exists π : D0, . . . ,Di, . . . ∈ IP(AM , w) such that Dk−1 contains f or f̂ , Dk contains f ′, and π converges on Dk, for some k ≥ 1.
Therefore, we have that L(M) = L(AM) holds. �

Corollary 1. Every recursively enumerable language is accepted by a reaction automaton.

Recall the way of constructing reactions A of AM in the proof of Theorem 1. The reactions in categories (1), (2), (3) would
not satisfy the condition of determinacy which is given immediately below. However, we can easily modify AM to meet the
condition.

Definition 6. Let AM = (S, Σ, A,D0, f ′) be an RA. Then, AM is deterministic if for a = (R, I, P), a′
= (R′, I ′, P ′) ∈ A,

(R = R′) ∧ (I = I ′) implies that a = a′.

Theorem 2. If a language L is accepted by a restricted two-stack machine, then L is accepted by a deterministic reaction
automaton.

Proof. Let M = (Q , Σ, Γ1, Γ2, δ, p0, X0, Y0, f) be a restricted two-stack machine. For the RA AM = (S, Σ, A,D0, f ′)

constructed for the proof of Theorem 1, we consider A′

M = (S ∪ ˆLab(δ), Σ, A′,D0, f ′), where A′ consists of the following 5
categories :

(1) A0 = {(p0aX0Y0, Lab(δ) ∪ {r̂ ′}, q̂ · stm(x̂) · stm(ŷ) · r̂ ′) | r : δ(p0, a, X0, Y0) = (q, x, y), r ′
∈ Lab(δ)},

(2) Aa = {(paXiYjr, Γ̂ ∪ {r̂ ′}, q̂ · stm(x̂) · stm(ŷ) · r̂ ′) | a ∈ Σ, r : δ(p, a, Xi, Yj) = (q, x, y), r ′
∈ Lab(δ)},

Âa = {(p̂aX̂iŶjr, Γ ∪ {r ′
}, q · stm(x) · stm(y) · r ′) | a ∈ Σ, r : δ(p, a, Xi, Yj) = (q, x, y), r ′

∈ Lab(δ)},

(3) Aλ = {(pXiYjr, Σ ∪ Γ̂ ∪ {r̂ ′}, q̂ · stm(x̂) · stm(ŷ) · r̂ ′) | r : δ(p, λ, Xi, Yj) = (q, x, y), r ′
∈ Lab(δ)},

Âλ = {(p̂X̂iŶjr, Σ ∪ Γ ∪ {r ′
}, q · stm(x) · stm(y) · r ′) | r : δ(p, λ, Xi, Yj) = (q, x, y), r ′

∈ Lab(δ)},

(4) AX = {(X2
k , Q̂ ∪ Γ̂ ∪ (ˆLab(δ) − {r̂}) ∪ {f ′

}, X̂2|x|

k) | 0 ≤ k ≤ n, r : δ(p, a, Xi, Yj) = (q, x, y)},

ÂX = {(X̂2
k ,Q ∪ Γ ∪ (Lab(δ) − {r}) ∪ {f ′

}, X2|x|

k) | 0 ≤ k ≤ n, r : δ(p, a, Xi, Yj) = (q, x, y)},

AY = {(Y 2
k , Q̂ ∪ Γ̂ ∪ (ˆLab(δ) − {r̂}) ∪ {f ′

}, Ŷ 2|y|

k) | 0 ≤ k ≤ m, r : δ(p, a, Xi, Yj) = (q, x, y)},

ÂY = {(Ŷ 2
k ,Q ∪ Γ ∪ (Lab(δ) − {r}) ∪ {f ′

}, Y 2|y|

k) | 0 ≤ k ≤ m, r : δ(p, a, Xi, Yj) = (q, x, y)},

(5) Af = {(f , Γ̂ , f ′)},

Âf = {(f̂ , Γ , f ′)}.

The reactions in categories (1), (2), (3) in A′ meet the condition where A′
M is deterministic, since the inhibitor of each

reaction includes r ′ or r̂ ′. We can easily observe that the equation L(M) = L(A′
M) is proved in a manner similar to the proof

of Theorem 1. �

Corollary 2. Every recursively enumerable language is accepted by a deterministic reaction automaton.

254 F. Okubo et al. / Theoretical Computer Science 429 (2012) 247–257

Fig. 4. Reaction diagram of A1 which accepts L1 = {anbncn | n ≥ 0}.

6. Space complexity classes of RAs

We now consider space complexity issues of reaction automata. That is, we introduce some subclasses of reaction
automata and investigate the relationships between classes of languages accepted by those subclasses of automata and
language classes in the Chomsky hierarchy.

Let A be an RA and f be a function defined on N. Motivated by the notion of a workspace for a phrase-structure grammar
[21], we define: for w ∈ L(A) with n = |w|, and for π in IP(A, w),

WS(w, π) = max
i

{|Di| | Di appears in π }.

Further, the workspace of A for w is defined as:

WS(w, A) = min
π

{WS(w, π) |π ∈ IP(A, w) that converges on Dm for somem ≥ n and

Dm includes the final state}.

Definition 7. (i). An RA A is f (n)-bounded if for any w ∈ L(A) with n = |w|, WS(w, A) is bounded by f (n).
(ii). If a function f (n) is a constant k (resp. linear, polynomial, exponential), then A is termed k-bounded (resp.
linearly-bounded, polynomially-bounded, exponentially-bounded), and denoted by k-RA (resp. lin-RA, poly-RA, exp-RA).
Further, the class of languages accepted by k-RA (resp. lin-RA, poly-RA, exp-RA, arbitrary RA) is denoted by k-RA (resp.
LRA, PRA, ERA, RA).

Let us denote by REG (resp. LIN , CF , CS, RE) the class of regular (resp. linear context-free, context-free, context-
sensitive, recursively enumerable) languages.

Example 3. Let L1 = {anbncn | n ≥ 0} and consider an RA A1 = (S, Σ, A,D0, f) defined as follows:

S = {a, b, c, d, a′, b′, c ′, f } with Σ = {a, b, c},
A = {a1, a2, a3, a4}, where

a1 = (a, bb′, a′), a2 = (a′b, cc ′, b′), a3 = (b′c, ∅, c ′), a4 = (d, abca′b′, f),
D0 = d.

Then, it holds that L1 = L(A1) (see Fig. 4).

Example 4. Let L2 = {ambmcndn |m, n ≥ 0} and consider an RA A2 = (S, Σ, A,D0, f) defined as follows:

S = {a, b, c, d, a′, c ′, p0, p1, p2, p3, f } with Σ = {a, b, c, d},
A = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11}, where

a1 = (ap0, bc, a′p0), a2 = (a′bp0, c, p1), a3 = (a′bp1, c, p1), a4 = (cp0, d, c ′p2),

a5 = (cp1, d, c ′p2), a6 = (cp2, d, c ′p2), a7 = (c ′dp2, ∅, p3), a8 = (c ′dp3, ∅, p3),

a9 = (p0, abcd, f), a10 = (p1, abcda′, f), a11 = (p3, abcda′c ′, f),
D0 = p0.

Then, it holds that L2 = L(A2) (see Fig. 5).

It should be noted that A1 and A2 are both lin-RAs, therefore, the class of languages LRA includes a context-sensitive
language L1 and a non-linear context-free language L2.

Lemma 1. For an alphabet Σ with |Σ | ≥ 2, let h : Σ∗
→ Σ∗ be an injection such that for any w ∈ Σ∗, |h(w)|

is bounded by a polynomial of |w|. Then, there is no polynomially-bounded reaction automaton which accepts the language
L = {wh(w) | w ∈ Σ∗

}.

F. Okubo et al. / Theoretical Computer Science 429 (2012) 247–257 255

Fig. 5. Reaction diagram of A2 which accepts L2 = {ambmcndn |m, n ≥ 0}.

Proof. Assume that there is a poly-RA A = (S, Σ, A,D0, f) such that L(A) = {wh(w) | w ∈ Σ∗
}. Let |S| = m1,

|Σ | = m2 ≥ 2 and the input string be wh(w) with |w| = n.
Since |h(w)| is bounded by a polynomial of |w|, |wh(w)| is also bounded by a polynomial of n. Hence, for each Di in an

interactive process π ∈ IP(A, wh(w)), it holds that |Di| ≤ p(n) for some polynomial p(n) from the definition of a poly-RA.
Let Dp(n) = {D ∈ S# | |D| ≤ p(n)}. Then, it holds that

|Dp(n)| =

p(n)
k=0

m1Hk =

p(n)
k=0

(k + m1 − 1)!
k! · (m1 − 1)!

=
(p(n) + m1)!

p(n)! · m1!
=

(p(n) + m1)(p(n) + m1 − 1) · · · (p(n) + 1)
m1!

.

(m1Hk denotes the number of repeated combinations ofm1 things taken k at a time.)

Therefore, there is a polynomial p′(n) such that |Dp(n)| = p′(n). Since it holds that |Σn
| = (m2)

n, if n is sufficiently large,
we obtain the inequality |Dp(n)| < |Σn

|.
For i ≥ 0 andw ∈ Σ∗, let Ii(w) = {Di ∈ Dp(n) | π = D0, . . . ,Di, . . . ∈ IP(A, w)} ⊆ Dp(n), i.e., Ii(w) is the set of multisets

inDp(n) which appear as the i-th elements of interactive processes in IP(A, w). From the fact that L(A) = {wh(w) | w ∈ Σ∗
}

and h is an injection, we can show that for any two distinct strings w1, w2 ∈ Σn, In(w1) and In(w2) are incomparable. This
is because if In(w1) ⊆ In(w2), the string w2h(w1) is accepted by A, which means that h(w1) = h(w2) and contradicts that
h is an injection.

Since for any two distinct strings w1, w2 ∈ Σn, In(w1) and In(w2) are incomparable and In(w1), In(w2) ⊆ Dp(n), it holds
that

|{In(w) | w ∈ Σn
}| ≤ |Dp(n)| < |Σn

|.

However, from the pigeonhole principle, the inequality |{In(w) | w ∈ Σn
}| < |Σn

| contradicts that for any two distinct
strings w1, w2 ∈ Σn, In(w1) ≠ In(w2). �

Theorem 3. The following inclusions hold:

(1) REG = k-RA ⊂ LRA ⊆ PRA ⊂ ERA ⊆ RA = RE (for each k ≥ 1).
(2) LRA ⊂ CS ⊆ ERA.
(3) LIN (CF) and LRA are incomparable.

Proof. (1) From the definitions, the inclusion REG ⊆ 1-RA is straightforward. Conversely, for a given k-RA A =

(S, Σ, A,D0, f) and for w ∈ L(A), there exists a π in IP(A, w) such that for each Di appearing in π , we have |Di| ≤ k. Let
Q = {D ∈ S# | |D| ≤ k} and F = {D | D ∈ Q , f ⊆ D, ResA(D) = {D}}, and construct an NFAM = (Q , Σ, δ,D0, F), where δ is
defined by δ(D, a) ∋ D′ ifD →

a D′ for a ∈ Σ∪{λ}. Then, it is seen that L(A) = L(M), and k-RA ⊆ REG, thuswe obtain that
REG = k-RA. The other inclusions are all obvious from the definitions. The language L = {anbn | n ≥ 0} proves the proper
inclusion : REG ⊂ LRA. A proper inclusion PRA ⊂ ERA is due to that L3 = {wwR

| w ∈ {a, b}∗} ∈ ERA − PRA,
which follows from Lemma 1.
(2) Given an lin-RA A, one can consider a linearly bounded automaton (LBA) M that simulates an interactive process π in
IP(A, w) for each w, because of the linear boundedness of A. This implies that LRA ⊆ CS. A proper inclusion is due to
that L3 = {wwR

| w ∈ {a, b}∗} ∈ LIN − LRA, which follows from Lemma 1.
Further, for a given LBAM , one can find an equivalent two-stackmachineMs whose stack lengths are linearly bounded by

the input length. This implies, from the proof of Theorem 1, thatMs is simulated by an RA A that is exponentially bounded.
Thus, it holds that CS ⊆ ERA.
(3) The language L1 = {anbncn | n ≥ 0} (resp. L2 = {ambmcndn | m, n ≥ 0}) is in LRA − CF (resp. LRA − LIN), while,
again from Lemma 1, the language L3 is in LIN − LRA (see Fig. 6). This completes the proof. �

7. Concluding remarks

Based on the formal framework presented in a series of papers [7–11], we have introduced the notion of reaction
automata and investigated the language accepting powers of the automata. Roughly, a reaction automaton may be
characterized in terms of three key words as follows : a language accepting device based on the multiset rewriting in the
maximally parallel manner. Specifically, we have shown that in a computing schema with one-pot solution and a finite

256 F. Okubo et al. / Theoretical Computer Science 429 (2012) 247–257

Fig. 6. Language class relations in the Chomsky hierarchy: L1 = {anbncn | n ≥ 0}; L2 = {ambmcndn | m, n ≥ 0}; L3 = {wwR
| w ∈ {a, b}∗} .

number of molecular species, reaction automata can perform the Turing universal computation. The idea behind their
computing principle is to simulate the behavior of two pushdown stacks in terms of multiset rewriting with the help of an
encoding technique, where both the manner of maximally parallel rewriting and the role of the inhibitors in each reaction
are effectively utilized.

There already exist quite a few works investigating the notion of a multiset and its related topics [2] in which multiset
automata and grammars are formulated and explored largely from the formal language theoretic point of view. Rather
recent papers [16,17] focus on the accepting power of multiset pushdown automata to characterize the classes of multiset
languages through investigating their closure properties.

To the authors’ knowledge, however, relatively few works have been devoted to computing languages with multiset
rewriting/communicating mechanism. Among them, one can find some papers published in the area of membrane
computing (or spiking neural P-systems) where a string is encoded in some manner as a natural number and a language
is specified as a set of natural numbers (e.g., [3]). Further, recent developments concerning P-automata and its variant called
dP-automata are noteworthy in the sense that they may give rise to a new type of computing devices that could be a bridge
between P-system theory and the theory of reaction systems and automata [5,14,20].

In fact, a certain number of computing devices similar to reaction automata have already been investigated in the
literature. Among others, parallel labeled rewrite transition systems are proposed and investigated [12] in which multiset
automata may be regarded as special type of reaction automata, whereas neither regulation by inhibitors nor maximally
parallel manner of applying rules is employed in their rewriting process. A quite recent article [1] investigates the power
of maximally parallel multiset rewriting systems (MPMRSs) and proves the existence of a universal MPMRS having smaller
number of rules,which directly implies the existence of a universal antiport P-systems,with onemembrane, having a smaller
number of rules. In contrast to reaction automata, a universal MPMRS computes any partially recursive function provided
that the input is the encoding of a register machine computing a target function.

Turning to the formal grammars, one can find random context grammars [6] and their variants (such as semi-conditional
grammars in [18]) that employ regulated rewriting mechanisms called permitting symbols and forbidding symbols. The
roles of these two are corresponding to reactants and inhibitors in reactions, whereas they deal with sets of strings
(i.e., languages in the usual sense) rather than multisets. We finally refer to an article on stochastic computing models
based on chemical kinetics, which proves that well-mixed finite stochastic chemical reaction networks with a fixed number
of species can achieve Turing universal computability with an arbitrarily low error probability [22]. In this paper, we have
shown that non-stochastic chemical reaction systems with a finite number of molecular species can also achieve Turing
universality with the help of an inhibition mechanism.

Many subjects remain to be investigated along the research direction suggested by reaction automata in this paper. First,
it is of importance to completely characterize the computing powers and the closure properties of complexity subclasses
of reaction automata introduced in this paper. Secondly, from the viewpoint of designing chemical reactions, it is useful to
explore amethodology for ‘‘chemical reaction programming’’ in terms of reaction automata. It is also interesting to simulate
a variety of chemical reactions in the real world by the use of the framework of reaction automata.

Acknowledgements

The authors gratefully acknowledge useful remarks and comments by anonymous referees which improved an earlier
version of this paper. The work of F. Okubo was possible due to Waseda University Grant for Special Research Projects:
2011A-842. The work of S. Kobayashi was in part supported by Grants-in-Aid for Scientific Research (C) No.22500010,
Japanese Society for the Promotion of Science. The work of T. Yokomori was in part supported by Waseda University Grant
for Special Research Projects: 2011B-056.

References

[1] A. Alhazov, S. Verlan,Minimization strategies formaximally parallelmultiset rewriting systems, Theoretical Computer Science 412 (2011) 1587–1591.
[2] C. Calude, Gh. Păun, G. Rozenberg, A. Salomaa (Eds.), Multiset Processing, in: LNCS, vol. 2235, Springer, 2001.

F. Okubo et al. / Theoretical Computer Science 429 (2012) 247–257 257

[3] H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez, On string languages generated by spiking neural P systems, in: Proceedings of the 4th
Brainstorming Week on Membrane Computing, Seville, Spain, 2006, pp. 169–194.

[4] E. Csuhaj-Varju, C. Martin-Vide, V. Mitrana, Multiset automata, in: C. Calude, Gh. Păun, G. Rozenberg, A. Salomaa (Eds.), Multiset Processing, in: LNCS,
vol. 2235, Springer, 2001, pp. 69–83.

[5] E. Csuhaj-Varju,M. Oswald, G. Vaszil, P automata, in: Gh. Păun, G. Rozenberg, A. Salomaa (Eds.), Handbook ofMembrane Computing, Oxford University
Press, 2010, pp. 144–167.

[6] J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory, in: EATCS Monographs on TCS, vol. 18, Springer-Verlag, 1989.
[7] A. Ehrenfeucht, G. Rozenberg, Reaction systems, Fundamenta Informaticae 75 (2007) 263–280.
[8] A. Ehrenfeucht, G. Rozenberg, Events and modules in reaction systems, Theoretical Computer Science 376 (2007) 3–16.
[9] A. Ehrenfeucht, G. Rozenberg, Introducing time in reaction systems, Theoretical Computer Science 410 (2009) 310–322.

[10] A. Ehrenfeucht, M. Main, G. Rozenberg, Combinatorics of life and death in reaction systems, Intern. J. Foundations of Computer Science 21 (2010)
345–356.

[11] A. Ehrenfeucht, M. Main, G. Rozenberg, Functions defined by reaction systems, Intern. J. Foundations of Computer Science 22 (2011) 167–178.
[12] Y. Hirshfeld, F. Moller, Pushdown automata, multiset automata, and petri nets, Theoretical Computer Science 256 (2001) 3–21.
[13] J.E. Hopcroft, T. Motwani, J.D. Ullman, Introduction to Automata Theory, Language and Computation, 2nd ed., Addison-Wesley, 2003.
[14] M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez, T. Yokomori, Spiking neural dP systems, Fundamenta Informaticae 111 (2011) 423–436.
[15] M. Kudlek, C. Martin-Vide, Gh. Păun, Toward a formal macroset theory, in: C. Calude, Gh. Păun, G. Rozenberg, A. Salomaa (Eds.), Multiset Processing,

in: LNCS, vol. 2235, Springer, 2001, pp. 123–134.
[16] M. Kudlek, P. Totzke, G. Zetzsche, Multiset pushdown automata, Fundamenta Informaticae 93 (2009) 221–233.
[17] M. Kudlek, P. Totzke, G. Zetzsche, Properties of multiset language classes defined by multiset pushdown automata, Fundamenta Informaticae 93

(2009) 235–244.
[18] Gh. Păun, A variant of random context grammars: semi-conditional grammars, Theoretical Computer Science 41 (1985) 1–17.
[19] Gh. Păun, Computing with membranes, Journal of Computer and System Sciences 61 (2000) 108–143.
[20] Gh. Păun, M.J. Pérez-Jiménez, P and dP automata: a survey, in: Lecture Notes in Computer Science, vol. 6570, Springer, 2011, pp. 102–115.
[21] A. Salomaa, Formal Languages, Academic Press, New York, 1973.
[22] D. Soloveichik, M. Cook, E. Winfree, J. Bruck, Computation with finite stochastic chemical reaction networks, Natural Computing 7 (2008) 615–633.
[23] Y. Suzuki, Y. Fujiwara, J. Takabayashi, H. Tanaka, Artificial life applications of a class of P systems, in: C. Calude, Gh. Păun, G. Rozenberg, A. Salomaa

(Eds.), Multiset Processing, in: LNCS, vol. 2235, Springer, 2001, pp. 299–346.

	Reaction automata
	Introduction
	Preliminaries
	Reaction automata
	Multistack machines
	Main results
	Space complexity classes of RAs
	Concluding remarks
	Acknowledgements
	References

