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In this paper we study the asymptotic behavior and the analyticity of the solutions of
the one-dimensional porous-elasticity problem with thermal effect. Our main result is to
prove the lack of exponential stability in case of the porous-elasticity with thermal effect
when viscoelasticity is present. We prove the analyticity of the problem when a porous
viscosity is present. We conclude by showing the impossibility of localization in time of
the solutions in the isothermal case.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Elasticity problems have attracted the attention of researchers from different fields interested in the temporal decay
behavior of the solutions. In the one-dimensional case, for instance, it is known that combining the equations of elasticity
with thermal effects provokes the exponential decay of the solution. If elastic solids with voids are considered, as in this
paper, one should look into the theory of porous elastic materials. Here we deal with the theory established by Cowin and
Nunziato [5,6,18]. As we are going to work with the theories where the thermal effects and viscosity effects are present we
recall the contributions by Ieşan [8–11].

The analysis of the temporal decay in one-dimensional porous-elastic materials was started by Quintanilla [20]. The
author showed that the dissipation given by the porous viscosity was not powerful enough to obtain exponential stability
to the solutions, that is the decay of the solutions can be very slow. For this reason, several other dissipative mechanisms
were considered in the recent contributions [3,4,14–16]. We recall the main conclusions with the help of a scheme:

Thermal effect

Viscoelastic effect
−→

Elasticity
�

Porosity
←−

Microthermal effect

Viscoporous effect

If we take simultaneously one effect from the right square and another one from the left square, then we get exponential
stability. However, if we consider two simultaneous effects from one square only, then we get slow decay. In fact, in this
direction it is proved in [17], that some of the models studied decay polynomially with rates of decay that depends on
the regularity of the initial data. Which means that the decay can be very slow provided the initial data is not regular.
Recently, Z. Liu and B. Rao [12] and A. Batkai et al. [1] find sufficient conditions to get a polynomial decay of semigroup
operators. These conditions depends essentially on the regularity of the initial data and also on some estimates of the
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resolvent operator. One interesting point about this result is that in the two references above there exists a lack of optimality
concerning the polynomial rate of decay of the solutions. That is to say, the rate of decay is like 1/t1−ε where such ε seems
to appear for technical reasons. J. Muñoz Rivera and R. Quintanilla [17], find a polynomial decay for several porous-thermo-
elastic models, which seems to be optimal in the sense that no additional parameter appears in the decay estimate, that is
the parameter ε given in [1,12] is removed.

In the one-dimensional case the evolution equations for the theory of elastic solids with voids are given by

ρutt = tx, ρκϕtt = hx + g, ρT0Ξt = qx. (1.1)

Here, t is the stress, h is the equilibrated stress, g is the equilibrated body force, q is the heat flux and T0 is the absolute
temperature in the reference configuration which is assumed positive. The variables u, ϕ and Ξ are the displacement of
the solid elastic material, the volume fraction and the entropy, respectively. We assume that ρ and κ are positive constants
whose physical meaning is well known. In general, we can consider several dissipation mechanisms in this theory (see [11]).
We here, restrict our attention to the case that the viscoelasticity is present and the viscosity at the microstructure is also
present apart the temperature effect. That is in our case, we assume the following constitutive equations (see [11])

t = μux + bϕ − βθ + γ uxt , h = δϕx + ηϕxt + k1θx, g = −bux − ξϕ + mθ,

ρΞ = βux + cθ + mϕ, q = kθx + k2ϕxt .

It is assumed that the internal mechanical energy density is a positive definite form. Thus, the constitutive coefficients
satisfy the conditions

μ > 0, δ > 0, μξ > b2. (1.2)

The dissipation of the system is defined with the help of the function

Π = γ |uxt |2 + η|ϕxt |2 + (k1 + k2)ϕxtθx + k|θx|2.
Thus, when the dissipation is assumed we need to guarantee that this function is greater than zero (see condition (4.4)). In
particular when we assume that η or k vanish then we also have k1 = k2 = 0. If we introduce the constitutive equations in
the evolution equations, we obtain the field equations

ρutt = μuxx + bϕx − βθx + γ uxxt , (1.3)

Jϕtt = δϕxx − bux − ξϕ + mθ + ηϕxxt + k1θxx, (1.4)

cθt = k∗θxx − βuxt − mϕt + k∗
2ϕxxt . (1.5)

Here J = ρκ , k∗ = kT −1
0 and k∗

2 = k2T −1
0 , but in the sequel, we will omit the star.

As coupling is considered, b must be different from 0, but its sign does not matter in the analysis. As thermal effects
is considered, we assume that the thermal capacity c and the thermal conductivity k are strictly positive. The sign of the
coupling term β does not matter in the analysis neither. And as viscoelastic dissipation is assumed in the system, γ > 0. In
the first part of the paper we assume that the porous dissipation is absent (η = k1 = k2 = 0).

Here we assume that the solutions satisfy the boundary conditions

u(0, t) = u(π, t) = ϕx(0, t) = ϕx(π, t) = θx(0, t) = θx(π, t) = 0, (1.6)

and the initial conditions

u(x,0) = u0(x), ut(x,0) = u1(x), ϕ(x,0) = ϕ0(x), ϕt(x,0) = ϕ1(x), θ(x,0) = θ0(x). (1.7)

There are solutions (uniform in the variable x) that do not decay. To avoid these cases, we will also assume that
π∫

0

ϕ0(x)dx =
π∫

0

ϕ1(x)dx =
π∫

0

θ0(x)dx = 0. (1.8)

Finally, any time we use the semigroup theory, we consider the complex phase space, that is the functions u,ϕ and θ

will be of complex value. Instead, when we consider the evolution model, we consider the functions u,ϕ and θ as reals
functions.

This paper is structured as follows. In Section 2 we state the equations for the one-dimensional porous-elasticity prob-
lem when the viscoelastic and thermal effect are present. We show that the problem is well posed and that there is not
exponential decay of the solution. In Section 3 we use essentially the energy method to show the polynomial stability.
Moreover using a result on [1] we are able to improve the polynomial rate of decay by taking more regular initial data.
The difference of our work to [17] is that we consider also the viscoelastic effect in the porous-thermo-elastic problem. The
point is that this extra thermal dissipation does not change the lack of exponential stability. In Section 4 we consider the
model with an extra viscosity in the porous structure, and we show that the corresponding system is analytic, which in
particular implies the exponential decay and the spectrum determined growth property (SDG-property). In the last section we
prove the impossibility of localization of solutions in the isothermal case.
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2. Well-posedness and the lack of exponential stability

In this section we prove the lack of exponential stability and that there exists only one solution to the problem

ρutt = μuxx + bϕx − βθx + γ uxxt , (2.1)

Jϕtt = δϕxx − bux − ξϕ + mθ, (2.2)

cθt = kθxx − βuxt − mϕt, (2.3)

with the conditions (1.6)–(1.8). Here, the variables u,ϕ and θ are the displacement of the solid elastic material, the volume
fraction and the temperature, respectively. The constitutive coefficients ρ , μ, γ , J , δ, ξ , c and k are positive constants and
as coupling is considered b, β and m must be different from 0, but its sign does not matter in the analysis.

We consider the Hilbert space

H = H1
0(0,π) × L2(0,π) × H1∗(0,π) × L2∗(0,π) × L2∗(0,π),

where

Hm∗ (0,π) =
{

w ∈ Hm(0,π);
π∫

0

w dx = 0

}
and L2∗(0,π) =

{
w ∈ L2(0,π);

π∫
0

w dx = 0

}

with inner product

〈
U , U∗〉

H =
π∫

0

[
ρv v̄∗ + μuxū∗

x + Jφφ̄∗ + δϕxϕ̄
∗
x + ξϕϕ̄∗ + cθ θ̄∗ + b

(
uxϕ̄

∗ + ū∗
xϕ

)]
dx,

where U = (u, v,ϕ,φ, θ)T and U∗ = (u∗, v∗,ϕ∗, φ∗, θ∗)T . The corresponding norm in H is given by

‖U‖H =
π∫

0

[
ρ|v|2 + μ|ux|2 + J |φ|2 + δ|ϕx|2 + ξ |ϕ|2 + c|θ |2 + 2b Re uxϕ̄

]
dx.

Let us introduce the operator

A =

⎛⎜⎜⎜⎜⎜⎝
0 I 0 0 0

ρ−1μD2 ρ−1γ D2 ρ−1bD 0 −ρ−1βD

0 0 0 I 0

− J−1bD 0 J−1(δD2 − ξ I) 0 J−1mI

0 −c−1βD 0 −c−1mI c−1kD2

⎞⎟⎟⎟⎟⎟⎠ , (2.4)

where I is the identity operator and Di = di

dxi . The initial–boundary value problem (2.2)–(1.6) is equivalent to problem

Ut = AU , U (0) = U0 ∈ D(A), (2.5)

where U0 = (u0, u1,ϕ0,ϕ1, θ0)
T and A : D(A) ⊂ H → H. The domain of A is

D(A) = {
U ∈ H; μu + γ v ∈ H2 ∩ H1

0; ϕ, θ ∈ H2; φ ∈ H1; Dϕ = Dφ = Dθ = 0, x = 0,π
}
.

Note that A is dissipative, that is

Re〈AU , U 〉H = −
π∫

0

(
γ v2

x + kθ2
x

)
dx � 0. (2.6)

Lemma 2.1. Under the above notations we have that 0 ∈ �(A), where �(A) is the resolvent set of A.

Proof. For any F = ( f1, f2, f3, f4, f5)
T ∈ H, we want to find U = (u, v,ϕ,φ, θ)T ∈ D(A) such that

AU = F , (2.7)

in terms of the components we get
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v = f1, (2.8)

μuxx + bϕx + γ vxx − βθx = ρ f2, (2.9)

φ = f3, (2.10)

δϕxx − bux − ξϕ + mθ = J f4, (2.11)

kθxx − βvx − mφ = cf5. (2.12)

By (2.8) and (2.10) we have

v ∈ H1
0(0,π) and φ ∈ H1∗(0,π). (2.13)

By (2.8), (2.9) and (2.12) we can write

kθxx = β( f1)x + mf3 + cf5 ∈ L2∗(0,π). (2.14)

We conclude that there exists a unique function θ ∈ H2(0,π) satisfying (2.14). Then, the remanning point is to prove that
there exist u and ϕ satisfying

μuxx + bϕx = F := −γ ( f1)xx + βθx + ρ f2 ∈ H−1(0,π), (2.15)

δϕxx − bux − ξϕ = G := −mθ + J f4 ∈ L2(0,π). (2.16)

Introducing the space W = H1
0(0,π) ∩ H1∗(0,π), and denoting the bilinear

a(V , Ṽ ) = μ

π∫
0

ux�̃ux dx − 2b Re

π∫
0

ϕx�̃u dx + δ

π∫
0

ϕx�̃ϕx dx + ξ

π∫
0

ϕ�̃ϕ dx

we conclude that a(·,·) is a coercive, continuous bilinear operator over the Hilbert space W . Therefore there exists a solution
to the variational equation

a(U , V ) = 〈
(F , G), V

〉
that is equivalent do system (2.15)–(2.16). �

Under this conditions we have:

Theorem 2.2. Under the above conditions we have that the operator A is the infinitesimal generator of a C0-semigroup T (t) of
contractions over the space H.

Next we will prove that the semigroup T associated to systems (2.1)–(2.3) is not exponentially stable. This result was
proved in [15]. Here, we propose an alternative proof. To do this we use Prüss result; see [19].

Theorem 2.3. Let us consider A : D(A) ⊆ H → H a generator of a C0-semigroup of contractions. Then e At is exponentially stable if
and only if

(i) iR ⊂ �(A);
(ii) ‖(iλI − A)−1‖L(H) � C, ∀λ ∈ R,

where I is the identity operator.

Under the above conditions we are able to show the main result of this section.

Theorem 2.4. Let (u,ϕ, θ) be a solution of the problem determined by (2.1)–(2.3) with boundary conditions (1.6) and initial condi-
tions (1.7). If the initial data satisfy condition (1.8), then the semigroup generated by operator A given in (2.4) is not exponentially
stable.

Proof. It suffices to show the existence of sequences (λn)n ⊂ iR with limn→∞|λn| = ∞ and (Un)n ⊂ D(A) to (Fn)n ⊂ H
such that (λn I − A)Un = Fn is bounded in H and

lim
n→∞‖Un‖H = ∞.

We choose F ≡ Fn with F = (0,0,0, g,0)T where g = J−1 cos(nx). We have that Fn is bounded in H and the solution
Un = U = (u, v,ϕ,φ, θ)T to (λI − A)U = F has to satisfy
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λu = v,

ρλv − μuxx − bϕx − γ vxx + βθx = 0,

λϕ = φ,

Jλφ − δϕxx + bux + ξϕ − mθ = J g,

cλθ − kθxx + βvx + mφ = 0.

This will determine v, φ and we obtain for u,ϕ, θ :

ρλ2u − μuxx − bϕx − γ λuxx + βθx = 0, (2.17)

Jλ2ϕ − δϕxx + bux + ξϕ − mθ = cos(nx), (2.18)

cλθ − kθxx + βλux + mλϕ = 0. (2.19)

Because of the boundary conditions we can take solution of type

u = A sin(nx), ϕ = B cos(nx) and θ = C cos(nx), (2.20)

for appropriate A = A(λ), B = B(λ) and C = C(λ). Substituting (2.20) into (2.17)–(2.19), we find that A, B and C satisfy(
ρλ2 + μn2 + γ λn2)A + bnB − βnC = 0, (2.21)

bnA + (
Jλ2 + δn2 + ξ

)
B − mC = 1, (2.22)

βλnA + mλB + (
cλ + kn2)C = 0. (2.23)

Taking λ such that Jλ2 + δn2 + ξ = 0. That is, λ =
√

1
J (δn2 + ξ), i = λn. Then system (2.21)–(2.23) is equivalent to

(
ρλ2

n + μn2 + γ λnn2)A + bnB − βnC = 0, (2.24)

bnA − mC = 1, (2.25)

βλnnA + mλn B + (
cλn + kn2)C = 0. (2.26)

Solving the system (2.24)–(2.26), we have

A = b2n2(cλn + kn2) + mbn2βλn

b3n3(cλn + kn2) + 2mb2n3βλn − bnm2λn(ρλ2
n + μn2 + γ λnn2)

,

B = −b2n2(cλn + kn2)(ρλ2
n + μn2 + γ λnn2) − b2n4β2λn

b4n4(cλn + kn2) + 2mb3n4βλn − m2b2n2λn(ρλ2
n + μn2 + γ λnn2)

and

C = mλn(ρλ2
n + μn2 + γ λnn2) − bn2βλn

b2n2(cλn + kn2) + 2mbn2βλn − m2λn(ρλ2
n + μn2 + γ λnn2)

.

That is to say

nA → kb2

kb3 + bm2γ δ/ J
,

B

n
→ kb2γ

kb4 + b2m2γ δ/ J
, C → mγ δ/ J

kb2 + m2γ δ/ J
,

as n → ∞. From where we conclude that

Bn → ∞, as n → ∞.

Using (2.1) and recalling the definition of ϕn , we get

‖Un‖H � c

π∫
0

|ϕn|2 dx = cBn
π

2
→ ∞.

Which completes the proof. �
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3. Polynomial decay

In this section we will prove that the time decay of the solutions of the problem determined by the system can be
controlled by a polynomial. We prove the polynomial decay of solutions for the boundary conditions (1.6).

We recall a result due to A. Batkai et al. [1], for we can improve the polynomial rate of decay, by taking more regular
initial data:

Theorem 3.1. Assume that A is an operator invertible and the infinitesimal generator of a C0-semigroup T (t) over the Hilbert space H
such that ‖T (t)‖ � M, ∀t � 0. Then the following statements are equivalent with a constant γ > 0:

(i) ‖T (t)A−γ ‖L(H) � Ct−β , t > 0;
(ii) ‖T (t)A−γα‖L(H) � Cαt−αβ , t > 0, α > 0.

We define the first order energy as

E1(t, u,ϕ, θ) = 1

2

π∫
0

[
ρ|ut |2 + μu2

x + J |ϕt |2 + δϕ2
x + ξϕ2 + cθ2 + 2bϕux

]
dx. (3.1)

Then we introduce the second order energy as

E2(t) = E1(t, ut ,ϕt , θt) (3.2)

and the third order energy as

E3(t) = E1(t, ux,ϕx, θx). (3.3)

After several integrations by parts, we can see that

dE1

dt
= −

π∫
0

(
γ |uxt |2 + k|θx|2

)
dx, (3.4)

dE2

dt
= −

π∫
0

(
γ |uxtt |2 dx + k|θxt |2

)
dx (3.5)

and

dE3

dt
= −

π∫
0

(
γ |uxxt |2 dx + k|θxx|2

)
dx. (3.6)

Let us introduce the functional

S(t) =
π∫

0

(
ρuut + Jϕϕt + γ

2
|ux|2

)
dx.

Lemma 3.2. Let us suppose that initial data U0 = (u0, u1,ϕ0,ϕ1, θ0)
T ∈ D(A) then the following inequality

dS

dt
� ρ

π∫
0

|ut |2 dx + J

π∫
0

|ϕt |2 dx − γ1

π∫
0

(
u2

x + ϕ2
x + ϕ2)dx + c1

π∫
0

θ2
x dx − 2b

π∫
0

ϕux dx (3.7)

holds, where γ1 and c1 are positive and calculable constants.

Proof. Let us multiply Eq. (2.1) by u to get, we have

d

dt

π∫
0

ρut u dx = ρ

π∫
0

|ut |2 dx +
π∫

0

ρutt u dx =
π∫

0

ρ|ut |2 dx − μ

π∫
0

|ux|2 dx − b

π∫
0

ϕux dx + β

π∫
0

θux dx − d

dt

π∫
0

γ

2
|ux|2 dx.

So, we have
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d

dt

π∫
0

(
ρuut + γ

2
|ux|2

)
dx = ρ

π∫
0

|ut |2 dx − μ

π∫
0

|ux|2 dx − b

π∫
0

ϕux dx + β

π∫
0

θux dx. (3.8)

Using Eq. (2.2), we have

d

dt

π∫
0

Jϕϕt dx = J

π∫
0

|ϕt |2 dx +
π∫

0

Jϕttϕ dx = J

π∫
0

|ϕt |2 dx − δ

π∫
0

|ϕx|2 dx − b

π∫
0

ϕux dx − ξ

π∫
0

|ϕ|2 dx + m

π∫
0

θϕ dx. (3.9)

Using Eqs. (3.8) and (3.9) and recalling the definition of S , we get

dS

dt
= ρ

π∫
0

|ut |2 dx − μ

π∫
0

|ux|2 dx − 2b

π∫
0

ϕux dx + β

π∫
0

θux dx + J

π∫
0

|ϕt |2 dx − δ

π∫
0

|ϕx|2 dx − ξ

π∫
0

|ϕ|2 dx + m

π∫
0

θϕ dx.

Using the Young and Poincaré inequalities we obtain (3.7). �
Let us the functional

Q (t) = 1

m

π∫
0

cθϕt dx.

Lemma 3.3. Let us suppose that initial data U0 = (u0, u1,ϕ0,ϕ1, θ0)
T ∈ D(A) then for any ε > 0 there exists a constant cε > 0 such

that

dQ

dt
� −1

2

π∫
0

|ϕt |2 dx + cε

π∫
0

(|uxt |2 + |θxx|2 + |θx|2
)

dx + ε

π∫
0

(|ux|2 + |ϕx|2
)

dx. (3.10)

Proof. Using Eq. (2.3), we have

1

m

d

dt

π∫
0

cθϕt dx = 1

m

π∫
0

cθϕtt dx + 1

m

π∫
0

cθtϕt dx = c

m

π∫
0

θϕtt dx + k

m

π∫
0

θxxϕt dx − β

m

π∫
0

uxtϕt dx −
π∫

0

|ϕt |2 dx. (3.11)

From Eqs. (2.2) and (3.11) we have

1

m

d

dt

π∫
0

cθϕt dx = − c

m J

π∫
0

(δθxϕx + bθux + ξθϕ)dx + c

J

π∫
0

|θ |2 dx + k

m

π∫
0

θxxϕt dx − β

m

π∫
0

uxtϕt dx −
π∫

0

|ϕt |2 dx. (3.12)

From the above inequality our conclusion follows. �
Now, we are in conditions to show the main result of this section.

Theorem 3.4. Let (u,ϕ, θ) be a solution of the problem determined by (2.1)–(2.3) with boundary conditions (1.6) and initial condi-
tions (1.7). If the initial data satisfy condition (1.8), then there exists a positive constant C such that

E1(t) � C‖(u0, u1,ϕ0,ϕ1, θ0)‖D(A)

t
. (3.13)

Moreover, if (u0, u1,ϕ0,ϕ1, θ0) ∈ D(Aα), then there exists a positive constant Cα such that

E1(t) � Cα‖(u0, u1,ϕ0,ϕ1, θ0)‖D(Aα)

tα
. (3.14)

Proof. We define the functional

L(t) = S(t) + N Q (t) + N1 E1(t) + N3 E3(t),

where N , N1 and N3 are sufficiently greater to guarantee that L(t) is positive. From Lemmas 3.2 and 3.3 we have

dL
dt

� −γ3 E1(t), (3.15)

where γ3 > 0 can be calculated. Integration over [0, t] implies
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L(t) + γ3

t∫
0

E1(s)ds � L(0). (3.16)

Then

d

dt

(
t E1(t)

) = E1(t) + t
dE1

dt
� E1(t). (3.17)

Integration over [0, t] and using (3.16), we have

t E1(t) �
t∫

0

E1(s)ds � γ −1
3 L(0).

which implies the polynomial decay. To improve the polynomial decay we use Theorem 3.1. �
4. Analyticity

In this section we prove the analyticity of the semigroup which defines the solutions of the problem (1.3)–(1.5) with
the conditions (1.6)–(1.8). To guarantee that the system dissipates energy we also need to assume that the constitutive
coefficients η,k1 and k2 satisfy the condition

(k1 + k2)
2 < 4kη. (4.1)

Here we consider k1,k2 � 0. We note that the solutions of this problem can be generated by means of a semigroup of
contractions. In fact, this semigroup is defined in the Hilbert space

H = H1
0(0,π) × L2(0,π) × H1∗(0,π) × L2∗(0,π) × L2∗(0,π)

by the operator

A =

⎛⎜⎜⎜⎜⎜⎝
0 I 0 0 0

ρ−1μD2 ρ−1γ D2 ρ−1bD 0 −ρ−1βD

0 0 0 I 0

− J−1bD 0 J−1(δD2 − ξ I) J−1ηD2 J−1(mI + k1 D2)

0 −c−1βD 0 c−1(k2 D2 − mI) c−1kD2

⎞⎟⎟⎟⎟⎟⎠ (4.2)

where I is the identity operator. The initial–boundary value problem (1.3)–(1.5) with (1.6)–(1.7) is equivalent to solve the
Cauchy problem

Ut = AU , U (0) = U0 ∈ D(A), (4.3)

where U = (u, v,ϕ,φ, θ)T , U0 = (u0, u1,ϕ0,ϕ1, θ0)
T and A : D(A) ⊂ H → H. The domain of A is

D(A) = {
U ∈ H; μu + γ v ∈ H2(0,π) ∩ H1

0(0,π); δϕ + ηφ + k1θ ∈ H2∗(0,π);
kθ + k2φ ∈ H2∗(0,π); Dϕ = Dφ = Dθ = 0, x = 0,π

}
.

Now, we recall the inner product in H defined at Section 2. We note that D(A) is dense in H and

Re〈AU , U 〉H = −γ

π∫
0

v2
x dx − k

π∫
0

θ2
x dx − η

π∫
0

φ2
x − (k1 + k2)Re

( π∫
0

θxφx dx

)
� −γ

π∫
0

v2
x dx − M

π∫
0

(
kθ2

x + ηφ2
x

)
dx � 0,

where M = 1 − k1+k2

2
√

kη
> 0 and γ ,k, η > 0. Then A is dissipative. As in Lemma 2.1 we have that 0 is in the resolvent

of A. Therefore, from Lummer–Phillips’s theorem we conclude that A is the infinitesimal generator of a strongly continuous
semigroup.

To show the analyticity of the C0-semigroup of contractions generated for operator A on a Hilbert space H , we have the
following result due to Liu and Zheng (see [13]):

Theorem 4.1. Let us consider S(t) = e At a C0-semigroup of contractions generated for operator A in Hilbert space H. Suppose that

�(A) ⊇ {iβ; β ∈ R} ≡ iR. (4.4)

Then S(t) is analytic if and only if

lim|β|→∞
∥∥β(iβ I − A)−1

∥∥ < ∞, β ∈ R, (4.5)

holds.
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The resolvent equation is given by

λU − AU = F (4.6)

where

U =

⎛⎜⎜⎜⎝
u
v
ϕ
φ

θ

⎞⎟⎟⎟⎠ , F =

⎛⎜⎜⎜⎝
f1
f2
f3
f4
f5

⎞⎟⎟⎟⎠ and λ ∈ C.

To show the analyticity we shall take λ = iα,α ∈ R. Written Eq. (4.6) with λ = iα, α ∈ R, we have

iαu − v = f1, (4.7)

iαρv − μuxx − bϕx − γ vxx + βθx = ρ f2, (4.8)

iαϕ − φ = f3, (4.9)

iα Jφ − δϕxx + bux + ξϕ − mθ − ηφxx − k1θxx = J f4, (4.10)

iαcθ − kθxx + βvx + mφ − k2φxx = cf5. (4.11)

To show the main result of this section we need of the following lemmas.

Lemma 4.2. For any F ∈ H, there exists a constant c1 > 0 such that

γ

π∫
0

|vx|2 dx + M

π∫
0

(
k|θx|2 + η|φx|2

)
dx � c1‖F‖H‖U‖H, (4.12)

where M = 1 − k1+k2

2
√

kη
> 0.

Proof. Multiplying Eqs. (4.7)–(4.11), respectively, for −μūxx , v̄ , −δϕ̄xx and ξϕ̄ , φ̄, θ̄ , integrating from 0 to π and summing
the equations, we find that

iα

π∫
0

[
ρ|v|2 + μ|ux|2 + δ|ϕx|2 + J |φ|2 + ξ |ϕ|2 + c|θ |2]dx + μ

π∫
0

(ux v̄x − ūx vx)dx + b

π∫
0

(ϕ v̄x + uxφ̄)dx

+ m

π∫
0

(φθ̄ − θφ̄)dx + δ

π∫
0

(ϕxφ̄x − ϕ̄xφx)dx + β

π∫
0

(θx v̄ − θ̄x v)dx + ξ

π∫
0

(ϕφ̄ − ϕ̄φ)dx

+
π∫

0

(k1θxφ̄x + k2φxθ̄x)dx +
π∫

0

(
γ |vx|2 + η|φx|2 + k|θx|2

)
dx = R (4.13)

where |R| � ‖F‖H‖U‖H . Taking real part in Eq. (4.13) using the condition (4.1) and the definition of norm in H, we have

γ

π∫
0

|vx|2 dx +
(

1 − k1 + k2

2
√

kη

) π∫
0

(
k|θx|2 + η|φx|2

)
dx � c1‖F‖H‖U‖H,

where c1 is a calculable positive constant. Our conclusion follows to M = 1 − k1+k2

2
√

kη
> 0. �

Lemma 4.3. For any F ∈ H, there exists C > 0 such that

|α‖|U‖H � C‖|F‖H, ∀α ∈ R,

where U is the solution for (4.6) with λ = iα.

Proof. Multiplying Eqs. (4.7)–(4.11), respectively, for iμūxx , −i v̄ , iδϕ̄xx and −iξϕ̄ , −iφ̄, −iθ̄ , integrating from 0 to π and
summing the equations, we find that



46 P.X. Pamplona et al. / J. Math. Anal. Appl. 350 (2009) 37–49
α

π∫
0

[
ρ|v|2 + μ|ux|2 + δ|ϕx|2 + J |φ|2 + ξ |ϕ|2 + c|θ |2]dx − ib

π∫
0

(ϕ v̄x + uxφ̄)dx + iμ

π∫
0

(vxūx − v̄xux)dx

+ iξ

π∫
0

(φϕ̄ − ϕφ̄)dx + im

π∫
0

(θφ̄ − φθ̄)dx + iβ

π∫
0

(v θ̄x − v̄θx)dx + iδ

π∫
0

(φxϕ̄x − ϕxφ̄x)dx

− i

π∫
0

(k1θxφ̄x + k2φxθ̄x)dx − i

π∫
0

(
γ |vx|2 + η|φx|2 + k|θx|2

)
dx = R̃ (4.14)

where |R̃| � ‖F‖H‖U‖H . Multiplying Eqs. (4.7) and (4.9), respectively, for ibϕ̄x and −ibūx , integrating from 0 to π and
summing the equations, we find that

α

π∫
0

2b Re(uxϕ̄)dx + ib

π∫
0

(φūx − vϕ̄x)dx = ib

π∫
0

( f1ϕ̄x − f3ūx)dx. (4.15)

Summing (4.15) and (4.14) using (4.12) and the definition of the norm in H, we have

α‖U‖2
H � Re

{
ib

π∫
0

(ϕ v̄x − ϕ̄vx)dx + ib

π∫
0

(uxφ̄ − ūxφ)dx − iμ

π∫
0

(vxūx − v̄xux)dx

− iδ

π∫
0

(φxϕ̄x − ϕxφ̄x)dx − iβ

π∫
0

(v θ̄x − v̄θx)dx + iξ

π∫
0

(φϕ̄ − ϕφ̄)dx

− i

π∫
0

(k1θxφ̄x + k2φxθ̄x)dx − im

π∫
0

(θφ̄ − φθ̄)dx

}
+ c1‖F‖H‖U‖H. (4.16)

Using (4.12) we have that

Re

{
ib

π∫
0

(ϕ v̄x − ϕ̄vx)dx

}
� c2‖F‖1/2

H ‖U‖3/2
H (4.17)

where c2 is a calculable positive constant. Applying a similar idea as above we obtain an estimate analogous to the other
term of (4.16). Therefore, of (4.16) we have that

α‖U‖2
H � c3‖F‖1/2

H ‖U‖3/2
H + c1‖F‖H‖U‖H.

Then

|α|‖U‖H � C‖F‖H, (4.18)

where C > 0 and α > 0 is sufficiently greater. From where our conclusion follows. �
Now, we are in conditions to show the main result of this section.

Theorem 4.4. Let (u,ϕ, θ) be a solution of the problem determined by (1.3)–(1.5) with boundary conditions (1.6) and initial con-
ditions (1.7). If the initial data satisfy conditions (1.8) and (4.1) with k1,k2 � 0, then the semigroup generated by operator A given
in (4.2) is analytic.

Proof. We now use Theorem 4.1 to prove Theorem 4.4. We first prove (4.4). This consists of the following steps:
(i) It follows from the fact that 0 is in the resolvent of A and the contraction mapping theorem that for any real number

λ with |λ| < ‖A−1‖−1, the operator iλI − A = A(iλA−1 − I) is invertible. Moreover, ‖(iλI − A)−1‖ is a continuous function
of λ in the interval (−‖A−1‖−1,‖A−1‖−1).

(ii) If sup{‖(iλI − A)−1‖, |λ| < ‖A−1‖−1} = M < ∞, then by the contraction theorem, the operator

iλI − A = (iλ0 I − A)
(

I + i(λ − λ0)(iλ0 I − A)−1)
with |λ0| < ‖A−1‖−1 is invertible for |λ − λ0| < M−1. It turns out that by choosing λ0 as close to ‖A−1‖−1 as we can, the
set {λ, |λ| < ‖A−1‖−1 + M−1} is contained in the resolvent of A and ‖(iλI − A)−1‖ is a continuous function of λ in the
interval (−‖A−1‖−1 − M−1,‖A−1‖−1 + M−1).
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(iii) Thus it follows from the argument in (ii) that if (4.4) is not true, then there is ω ∈ R with ‖A−1‖−1 � |ω| < ∞
such that the set {iλ, |λ| < |ω|} is in the resolvent of A and sup{‖(iλI − A)−1‖, |λ| < |ω|} = ∞. Therefore there exists a
sequence of real numbers λn with λn → ω, |λ| < |ω| and a sequence of vectors Un = (un, vn,ϕn, φn, θn)T in the domain of
the operator A and with unit norm such that∥∥(iλn I − A)Un

∥∥ → 0, as n → ∞, (4.19)

that is,

iλnun − vn → 0 in H1
0, (4.20)

iλnρvn − μD2un − bDϕn − γ D2 vn + βDθn → 0 in L2, (4.21)

iλnϕn − φn → 0 in H1, (4.22)

iλn Jφn − δD2ϕn + bDun + ξ Dϕn − mθn − ηD2φn − k1 D2θn → 0 in L2, (4.23)

iλncθn − kD2θn + βD vn + mφn − k2 D2φn → 0 in L2. (4.24)

Taking the inner product of (iλI − A)Un times Un in H and then considering its real part yields

γ ‖D vn‖2 + M
(
k‖Dθn‖2 + η‖Dφn‖2) → 0,

that is,

‖D vn‖,‖Dθn‖,‖Dφn‖ → 0. (4.25)

From (4.20), (4.22) and (4.25) we have

‖Dun‖,‖Dϕn‖ → 0. (4.26)

Using the Poincaré inequality and the boundary conditions we find that

un, vn → 0 in L2.

Taking the inner product of (4.23) times φn and (4.24) times θn in L2 and integrating by parts, we obtain

φn, θn → 0 in L2. (4.27)

Thus we have shown that ‖Un‖H cannot be of unit norm and the proof of (4.4) is complete. We now prove (4.5). We write
(4.6) with λ = iα, α ∈ R. Then

U = (iα I − A)−1 F .

From Lemma 4.3 we have∥∥α(iα I − A)−1 F
∥∥

H = |α|‖U‖H � C‖F‖H.

Then

lim|α|→∞
∥∥α(iα I − A)−1

∥∥ < ∞.

Our conclusion follows from Theorem 4.1. �
Remark 4.5. From Theorem 4.4 we conclude that:

(1) The analyticity also holds when k1k2 = 0, provided (4.1) is valid.
(2) As consequence of the analyticity, the system (1.3)–(1.5) is exponentially stable and have the spectrum determined growth

property (SDG-property). Moreover, the system has a regularity effect in the sense that the solution U = (u, ut ,ϕ,ϕt, θ)T

satisfies

U ∈ C∞(
0, T ; D

(
A∞))

.

However, D(A) is not necessary a space regular, which in particular implies that the solution U is not in C∞(]0, T [× ]0, L[)
when the initial data is not necessary regular.
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5. Impossibility of localization

The aim of this section is to show the impossibility of time localization of solutions for the isothermal version of the
system (1.3)–(1.5). This is, we will consider the system

ρutt = μuxx + bϕx + γ uxxt , (5.1)

Jϕtt = δϕxx − bux − ξϕ + ηϕxxt , (5.2)

with the conditions (1.6)–(1.8). It is possible to adapt the arguments used in Section 4 to prove that the solutions of this
system decay in an exponential way. Thus, it is of interest to clarify if the solutions can vanish in a finite time. To prove the
impossibility of localization of solutions of this system we will show the uniqueness of solutions of the backward in time
problem. Thus, it will be suitable to recall that the system of equations which govern the backward in time problem is:

ρutt = μuxx + bϕx − γ uxxt , (5.3)

Jϕtt = δϕxx − bux − ξϕ − ηϕxxt . (5.4)

Lemma 5.1. Let (u,ϕ) be a solution of the problem determined by the system (5.3)–(5.4), the null initial conditions, and the boundary
conditions (1.6). Then u = φ = 0.

Proof. Now, we state some basic relations. The first one we need follows from the Lagrange identity method and it could
be found with the help of [2]. For a fixed t ∈ (0, T ), we use the identities

∂

∂s

[
ρu̇(s)u̇(2t − s)

] = ρü(s)u̇(2t − s) − ρu̇(s)ü(2t − s), (5.5)

∂

∂s

[
J ϕ̇(s)ϕ̇(2t − s)

] = J ϕ̈(s)ϕ̇(2t − s) − J ϕ̇(s)ϕ̈(2t − s) (5.6)

the basic equations (5.3), (5.4), the initial conditions and boundary conditions to obtain

π∫
0

[
ρ|ut |2 + J |ϕt |2

]
dx =

π∫
0

[
μ|ux|2 + 2buxϕ + ξϕ2 + δ|ϕx|2

]
dx. (5.7)

We can also obtain the relations

d

dt

( π∫
0

(
γ

2
|ux|2 − ρuut

)
dx

)
=

π∫
0

(
μ|ux|2 + buxϕ − ρ|ut |2

)
dx (5.8)

and

d

dt

( π∫
0

(
η

2
|ϕx|2 − Jϕϕt

)
dx

)
=

π∫
0

(
δ|ϕx|2 + buxϕ + ξϕ2 − J |ϕt |2

)
dx. (5.9)

After addition we obtain

d

dt

( π∫
0

(
γ

2
|ux|2 + η

2
|ϕx|2 − ρuut − Jϕϕt

)
dx

)
=

π∫
0

(
μ|ux|2 + δ|ϕx|2 + 2buxϕ + ξϕ2 − ρ|ut |2 − J |ϕt |2

)
dx. (5.10)

If we consider null initial conditions, in view of the relation (5.7), we obtain

1

2

π∫
0

(
γ |ux|2 + η|ϕx|2

)
dx =

π∫
0

(ρuut + Jϕϕt)dx. (5.11)

In view of (5.7) and (5.11), we obtain

H(t) =
π∫

0

[
ρ|ut |2 + J |ϕt |2

]
dx � C

π∫
0

(ρuut + Jϕϕt)dx (5.12)

where C is a calculable positive constant. We now use the Poincaré inequality which state that
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t∫
0

|u|2 dx � 4t2

π2

t∫
0

|ut |2 dx, (5.13)

whenever u(0) = 0 (see [7, p. 338]). If we consider

E (t) =
t∫

0

H(s)ds, (5.14)

we have

E (t) � C

( t∫
0

π∫
0

ρu2 dx ds

)1/2( t∫
0

π∫
0

ρ|us|2 dx ds

)1/2

+ C

( t∫
0

π∫
0

Jϕ2 dx ds

)1/2( t∫
0

π∫
0

J |ϕs|2 dx ds

)1/2

� 2tC

π

t∫
0

π∫
0

[
ρ|us|2 + J |ϕs|2

]
dx ds.

Thus

E (t) � Dt E (t), (5.15)

where D is a calculable positive constant. If we take t0 = (2D)−1, we obtain that E (t) = 0 for every t � t0. It follows that
u = u̇ = ϕ = ϕ̇ = 0 for every 0 � t � t0. Then, we can prove the same for t � 2t0 and this process can be extended to
0 � t < ∞ and we obtain the uniqueness of solutions for the backward in time problem. �

To prove the impossibility of localization in time for the linear version of the forward in time problem is equivalent to
show the uniqueness of solutions for the linear version of the backward in time problem. Thus, we can state the following:

Theorem 5.2. Let (u,ϕ) be a solution of the problem determined by the system (5.1)–(5.2), the initial conditions (1.7) and the boundary
conditions (1.6) such that u = ϕ ≡ 0 after a finite time t0 > 0. Then u = ϕ ≡ 0 for every t � 0.
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