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We show that Robinson’s finite forcing, for a theory .7, is a universal construction in the sense
of categorical algebra: it is the satisfaction relation for the universal model in the classifying topos
& of a certain universal Horn theory defined from 7. Assuming, without loss of generality, that
.7 is axiomatized by universal sentences, we construct, as sheaf subtopoi of ¢, the classifying
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Our purpose in this paper is to investigate the connection between the concepts
of finite forcing in model theory [1,7] and classifying topoi in category theory
[8, 13,15, 14]. After a preliminary section on the classifying topoi of universal Horn
theories, we establish in Section 2 that the forcing relation for a theory .7 is essen-
tially the same as the satisfaction relation for the universal model in the classifying
topos of a related universal Horn theory 7415 . in Sections 3 and 4 we give explicit
constructions of the classifying topoi for the finitely generic models and the
existentially closed models of a universal theory .7. We also discuss the relationship
of these topoi to each other, to the classifying topos of (a theory classically equi-
valent to) .7, and to their common subtopos of double-negation sheaves.

For notation and background information in model theory and category theory,
we refer to [4] and [12, 8] respectively, but we briefly review some of the topos-
theoretic concepts that we shall need. We use the word ‘topos’ to mean Grothen-
dieck topos [6, 8, 13], i.e., the category of sheaves on a site (#, J) where ¥ is a small
category and J is a Grothendieck topology on it. A geometric morphism f: 4 —.#
consists of two functors, fx: ¢ —.# and its left adjoint f*: .7 — ¢ such that the ‘in-
verse’ part f*is left exact. A natural transformation f— g is defined to be a natural
transformation f*— g* (or equivalently, by adjointness, g+~ f%). The internal logic
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of topoi [3,8 §5.4] permits us to define the notion of a model, in a topos &, of a
first order theory .7~ (possibly involving infinite conjunctions and disjunctions); all
the axioms and rules of intuitionistic predicate logic are sound for such models.
Geometric morphisms do not generally preserve the semantics of models, but the
inverse parts f* do preserve the truth values of existential positive formulas, also
called coherent or geometric formulas (in finitary logic; infinite disjunctions are
also permissible but infinite conjunctions are not). It follows that, if / is a
geometric theory, that is, one axiomatized by sentences Vx(¢(x)— w(x)) where ¢ and
w are existential positive formulas, then f* sends models of 7 to models of .7.

A classifying topos for a geometric theory .7 is a topos &(.7) such that, for any
topos ¢, the category of models of .7 in ¢ (and homomorphisms) is equivalent,
naturally in &, to the category of geometric morphisms &—¢&(./') (and natural
transformations). Thus ¢(.7") contains a model .# of ./~ with the universal property
that any model of .7 in any topos & is (isomorphic to) f* « for a unique (up to
natural isomorphism) geometric morphism f: ¢ = ¢(.7). This .# is usually called the
generic model of .7, but we shall call it the universal model of .7 to avoid conflict
with the terminology ‘generic’ in forcing theory. (Fortunately, we shall not need the
model-theoretic concept of universal model.) Every geometric theory has a
classifying topos [15, 8 §6.5,7.4], and conversely, if we allow our geometric theories
to be infinitary and multi-sorted, then every topos classifies some such theory. In
particular, Diaconescu’s theorem [5, 8 §4.3] asserts that the topos of presheaves on
a small category v classifies flat functors on ¢. (The definition of flatness is in
Section 1.) More generally, the topos of sheaves on a site (#, J) classifies flat
functors that are continuous in the sense that the covering families of J are sent to
epimorphic families.

In Section 1, we shall construct the classifying topos of a universal Horn theory
as a topos of presheaves over a certain syntactically defined category ¢ whose dual
is the category of finitely presented models of the theory. In Section 2, we describe
the satisfaction relation for the universal model of such a theory in terms of a
concept of pseudo-forcing that essentially agrees with Robinson’s concept of finite
forcing [1, 7] except that no negations are allowed in the forcing conditions. We then
construct for any universal theory .7, a universal Horn theory .74,y such that
pseudo-torcing tor /4y is essentially the same as finite forcing for ./, Thus, finite
forcing for ./ is identified with satisfaction in the universal model of /4. In
Section 3, we define (finitely) generic models of .7 in arbitrary topoi, we prove the
‘forcing equals truth’ lemma for these models, and we construct the classifying
topos for generic /-models as the topos of sheaves on a certain (%, Jg), where v
1s the syntactic category associated to ./,yy. Finally, in Section 4, we relate the
topology Jg to other topologies Jp and Jr on ¢ whose sheaf topoi classify the
models and the existentially closed models of (a geometric theory classically equi-
valent to) /. We also discuss the double-negation topology on .

tovai and Reyes [9] have discussed, from the point of view of categorical logic,
some ot the same concepts treated here. In particular, they define existentially
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closed models and generic models - but not forcing - in this context. They do not,
however, relate these definitions to the traditional ones in model theory. In fact,
their ‘generic’ corresponds to what we call ‘pseudo-generic’ rather than to ordinary
‘finitely generic’; thus; for example, their definition, applied to the theory of
groups, yields that the only generic group is the trivial one (see the end of Section
3). Nevertheless, it seems likely that their definition of ‘generic’ was motivated by
something resembling our Theorem 2, perhaps in the context of pretopoi (the
theories themselves, in categorical logic) rather than classifying topoi.

As a final introductory point, we mention some matters of notation. We
systematically use boldface letters, like x, to abbreviate finite sequences (also called
lists or tuples) xi, ..., x, whose length »n is usually not specified; we tacitly assume,
of course, that the lengths of various sequences agree whenever the context requires
this, e.g., when one sequence is to be substituted for another. If x is as above and
we refer to a formula ¢(x) or a term #(x), we intend that all free variables of
¢ or ¢ are among x, but we not require all (or even any) of x to actually occur
in ¢ or . We write Vxo(x) for Vx,--- Vx,¢(x), and we write x=) for
(x;=y IA---A(x,=y,). We do not distinguish between formulas or terms that
differ only by a renaming of bound variables, subject to the usual conventions for
avoiding clashes.

1. The classifying topos of a universal Horn theory

A universal Horn theory is a theory .# axiomatized by sentences of the form
Vx(¢— w) where ¢ is a conjunction of atomic formulas (possibly the empty conjunc-
tion, true) and y is either an atomic formula or false. These are precisely the
theories whose classes of models are closed under substructures and under direct
products of one or more factors [4 §6.2]; we shall need only the easy half of this
result, namely that universal Horn theories have these preservation properties. If we
had not permitted false to occur as y in an axiom, then the class of models would
have been closed under arbitrary products, even the empty product (a one element
structure in which all primitive predicates hold of the unique tuple). This change
would simplify much of this section but would exclude the intended applications in
the next section. The preservation properties of universal Horn theories imply the
following lemma, in which the hypothesis that the language of ./~ has a constant
symbol is used only to avoid the need to consider empty structures; this hypothesis
is not essential here but it will be important in some of our later results.

Lemma 1. Let .# be a universal Horn theory in a language with at least one constant
symbol. Let ¢(x),a,(x,y),...,0,(x,y), with n=1, be conjunctions of atomic
Sformulas. If

i=1

Vx (q)(x)-* \"/ y a;(x, y)> (H
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is provable in ¥, then so is
Vx(p(x)—a;(x, 1(x))) ¥)

for some i and some terms t(x) with only x free.

Proof. Suppose not. For each i and each list of appropriate terms ¢, let «/;, be a
model of .# in which (2) is false. Choose witnesses &, , & &, attesting to the failure
of (2), so

o = gla N aeia;,, Ha; ). 3)

Let ..+ be the direct product of all of the .#/;,, and let a be the elements of .« whose
(i,t)-components are the elements a,, of .«/;,. Let # be the substructure of &
generated by the elements 2. Then .4 is a model of # because .# is a universal Horn
theory, and it satisfies ¢(a) because ¢ is a conjunction of atomic formulas and (3)
holds. Therefore, by (1), there exists an / such that 2 = dy a;(a, y). By definition
of .4, this means that there are terms #(x) such that % &= a;(a, t(a)). Since a; is a con-
junction of atomic formulas, it is preserved by the embedding # <.« and the pro-
jection v —+.«/;,, so we have ;,=a;(a;,, ta;,)), contradicting (3). [

We are now ready to construct the classifying topos for a universal Horn theory.
The construction, as a presheaf topos, is a straightforward generalization of the cor-
responding construction for algebraic theories outlined in [13 §9.4]; it also has con-
nections, which we shall explore later, with the construction, presented in [8 §7.4],
of the classifying topos for a geometric theory, i.e., one axiomatized by sentences
Vx(¢(x)— w(x)) where ¢ and y are existential positive formulas. Of course, since
universal Horn theories are geometric, the latter construction could be applied
directly, but our consiruciion is considerably simpler; in particular, we need only
presheaves, not sheaves.

Let .# be a universal Horn theory in a language with at least one constant symbol.
We define a category ¢, a simplified version of the syntactic category in [8 §7.4],
as follows. An objeci of v is formal class term {x|¢(x)}, where x is a list of
variables and ¢(x) is a conjunction of atomic formulas, with free variables among
x, such that ¢(x) is consistent with .#. The variables x are, of course, considered
bound in {xI @(x)}, so this class term is unchanged by any proper substitution of
other variables for x. To define morphisms from {xt o(x)} to {y| w(y)}, we assume,
by making a substitution if necessary, that the lists x and y are disjoint. A morphism
is then given by a system of equations, y = t(x), expressing each of the variables in
) as a term involving only free variables from x, such that

7 = Vx(¢(x) = yp(t(x)));
another such systeni, y=1t"{x), defines the same morphism if

7 = Vx(gp(x) = 1x) =1'(x)).
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Composition is defined by substitution:

[z=u(y)] o [y=tx)] = [z = u(t(x))];

it is easily verified that ¢ is a category.

It will be useful to single out a class of morphisms of ¢, which seem to be quite
special but are in fact, as we shall see, fairly representative of morphisms in general.
Suppose {x, y|¢(x, »)} and {yl w(y)} are objects of ¢ such that

K= Vx, y(ox, ) w(y)).

Then there is a morphism between these objects given, after the bound variables are
renamed so as to be distinct, by

[y =y1:{xy| o0 0}~ {y|w(y)}.

We call this the simple morphism from {x, yl o(x, )} to { y| w(»)}; this involves a
harmless abuse of language in that we are using the specific choice of bound
variables (the y used in both objects) to indicate which simple morphism is meant.
The following lemma shows that, in a certain sense, every morphism is equivalent
to a simple one.

Lemma 2. Every morphism A— B of ¥ can be factored as A—A’—B where A— A’
is an isomorphism and A’ B is simple.

Proof. Let the given morphism be [y=1#(x)] : {x| o(x)}—{ y| w(»)}. The factoriza-
tion is given by

[x'=x, y=1tx)]: {x| p(x)} = {x’, y| o(x")Ay = t(x")}

and the simple morphism

{x,y| o )Ay=tx)} = {y|w(»)}.

The first of these is an isomorphism with (simple) inverse [x=x’]. We leave the
verification of the details to the reader. O '

The syntactic objects and morphisms of ¢ have a natural semantic interpretation
as presentations of models of .# and homomorphisms between them. Specificalily,
an object {x| ¢(x)} determines a model (x| o(x)) of .#, generated by the (formal
symbols) x subject to the relations ¢(x). The elements of (x | ¢(x)) are equivalence
classes of terms #(x) modulo the equivalence relation

H - Vx(p(x)— t(x)=t'(x)).

Function symbols are interpretcd in (xiq)(x)} in the obvious way, and relation
symbols R are interpreted to hold of (the equivalence classes of) #(x) if and only if

A+ Vx(¢(x)— R(t(x))).
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It is easy to check that {x | @(x)y is well defined, that it is generated by (the
equivalence classes of) x, and that a conjunction of atomic formulas holds of certain
elements in {x ! ¢(x)) if and only if its holding is deducible in .¥ from ¢(x). It follows
that (x| ¢(x)) is a model of ¥ and its homomorphisms f into arbitrary models &
of .» are in canonical one-to-one correspondence with lists @ of elements satisfying
@(a) in ./, the correspondence being that a is the image of x under f. In other words,
(xi@(x)) is freely generated by x subject to @(x).
Any morphism

[y=1(0]: {x| @)} ={y| w(»)}

in + defines a homomorphism
(y=10):(y |y — (x| o)

of »-models, namely the homomorphism sending (the equivalence class of) u(y) to
(that of) u(t(x)). It is an easy consequence of the definitions that { ) is a fully
faithful contravariant functor from ¥ to the category of models of .#; its image con-
sists of the finitely presented models of .¥. Thus, ¥ is the dual of the category of
finitcly presented models of 7.

In showing that .»'" " classifies models of .#, we shall want to know that ¢ has
finite limits. Unfortunately, it might not. In the first place, ¥ would not have a
terminal object, or any object at all, if .» were inconsistent. We leave this trivial case
to the reader and assume . is consistent. Then ¢ has a terminal object { | true}. (We
never assumed that the list of variables x in an object {x|¢(x)} is nonempty.)
Pullbacks and even products do not exist in general. Indeed, if ¢(x) and w(y), with
disjoint sets of variables x and y, are individually consistent but not jointly consis-
tentin », then {x|@(x)} and {y| w(y)} are objects with no product, since no object
admits morphisms to both of them. For pullbacks in general, the situation is this.
A pair of morphisms

{y|w(»}
} [z =u(y)] 4
l
{xlo} = (2] 6@}

has a pullback if and only if it can be completed to a commutative square, if and
only if @(x)Aw(IAHX)=u(y) is consistent with .# when x and y are disjoint lists.
In this case, the pullback is given by the object {x, y| PX)AY(Y)AL(x) =u(y)} with
simple morphisms to {x|@(x)} and { y| w(y)}. Notice in particular that the pullback
exists whenever the two maorphisms in (4) are the same; thus the usual characteriza-
tion of monomorphisms in terms of pullbacks works in #.

Theorem V. """ js the classifying topos for the universal Horn theory .¥.
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Proof. By Diaconescu’s theorem [5, 8 §4.3], geometric morphisms from any
Grothendieck topos Z to #**® correspond to flat internal functors on ¢ in %
We must prove that these functors correspond (functorially and naturally) to models
of #in #. For simplicity, we shall prove this under the assumption that # = %, but
our argument can be made to apply to arbitrary # by interpreting suitable parts of
it in the internal logic of 4.

Consider an arbitrary flat functor F on #. Flatness means that

(a) given finitely many (possibly zero) objects A; of ¢ and elements a; € F(4;),
we have an object B, morphisms ¢; : B—>A;, and an element e F(B) such that
F(a;)(b)=a; for all i, and

(b) given ae F(A) and finitely many morphisms ¢; : A—A4’ such that all of the
F(a;)(a) are equal, we have a morphism £: B—A such that all of the composites
a;°fB:B—A’ are equal and a is in the image of F(S8).

An easy consequence of (a) and (b} is that

{c) given finitely many morphisms a;: A;— A’ and elements a; € F(A;) such that
all of the F(a;)(a;) are equal, we have an object B, morphisms f;: B—A;, and an
element b e F(B) such that all of the composites a; © §; are equal and F(8,)(b) =a;
for all i.

Another well-known and fairly easy consequence of flatness is that F preserves
finite limits. Using these facts, we can construct a model . # from a flat functor F
on ¢ as follows:

The universe M of .# is F{x|true}. It follows, by preservation of finite limits,
that M" = F{ y] true}, where y is a list of r variables. The .#-interpretation of an
n-ary function symbol f is F[x=f(y)]: F{ y] true}—»F {x| true}. The interpretation
of an n-ary relation symbol R is the subobject F{ y | R(»)}F{y|true} obtained by
applying F to the trivial morphism (easily seen to be a monomorphism), provided
R(y) is consistent with .# so that { y ] R(y)} is an object of #. If R(y) is inconsistent
with # then we interpret R in .# as the empty relation.

It is easy to verify, by induction on terms, that the interpretation in .# of a term
t(x) is

Fly=1t(x)]: M" = F{x | true} > F{y | true} =M,

where n is the number of variables in the list x. We shall show that, if ¢(x) is a con-
junction of atomic formulas, then its extension in .#, {aeM"l./ll:d)(a)} is the
subobject of M"=F{x|true} obtained by applying F to the simple morphism
{x]¢(x)}—+{x| true} if this morphism exists, i.e., if ¢(x) is consistent with .#, and
this extension is empty if ¢(x) is inconsistent w:th #. To prove this, suppose first
that ¢(x) is consistent with .#, and let it be the conjunction of n atomic formulas
R;(t;(x)). Then it follows, from our description of pulibacks in ¢, that {x|¢(x)} is
the limit of the diagram consisting of the n objects {xIR,-(x))} together with their
simple morphisms to {x| true}; it also follows that each of these simple morphisms
is the pullback along [y, =¢(x)]:{x|true}—{y; [ true}, of a simple morphism
{yi ] Ri(¥)}—{y;|true}. The latter simple morphisms define, via F, the interpreta-
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tions in .# of the R;, so, since F preserves finite limits, it sends the former simple
morphisms to the extensions of the formulas R;(t;(x)), and therefore sends
{x | ¢(x)} to the extension of ¢(x), as claimed. There remains the case that ¢(x) is
inconsistent with o, In this case, some of the limits in the preceding argument fail
to exist; suppose, for concreteness, that all the {x]R,-(t,-(x))} exist but {xlqb(x)}
does not, i.e., each R;(¢;(x)) is consistent with .#' but their conjunction is not. (The
other cases are (i) that some R;(f;(x)) is inconsistent with .#’ but R;();) is consistent
and (ii) that some R;();) is inconsistent with .#. Case (i) is similar to the case to be
treated in detail, and case (ii) is trivial since R; is interpreted as the empty relation
in . #.) Suppose, toward a contradiction, that a are elements satisfying ¢ in . #. Then,
for each i, a is in the extension of R;(#;(x)), which we already know to be the
subobject

Fla)): F{x| Ri(t:(x))} & F{x | true}.
where @; is a simple morphism; let a; be such that F(a;)a/ =a. By the flatness of F,
specifically by (c) above, we can find an objec. { y| w(y)}, morphisms
Bi=lx=u;(M1: {r| W}~ {x| Rt}
and an element b of F{ yl w(»)} such that all the composites @, © 8, are equal and
F(B)b)=a/ for every i. The equality of the composites means that, for all i/ and Js
o = Py ()= u(») =u (),
and the definition of morphism in ¢ vyields
7 = V()= Rt (u; ().
Combining these results, we have, for each /,
H = V(w3 o ().

But this is absurd, since y is consistent and ¢ is not. This contradiction completes
the proof of our description of {aeM"|A/fr=¢(a)}.

Consider an arbitrary axiom of .7, say Vx(¢(x)=w(x)). If w(x) is false, then ¢(x)
is inconsistent with .7, and the result just obtained shows that the axiom is true in
#. On the other hand, if' v is atomic, then we can apply the result just obtained
to both ¢ and w. In view of the commutative diagram of simple morphisms

{xlp()} ——— {x } rruel,
,"’/
{xiyx)}
we have that the extension of ¢ is included in that of y, so again the axiom holds.
Therefore . # is a model of .7,

Conversely, given any model .# of #, we can define a flat functor F on by
taking F{x!@(x)} to be the extension in . # of ¢(x) and taking

Fly=1tx]: Fix| o)} = F{y | w(3)}
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to be the map that sends any a satisfying ¢ to #(a@) (which satisfies by definition
of morphisms). It is easy to check that F is a functor. It is flat because (a) if we
are given @, € F {x,-lq),-(x,-)} for i=1,2,...,n, then they are all images, under F of
simple morphisms, of the concatenated sequence a,4,,...,4, in

F{xl,xz.....xnl :/\'¢.-(xi)},

where we have taken the sequences of bound variables x; to be disjoint, and (b) if
we are given a€ F{x|¢(x)} and finitely many morphisms a; =[y=t,(x)] : {x| p(x)} -
{ y| w(»)} such that all the F(e;)(a) are equal, then a satisfies ¢, =¢; for each pair
i, j and therefore lies in the image of F of the simple morphism

B: {xl ¢(x)A/}t,-(x) =tj(x)} - {x|p(0)}

whose composites with all the ¢; are equal. (Note that, in each part of this proof
of flatness, the properties of the given elements guarantee the consistency with .#’
of the formula that defines the required object.)

We leave to the reader the straightforward verifications that the constructions of
.# from F and vice versa are functorial and that they are inverse to each other up
to natural isomorphism. These verifications complete the proof of Theorem 1. [

Since universal Horn theories are a special sort of geometric theories, their classi-
fying topoi can also be obtained by the general construction of Joyal and Reyes
presented in §7.4 of [8]. It seems worthwhile to compare this construction with
1 °": the comparison will yield a second, less direct, proof of Theorem 1.

The site (#,, J;) used in the Joyal-Reyes construction has as objects class terms
{xl @(x)} where ¢ is an existential positive formula (not necessarily consistent with
). Its morphisms from {x|@(x)} to {¥|w(»)} are given by [x~ y| 8(x, y)] where
6 is an exisiential positive formula such that the sentences saying ‘8 defines a single-
valued function from {x| o(x)} to { yl w(y)}’’ are provable in .#. Two s define the
same morphism if they are #provably equivalent. (For details, see [8].) A sieve
covers { yi w(»)} if and only if it contains finitely many morphisms

[, =y | 0:0x;, M1 {x; | @i ()} = { ¥ w(»)}
such that

H = Vy(w(»)— V H3x;0,(xi, »).

(In particuiar, the empty sieve covers {y| w(y)} if and only if () is inconsistent
with )

There is a functor from # to r,, sending each object {xlq‘)(x)} to itself and
sending a morphism [y=1#(x)j to [xHJ'!q)(x)Ayzt(x)], where {xlq)(x)} is the
domain of the morphism. The definitions of equality of morphisms in # and 7,
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easily imply that this functor is faitl:ful. In fact, it is also tull. To see this, suppose

[x—y|6(x 1] : {x| 0@}~ {¥| w(»} Q)
is a morphism in 7%, between objects of ¢. This implies that
K= Vx(p(x)— dy O(x, y)).

Since 8 is existential and positive, it is logically equivalent to a formula of the form
", 4z 6i(x, , 2) where each 6, is a conjunction of atomic formulas. (To put 8 in
this form, first put it in prenex form, then put the matrix in disjunctive normal’
form, and finally distribute existential quantifiers over disjunctions.) Since
{x|¢(x)} is an object of 7, ¢ is consistent with #, so n=1 and Lemma 1 is

appiicabie to

¥ Vx(d)(x)-* \"/ Hy Iz 6:(x, y, z)).
A -1

This lemma provides an index i and terms #(x), u(x) such that
7 = Vx(@(x) > 0;(x, H(x), u(x)))

and therefore
7 = Vx(g(x)— 0(x, t(x))).

Since € #-provably defines a function, it easily follows that it defines the same func-
tion as ¢(x)Ay=t(x). Thus, the morphism (5) is the image, under our functor, of
[y =1t(x)]. Therefore, this functor identifies » with a full subcategory of ¢,.

Every object {x ¢(x)} of ¢, is J,-covered by morphisms whose domains are in
¢. Indeced, transtorming ¢ to the form V, dy ¢;(x, y) where the ¢, are conjunctions
of atomic formulas (as we did with 4 in the preceding paragraph), we see that
{x @(x)} is covered by simple morphisms from the objects {x,y}q),-(x, »} of .

What we have shown about the conneciion between # and ¢, implies, by the
comparison lemma [6, 111.4.1], that the topos of sheaves on (%, J,), the
Joval-Reves version of the classifying topos of .#, is equivalent to the topos of
sheaves on ¢ with the topology induced by J,. To complete the identification of
this form with »"™", we still need to see that this induced topology is trivial, i.e.,
that every covering sieve contains the identity.

Suppose, therefore, that we have an object {_r! w())} of # covered by a sieve R
i the induced toplogy. By definition, this means that R contains finitely many
morphisms

[r=nx)] s {x 1 0ix) = {y win)
such that

/
;

. k*'y( wiy—V 3x,(¢),(X,)/\)’=t/(xi)>>-

As s consistent with 7, the disjunction here cannot be empty, so Lemma 1 gives
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us an index / and terms u# such that

K= Vy(w(y)—= oi(@(MAy =ti(u(y)).

But then the morphism [y=¢;(x;)] in our covering sieve R, composed with
[x; =u(y)], yields the identity morphism of { y| w(y)}, which is therefore also in R,
as required.

The proof of Theorem 1 provides an explicit description of the universal model
¢ of # in ¥*™, i.e., the model that corresponds to the identity geometric
morphism on #¢*. Indeed, it is well known [8 §4.3] that the flat functor cor-
responding to the identity morphism is the Yoneda embedding Y:# — ..
Applying the proof of Theorem 1 with Y in place of F, we find that the underlying
object G of the universal model ¥ is the presheaf G = Y{xl true} whose value at an
arbitrary object { y|¢( »}is

Hom . ({y|p(»}, {x| true}).

But an element [x=1#(y)] of this Hom-set is determined by an arbitrary term #(y)
in the variables y, two terms yielding the same element if and only if
H=Vy(@d(p)—H(y)=t'(y)). Thus, G({ y|¢( »)}) is (in canonical one-to-one cor-
respondence with) the underlying set of the finitely presented .#-model (y | o(y)).
It is easy to verify that this correspondence respects the #-model structure.
Therefore, if we identify ¢°P with the category of finitely presented .#-models, then
4 €. is simply the underlying set functor on ¢°P, equipped with its natural
s#-model structure.

2. Forcing

Our objective in this section is to relate Robinson’s concept of finite forcing in
model theory [1,7,10] to classifying topoi. Our first step is to introduce ‘pseudo-
forcing’, a concept that has some of the flavor of Robinson’s forcing but is
significantly different from it; the usefulness of this concept lies in its direct connec-
tion with classifying topoi.

Until further notice, let .# be a universal Horn theory, wiih at least one constant
symbol, and let .#*°" be its classifying topos as constructed in Section 1. Pseudo-
forcing is a relation between consistent (finite) conjunctions ¢{x) of atomic
formulas, usually called conditions in this context, and formulas a(x) built from
atomic formulas by means of conjunction, disjunction, negation, and existential
quantification. Before giving the definition, we point out that the crucial difference
between pseudo-forcing and (honest) forcing is that negations are not allowed in our
(pseudo) conditions. Another apparent difference, our use of free variables in ¢ and
a where Robinson used new constants, is only a matter of notation and has no effect
on the theory. Formulas a(x) of the sort described above will, in accord with the
terminology of [9], be called Robinson formulas. Although every formula is
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equivalent, in classical logic, to a Robinson formula, the restriction to such
formulas is non-vacuous because pseudo-forcing (like forcing) does not respect
classical logic.

The definition of the pseudo-forcing relation, ¢(x) #— a(x), is by induction on a(x).

{7 a(x) is atomic, then ¢(x)# a(x) if and only if #+ Vx(¢(x)—a(x)).

If @ is BAY (resp. fVy) then ¢H—a if and only if ¢S and (resp. or) @H-y.

if a is Ay B(y) then ¢ a if and only if, for some term ¢, @H-B(?).

If a is =B, then ¢#—a if and only if there is no y such that (pAy is consistent
and) A H-B.

The list of free variables x in ¢(x) and a(x), which we have omitted for the sake
of brevity in most of the clauses, is never of any importance, as long as it contains
all the free variables of ¢ and . Even in the atomic clause, additional (dummy)
variables added to the list x would make no difference, since the assumption that

» has a constant symbol precludes any difficulties arising from empty structures.
We emphasize that the r in the existential quantifier clause and the y in the negation
clause may well contain free variables other than those in ¢ and «. In this respect,
our definition agrees with the usual definition of forcing.

The atomic clause in our definition of # differs from the usual one in not requir-
ing a(x) to occur explicitly as a conjunct in ¢(x). This difference will be useful when
we relate pseudo-forcing to classifying topoi. It could be incorporated into the usual
definition of forcing without any substantial effect on the theory; generic models,
weak forcing, and forcing companions are all unaffected. It would have the rather
pleasant consequence that .»-provably equivalent conditions force the same
statements.

We leave it to the reader to check that the usual properties of forcing hold for
psceudo-forcing. In particular, if g« and if @Ay is a condition, then ¢pA W H— .
Also, if - a and if a’ results from a by substitution of a closed term for a variable
not free in ¢, then ¢gn—a'.

The following theorem is based on the observation that the definition of pseudo-
forcing closely resembles the Kripke-Joyal sheaf semantics for presheaf topoi. The
resemblance is not perfect, however, so some work is needed in the proof. In par-
ticular, an example to be given after the proof shows that the assumption that .7
has a constant symbol is necessary. In the theorem, ¢ is the universal model of .#
re ' G is its underlying presheaf, and & is the sheaf satisfaction relation [9,
8 §5.4] (whose definition will be recalled in the course of the proof).

Theorem 2. Ler ¢-:{x|@(x)} be an object of ¢, and let a be elements of
Glo) = {x @(xYy given by (equivalence classes of) terms t(x). Then, for any
Robinson formula a(z), »=.aa) if and only if ¢(x)H a(t(x)).

Proof. We proceed by induction on a(2). If a(z) is atomic, then ¥ =, a(a) means,
b detinition, that a(a) holds in ’f(c):(xirﬂ(x)). This means, also by definition,
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that
H = Vx(o(x)— a(t(x))).

And this is just the definition of @(x)H-a{t(x)).

The cases of conjunction and disjunction are trivial, since ¥ &=, BAy (resp. fVy)
if and only if ¥ =, B and (resp. or) ¥ =.y. (For disjunction, it is important that we
are working in a presheaf topos so it is not necessary to pass to a covering of c.)

If a(z) is yB(z, ¥), then 7=, a(a) if and only if there exists be G(c)=(x|¢(x))
such that ¥ &=, f(a, b). Such a b is given by a term u(x), so, applying the induction
hypothesis to 8, we find that ¥ =, a(a) if and only if there is a term u(x) with only
x free, such that ¢(x)H- B(¢(x, u(x)). The restriction that all the free variables of u
be among x can be removed, since any other free variables could be replaced with
a constant symbol, which we have assumed to exist. But without the restriction on
the variables of u, the requirement for % k=, a(a) reduces to ¢(x)H— a(t(x)).

Finally, suppose a(z) is —f(z). Then ¥ t=.a(a) if and only if there is no
morphism A:c¢’—c in ¢ such that ¥, f(A*(a)). Here A* means G(A), so if
A =[x=u(y)], then 1* sends a = [¢(x)] to [t(u(y))]. By Lemma 2, there is no :0ss of
generality in assuming that A is a simple morphism from, say {x, y] w(x, y)} to
{x | o(x)}. Since w(x, y) provably implies ¢(x), we may, by composing with a
(simple) isomorphism, replace the domain of A with {x, y [ Oo(xX)Aw(x, y)}. Thus, the
statement ¥ =, a(a) is equivalent to: there is no y(x, y) such that % =, f(a), where
¢’ ={x, y| p(X)Aw(x, »)}, and where A*(a) has been simplified to a since 4 is simple.
Now the induction hypothesis applied to g gives the further equivalent form: there
is no w(x, y) such that p(x) Aw(x, y) - B(t(x)), i.e., ¢(x) - a(t(x)). This completes the
proof of Theorem 2. [J

We give some examples to clarify Theorem 2 and the concept of pseudo-forcing.

Example 1. Let .# be pure equality theory; it has no non-logical symbols and no
non-logical axioms. Although .# is a universal Horn theory, it fails to satisfy our
requirement that there be at least one constant symbol. We shall see that this failure
results in Theorem 2 being false for .#. To see this, simply observe that the empty
conjunction, true, pseudo-forces Ix true, since arbitrary terms are allowed in the
H-clause of the definition of pseudo-forcing. However, the sentence dx true is not
satisfied (in the sense of sheaf semantics) by % at stage { | true} = 1 in the classifying
topos of .#’ (the object classifier), for, if it were, then, being a geometric formula,
it would also be satisfied by all objects in all topoi, whereas in fact it is not satisfied
by the empty set.

The temptation to remedy this defect by requiring, in the definition of
¢ v Ax B(x), that ¢ have no free variables other than those of ¢ and Jx B(x) must
be resisted, since it would prevent us from connecting pseudo-forcing with Robinson
forcing where no such requirement is imposed.
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Example 2. Let us modify the .# of the preceding example by adding one constant
symbol = to the language, so that Theorem 2 becomes applicable. Thus, .# is theory
of pointed sets. We use Theorem 2 to check that the universal pointed set ¥ is
remarkably small:

y = HX (X =#).

It suffices to check that no condition ¢ pseudo-forces Zx—(x = *). This means that,
given ¢ and an arbitrary term 7, we must find an extension ¢Ay of ¢ that forces
t =+ But ¢A(r=+) is such a condition; it is consistent because any conjunction of
atomic formulas is consistent with .7.

The property of .# just cited, that every conjunction of atomic formulas is a con-
dition, holds for any universal Horn theory in whose axioms, Vx(¢— ), v is always
atomic (i.e. never false.) In particular, it holds for any equational theory. Thus, the
universal algebra of any variety satisfies = 9x—(x =) if * is a nullary operation of
the variety (and it satisfies =Zx Jy—(x=y) in any case).

Rather than continuing with the theory of pseudo-forcing, by defining pseudo-
generic models and the classifying topos for such models, we turn to the connection
between pseudo-forcing and finite Robinson forcing. A comparison of our defini-
tion of » with Robinson’s reveals the following differences:

{a) Robinson uses new constants where we use free variables:

(b) Robinson’s conditions are sets of formulas, whereas ours are the conjunctions
of those sets;

(c) Robinson’s definition and ours have different clauses for the atomic case;

(d) Robinson’s definition permits negated atomic formulas to occur in condi-
tions, and ours does not.

Differences (a) and (b) are purely notational. Difference (c) is non-trivial, but, as
we remarked above, if Robinson’s theory were changed to agree with ours in this
respect, nothing would be lost. The essential difference between pseudo-forcing and
forcing is (d). For example, in contrast to Example 2, for the theory considered there
(or any non-trivial variety with a nullary operation *), no condition forces
—~dx(v=x), because every condition can be consistently extended by adding
~(z=+) where 2 is a new variable. Despite this crucial difference between forcing
and pseudo-forcing, we shall show that the former can be viewed as a special case
of the latter by considering suitable theories.

Since the forcing relation (in Robinson’s sense) for an arbitrary first-order theory

- depends only on the universal part of ./, we consider only universal theories in
the following discussion of forcing.

Henceforth, ./ is a consistent universal theory in a first-order language L that has
at least one constant symbol.

Let /. be the language obtained from L by adding, for each relation symbol R
of I (including the equality symbol), a new relation symbol £ with the same number
of arguments as R. Let /, be the theory, in the language L,, obtained by adding
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to .7 the axioms

VX(R(x) & ~R(x)) (6

for all relation symbols R of L. Then 7, is a definitional extension of .7, so the two
theories have essentially the same models; every model of .7 is the L-reduct of a
unique model of 7. The category of models of 7, is, however, quite different
from the category of models of 7, since a morphism of 7;-models must preserve
not only the relations R of L but also their negations R.

The theory .7 is equivalent, in classical logic, to a geometric theory .7, to be
described below. Whenever we deal with interpretations in non-Boolean topoi, it
will be .74, not 74, that is relevant. The axioms of .7, are obtained as follows.
First, there are the sentences

Vx(true— R(x)V R(x)), @)
Vx(R(x)AR(x)— false), ®)

for all relation symbols R of L. These axioms are jointly equivalent to (6) in classical
logic. (Only the implication from (6) to (7) requires classical logic.) Second, each
axiom of .7 is rewritten in prenex form with its matrix in conjunctive normal form,
and the universal quantifiers are distributed over the conjunction to yield an
equivalent axiom that is a conjunction cof sentences of the form VxV., ¢;(x)
where each ¢; is an atomic or negated atcmic formula. Then each of these con-
juncts is rewritten as

Vx ( A - 0:(x) —+false> 9
i=1

where —g,(x) is R(x) (resp. R(x)) if ¢;(x) is R(x) (resp. —F(x)). We take all the
resulting sentences (9) as axioms of .7,. In the presence of (7) and (8), these axioms
(9) are clearly equivalent to the original axioms of ./ from which they were derived.

The notation 7, was chosen to indicate that (in arbitrary topoi, not necessarily
Boolean) the models of .7, are the decidable models of .7, i.e. those models . # such
that the interpretation of each n-ary relation symbol is a complemented subobject
of M".

Let ./, be the universal Horn part of .74 that is, its axioms are all the
universal Horn sentences provable in .7,. Thus, (8) and (9) are among the axioms
of .74y, but (7) is not. Other axioms of .7,y include sentences that are like (9) ex-
cept that one of the ¢;(x) has been left on the right of the implication sign instead
of being transposed to (a —;(x) on) the left. These sentences, and similar ones ob-
tained from the universal theorems of .7~ (instead of only its axioms) constitute an
axiomatization of gy, but we shall have no use for this fact, so we omit its
proof.

Example 3. Let .7 be the theory of pointed sets, as in Exampie 2. Then .74 is the
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theory, with one binary predicate symbol #, axiomatized by
Vx Vy(true—>x=yvx+y), (10)
Vx(x+#x— false). (1)

The second of these, but not the first, is an axiom of .74 y. It is not hard to check
that /4 is axiomatized by (11) and

Vx Vy(x#£y—y+x).

Thus, /4y is simply the theory of (undirected, simple) graphs if we read # as
‘‘adjacent to”’. From this point of view, the models of .7; are just the graphs satis-
fying (10), the complete graphs.

Returning to a general theory ./~ as above, observe that, since .74 is, by defini-
tion, a universal Horn theory. our earlier work is applicable to it. In particular, we
have a syntactic category 7, dual to the category of finitely presented models of

/a1 such that .~ ¢ ™" is a classifying topos for .74y with universal model %. We

also have pseudo-forcing related to truth in ¥ by Theorem 2. But pseudo-forcing
for /44 is essentially the same as Robinson forcing for .7. More precisely, if we
modify Robinson’s definition of forcing so as to eliminate the differences (a), (b),
(c) listed above, and if we rewrite forcing conditions by putting R in place of =R
whenever a negated atomic formula occurs, then the resulting definition of forcing
for / agrees with our definition of pseudo-forcing for .7, . The proof of this is
a straightforward induction, since the definitions are virtually identical. The only
non-trivial points to notice are that the formula Vx(¢(x)— a(x)) occurring in the
atomic clause is universal Horn and that R(x) pseudo-forces - R(x) becausc of (8).
The previously crucial difference (d) between forcing and pseudo-forcing has been
climinated by the introduction of the new relation symbols R, despite the fact that
K is equivalent to =R only in .74, not in /4.

Ignoring the inessential changes ((a), (b), (c) and the use of K for —R) in
Robinson’s definition, we may summarize the preceding discussion combined with
Theorem 2, as:

Finite forcing for / is truth in the universal model of .7 vy.

3. Classifying topoi for generic models

We continue the convention that ./~ is a consistent universal theory with at least
one constant, and we let L,Ly, /4, /4vy, 7, and 4 be as before. The symbol #
will refer to forcing for /, i.e., pseudo-forcing for ./4py.

A model # of ./ (in the topos 7 of sets) is generic [1,7] if, for every Robinson
formula «(x) of L and every a in M", where n is the length of x, there is a condition
@(x, 3) and there are elements b in M such that

=ela,b) and  @(x, y)Ha(x)V —a(x).



Classifying topoi and finite forcing 127

The conditions ¢(x, y) that force a(x)V —a(x) are, according to Theorem 2, just the
ones such that the simple morphism

{x,y ] ox, »)}—{x | true} (12)

is in the sieve (on {xltrue} in ¢) that is the truth value |a(x)V —a(x)| in ¢ of
a(x)V —a(x}). Since ¥ is Boolean, a model .# of .7 may be viewed as a model of
J4, hence also of 4. The associated flat functor F: ¢ —.% (in the proof of
Theorem 1) sends the simple morphism (12) to the projection

{a,be M"**| 4 =¢p(a,b)} > M",

and the requirement for genericity is that these projections be jointly epimorphic.
Lemma 2 allows us to ignore any non-simple morphisms in the sieve |a(x)V ~a(x)],
so we conclude that a generic model of .7 is one whose associated flat functor sends
|e(x)V ~a(x)| to an epimorphic family, for all Robinson formulas e(x). This obser-
vation suggests defining a Grothendieck topology on ¢ such that this criterion for
genericity becomes simply the continuity of F.

Definition. The Robinson topology Jy is the smallest Grothendieck topology on ¢
such that, for every object {xl ¢(x)} of ¢ and every Robinson formula a(x) with free
variables among x, the sieve |a(x)V —a(x)| on {x|¢(x)} belongs to Jg.

Several equivalent descriptions of Jr will be useful. First, notice that the defini-
tion would be unchanged if we replaced all three occurrences of ‘a(x)’ with ‘a(#(x))’
where f ranges over all terms. This is simply because a(#(x)) is another Robinson for-
mula f(x). Since every element of (x|¢(x))=G({x]¢>(x)} is of the form #(x) for
some term ¢, we see that J can also be described as the smallest topology which,
for each object ¢ of #. each Robinson formula a(x), and each a € G(c), contains the
sieve |a(a)V —a(a)| on c. In this form, the definition makes it clear that the given
generating family for Jg is closed under pullbacks (of sieves). It also shows that the
corresponding Lawvere-Tierney topology jg in ¥ is the smallest one that makes
the interpretation in ¥ of every Robinson formula in » variables a complemented
subobject of G".

Another reformulation of the definition of Jg is obtained by replacing both oc-
currences of ‘@(x)’ with ‘frue’. The reason this chiange does not affect the toplogy
is that each sieve that is required to be in Jg by the original definition is the
pullback, along a simple morphism {x | ¢(x)} = {x| true}, of one that is required to
be in Jg by the new definition. The new definition gives a slightly simpler
generating family for Jg, and it connects more directly with our previous discus-
sion of genericity, but the new generating family turns out to be less useful because
it is not closed under pullbacks.

To study continuous flat functors on %, we shall need the following lemma from
the topos-theoretic folklore, which appears not to be published. To simplify its
statement, we list for reference the axioms for a Grothendieck topology J.
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(a) For every object ¢, the maximal sieve, consisting of all morphisms into c, is
in J.

(b) If J contains a sieve R on ¢ and if f:¢’—c¢ is any morphism, then J also con-
tains the pullback f*R of R along f, which con.-ts of all morphisms into ¢’ whose
composite with f belongs to R.

(¢) R and S are sieves on ¢, if ReJ, and if f*SeJ for all feR, then SeJ.

Lemma 3. Let K be a family of sieves in a category ¢, and assume that K is closed
~=der pullbacks. Then the Grothendieck topology J generated by K is the smallest
JSamily of sieves in ¢ that includes K and satisfies (a) and (c) above. A flat functor
from ¢ to a topos ¢ is continuous for J if and only if it sends every sieve in K to
an epimorphic family in ¢&.

Proof. To establish the first assertion, let J’ be the smallest family that includes K
and satisfies (a) and (c). Since J is the smallest family with these properties plus {b),
all we need to show is that (b) holds for J’. We let J” consist of those sieves all of
whose pullbacks are in J’, and we prove that J'C J” by showing that J” has all the
properties in the definition of J'. J” includes K because J’ does and X is closed under
puilback. J” satisfies (a) because J’ does and pullbacks of maximal sieves are
maximal. To show that /" satisfies (c), let R and S be sieves on an object ¢, and
assume that Re J” and f*SeJ” for all fe R. We must show that SeJ”, so we con-
sider an arbitrary g:c¢’—c¢ and show that g*SeJ’. Both g*R and g*S are sieves on
¢’ and the former is in J’' because ReJ”. So to show g*SeJ' it suffices, since J’
satisfies (¢), to show h*g*Se J’ for every heg*R. But he g*R means that ghe R.
By our assumption about S, (gh)*S=h*g*S is in J” and therefore in J’, as required.

The second assertion will follow from the first if we show that, for any flat
functor F: s — ¢, the family Jr of sieves sent to epimorphic families satisfies (a)
and (¢); then if K C Jp we can infer JC Jp as required. Part (a) is obvious since F
preserves identity morphisms. For part (¢), assume R,S are sieves on ¢, Re Jp,
Sf*SeJp for all feR. To show that the family F(S) of morphisms into F(c) is
epimorphic, suppose p and g are two morphisms F(¢)— X such that po Fth)=
q F(h) for every he S. We must show that p=g¢q, and tor this it suffices to show
p-F(NH=q F(f)forall feR, since F(R) is epimorphic. For a fixed fe R, to show
p F(fH=q F(f), it suffices to show poF(f)°F(@)=gqg°F(f)°Fg) for all
ge*S, since F(f*S) is epimorphic. But gef*S means fogeS, so we have
p F(f g)=q F(f-g) byhypothesis, and we are done because F is a functor. |

We apply this lemma to describe the continuous functors from the site (7, Jg) to
a topos <. A flat functor F:« — ¢ is given, according to Theorem 1, by a model
# of /410 <. For F to be continuous, it is, according to the lemma, necessary
and sufficient that it send each sieve |a(x)V —a(x)| on any object {x'a)(x)} to an
cpimorphic family. By Lemma 2, we may restrict our attention to the simple



Classifying topoi and finite forcing 129

morphisms in this sieve. These are, up to isomorphism,
{2, | @AW »)} = {x| (x)}

where o(x)\w(x, Y)a(x)v-a(x). F sends these morphisms to projections
{a,beM"** | M =p(@)Ay(a, b)}—*{aeM"I.m:(b(a)}. Continuity of F requres
that, for each ¢ and a, the projections so obtained from various y’s constitute an
epimorphic family. In other words, the following statement must hold in the
internal logic of ¢:

(VaeM")[(.// E¢(@)—V (Tbe M*).4 =y, b)]

where the disjunction is over ¥’s such that ¢(x)Aw(x, ¥)H a(x) ~a(x). It is easy to
see that this statement will hold for arbitrary ¢ if it holds when ¢ is true, so we
obtain the following simplification.

Theorem 3. A model .# of .74y in a topos & corresponds to a continuous furctor
Jrom (¢,JR) to & if and only if, in the internal logic of &, it is true, for each
Robinson formula a(x), that

VaeM"Ibe M*\/ .« =y(a,b),
v
wherz the disjunction is over all conditions y(x, y) forcing a(x)V —a(x).

Definition. A model . # with the property in Theorem 3 is called a generic imodel
(‘f 'fd-

This terminology presupposes that such an . # is in fact a model of ./;; we shall
confirm this supposition below.

Corollary. The topos of sheaves on (¢, JR) is the classifving topos for generic
models of /4.

Thus, the universal generic model of ./, is obtained from the universal model of
/4wy by forcing (with jg) every Robinson formula to become decidable.
To see that generic models of 7, are models of 7/, we need the following analog

of the well-known *‘forcing equals truth’ lemma in finite forcing theory.

Lemma 4. Ler .« ' a generic model of /,in <. Then, for any Robinson formuia
a(x), the following holds in the internal logic of «:

(VaeM”)l,//L:a(a)HV(HbeM"). # = @la,b)
Py

where the disjunction is over conditions ¢(x, y) that force a(x).
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Proof. We proceed by induction on a. Suppose first that a is atomic. Working in
the internal logic of &, we have that, if .# =a(a) then the disjunction in the desired
formula holds because there is a disjunct in which ¢ is a (and k =0). Conversely,
if the disjunct corresponding to ¢(x, ) holds, then, as ¢(x, y) forces a(x), we have
that Vx, y(¢(x, ¥)—a(x)) is provable in .7;yy, hence true in .4, so from ./ = ¢(a, b)
we can infer .« &= a(a).

Next, suppose a(x) is —fB(x). Again, we work in the internal logic of ¢. If
-« = a(x), then, by induction hypothesis, we do not have .# &= ¢(a, b) for any ¢(x, y)
forcing B(x). But, by genericity, we do have .# =¢(a, b) for some ¢(x, y) forcing
B(x)V=B(x), so this ¢ must force =B, which is a. Conversely, suppose . # &= ¢(&, b)
and ¢(x, y) forces a(x). Then .# cannot satisfy B(a) because to do so it would have
to satisfy w(a,b,c) for some w(x, y,z) forcing B(x), and then ¢pAwy would be
consistent (since satisfied in .#) and would be an extension of ¢ forcing £, which
is absurd as ¢ forces —f.

If a(x) is f(x)Ay(x), then, by induction hypothesis, we have in the internal logic
that .# =a(a) if and only if .# ::q‘)(a b)Ay(a, b) for some ¢ forcing f and some y
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# =@(a.b). Then there is a term t(x, y) such that @(x, y}# B(x, 1(x, y)); we have

arranged that ¢ has no free var:ables other than x, y by replacing the others with a
constant symbol. By induction hypothesis we have . # = f(a, t(a, b)), so . # =a(a), as
required.

Using Lemma 4, we show that a generic model . # is a model of ./,. It is, of
course, a model of ./, by definiition; the only axioms of .7, that are not in .74y
are those of the form

To show these hold in . #, we work in the internal logic and find, for any ae M",
a condition ¢(x, ), forcing R(x)V &(x), and satisfied in .# by a,b for some b. By
genericity, we can find ¢,(x, »), satisfied in .# by a,b, and forcing R(x)V ~R(x),
and we can find ¢, (x, y), also satisfied in . # by a, b (the same b, by adding dummy
variabies if necessary), and forcing R(x)v - R(x). If ¢, forces R(x) or ¢, forces

Rixj, th it serves as the desired Q. It remains to consider the case that 0, forces
~Rix) a"nd @- forees - R(x); we shall show that this case cannot arise. If it did,
2 by iy | . } DAY S o W Fmetomie AL o mmmtt o eatal o LA ML o 4 oA TAIN T
i, Oy definition of forci 1g Ot llcgduull‘s nenner ¢g/An(xXj nor @g;N\gK{x) 1s d
canditian far tha faremar fracem  lattar) e 14 ha am aviamcinit ~F A frncem ALY
LREIGIGUH, TUD it 1uthiICh ulsp. daticn) wouid 0C dil CXICNSiON 01 @ (TeSp. @)
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forcing R(x) (resp. R(x)), which is impossible. So both

Vx, y(¢1(x, Y)AR(x)— false) (13)
and

Vx, y(¢2(x, ») AR(x)— false) 14)

are theorems of J,vy, hence a fortiori of ;. But J; has the axiom
Vx(true— R(x)V R(x)) which together with (13) and (14) yields

Vx, y(@1(x, Y)A@a(x, y)— false).

This sentence, being a universal Horn theorem of .7,, is an axiom of .7y, hence
is true in .4 But in .#, ¢,A¢@, is satisfied by a,b. This contradiction completes the
proof that generic models satisfy .7,.

Remark. Except for the verification that generic models satisfy .7, the material in
this section has really involved only .74y, not 7, or .7. We could, therefore, have
started with an arbitrary universal Horn theory with a constant symbol, defined the
Rovinson topology Jr on its syntactic category ¢, shown that the topos of sheaves
on (%, Jr) classifies pseudo-generic models (defined just like generic models but
using pseudo-forcing), and proved a ‘‘pseudo-forcing equals truth’’ result like
Lemma 4 for these pseudo-generic models. We chose not to present the results in
this generality, although no additional work would have been required, for two
reasons. First, we did not want to postpone for too long establishing contact with
forcing, since it is our primary interest in this paper. Second, it turns out that, in
some natural examples, pseudo-generic models are rather uninteresting. Specifi-
cally, it follows easily from Example 2 and the subsequent discussion that the only
pseudo-generic algebras for any variety are the trivial algebras.

4. Other topologies

In this section, we discuss some naturally occurring topologies, other than Jg, on
¢, the syntactic category of .7,yy; we are interested particularly in their relation-
ships to Jg and to each other and in the concepts classified ty their sheaf topoi.

The theory, .7, being geometric, has a classifying topos; the methods of [14, 15]
enable us to describe this topos as a sheaf subtopos of the classifying topos .7 *”
of .74yy. Indeed, it is clear from the discussion of .7; and ./, in Section 2 that
the former is obtained from the latter by adding the axioms

Vx(R(x)V R(x)). )

Therefore, by [14] or [15] the classifying topos for ./, is the topos of sheaves on
(%, Jp), where Jp is the smallest topology on # such that, for each relation symbol
R of L, the object {x|true} is ccsered by the sieve |R(x)VR(x)|. This sieve is
generated by the simple morphisms to {x ] true} from {x | R(x)} and {x ] R(x)}. Since
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generic models satisfy .7;, we have JpCJgr, a fact which can also be verified
directly (by a method closely resembling our proof that generic models satisfy .7;)
or deduced frcm more detailed information given below.

In ordinary {in .» ) model theory, the existentially closed models of 7 form an
important class intermediate between the classes of all models of 7 and of generic
models of .7/. We shall generalize the concept of existentially closed model to
arbitrary topoi and construct a classifying topos for it as a sheaf subtopos of
+4°° . Joyal and Reyes [9] have defined the concept ‘existentially closed’ for
geometric theories in the context of categorical logic and have related it to a certain
Grothendieck topology on the pretopos that (from their point of view) is the
geometric theory. We work only with universal theories, since in ordinary model
theory the existentially closed models of an arbitrary theory are just those models
of that theory which, considered as models of its universal part, are existentially
closed. Also, we view theories and models in a less abstract way than Joyal and
Reyes do. As a result, our definition of ‘existentially closed’ seems quite different
from theirs. However, the similarity between their Grothendieck topology on the
theory and the Grothendieck topology Jr on % that we define below leads us to
suspect that the two definitions are basically the same.

Definition. A model .# of 74,y in a topos ¢ is existentially closed if and only if,
for every conjunction w(x, yj of atomic formulas of L, the following statement
holds in the internal logic of «<:

(Vae M™)| (b e M X« = y(a, b))v\/ (Fece M. # = Aa, c):‘ ,

where the disjunction is over all conjunctions A(x, z) of atomic formulas of L,,
such that wix, »)AA(x, 2) (with y and z disjoint lists of variables) is inconsistent with
/qtil'h"

We point out immediately that such a model . # necessarily satisfies .7,. Indeed,
applying the definition of extentially closed, first with R(x) and then with R(x) as
w(x), we find (in the internal logic) that every ae M" either satisfies R(a)V R(a) as
desired or else satisfies 4,(a, c)Ad,(a, c) for some ¢, where A;(x, y) and A,(x, y) con-
tradict R(x) and R(x) in /44, hence in ./;. (We can take the same ¢ for both A’s
by adding dummy variables if necessary.) It foliows that A,(x, Y)AA;(x, ¥) con-
tradicts -4, hence also contradicts ./, because Vx, y(A;AA, = false) is a universal
Horn sentence. Yet g, ¢ satisfies A;Ad> in a model . # of .74,y. This contradiction
shows that R(a)Vv R(a) must hold, so .7 = /4.

The next lemma serves to justify our definition of existentially closed by showing
that, in -, it agrees with the usual definition. Recall that, in .# or in any Boolean
topos, models of 7, are essentially the same as models of .7; we shall therefore
tgnore the distinction between these theories.
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Lemma 5. A model # of 7 in ¥ is existentially closed if and only if, for all
existential formulas n(x), for all ae M", and for all extensions .4 2 .4 that are
models of 7, if #=n(a) then 4 =n(a).

Proof. Suppose first that .# is existentially closed, and let n(x), a, and .# be as in
the statement of the lemma, with .4 =n(a). By putting » into prenex form, putting
its matrix into disjunctive form, and distributing existential quantifiers across dis-
junctions, we can assume 7(x) is a disjunction of formulas of the form Hy w(x, y)
where ¥ is a conjunction of atomic formulas of L;. (We have gone from .7 to 9,
and replaced any —R in n with K.) Let yy(x, y) be one of the disjuncts that is
satisfied by a in n; we shall show that it and hence also #7(x) are satisfied by a in
. If it were not, then, as .# is existentially closed, we could find ¢ e M’ satisfying
Ala,¢) in #, where A(x,z) is a conjunction of atomic formulas of L; and con-
tradicts w(x, y) in 74. But then A(aq,c) still holds in .4 because .t 2.4, and this is
absurd since Hy w(a, y) holds in .4 as well.

Conversely, suppose .# satisfies the criterion in the lemma. Let y(x, y) be a con-
junction of atomic formulas of L;, and let ae M”". We must show that either
# =3y y(a, y) or there is a conjunction A(x, z) of atomic formulas of L, such that
w(x, Y)AA(x,z) is inconsistent with 7; and such that .# =4z A(a,z). Suppose,
therefore, that no such A exists. Then, in the language obtained by adding to L,
names for all elements of M and additional constants p, the set of sentences

74UDiagram of .# U {y(a, p)}

is consistent, by a compactness argument. A model .4 of it is, up to isomorphism,
an extension of .# in which p witnesses that dy y(a, ¥) holds. Therefore, since . #
is assumed to satisfy the criterion in the lemma, HJy w(a, y) n0lds also in .#, as
required. O]

We now begin the construction of a classifying topos for existentially closed
models of 7.

Definition. Jr is the smallest Grothendieck topology on % such that, for each
morphism f:c’-»>c in ¢, Jg contains the sieve *f that consists of

(a) ali morphisms into ¢ that factor through f, and

(b) all morphisms g into ¢ such that no morphism into ¢ factors through both f
and g.

Note that (a) describes the sieve generated by f, while (b) describes its negation,
the largest sieve disjoint from the one generated by f. This explains the notation +f.

Note also that no special properties of ¢ are used in defining Jg. The same
definition gives a topology on any category, and the preceding remark shows that
this topology is always included in the double-negation topology.
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Theorem 4. The topos of sheaves on (7, Jg) is the classifying topos for existentially
closed modeis of 7.

Proof. If f and g are morphisms with a common codomain c, then either they are
incompatible, in the sense that no morphism factors through both, or they have a
pullback. In the first case, g*+f is the maximal sieve on the domain of g. In the
second case, g*+f is +h, where h is the pullback of f along g. Therefore, the
generating family given in the definition of Jg becomes closed under pullbacks if
we adjoin to it the maximal sieves. Therefore, by Lemma 3, to check that a flat
functor F of ¢ is continuous for Jg, we need only check that it sends each sieve +f
to an epimorphic family. By Lemma 2, we need only consider the sieves + f where
the morphism f is simple.

So let F:—+ be a flat functor, corresponding to a model .# of .7,y in a
topos -+, and let

Fi4x e »}—{x| o)}

be a simple morphism in 7. To say that F(+f) is an epimorphic family means, in
view of Lemma 2, that f and the simple morphisms

{x,2] Ax, 2}~ {x| 9(0)},

such that A(x, 2) implies ¢(x) but is inconsistent with y(x, y) in .7;, are sent by F to
an epimorphic family. This can be expressed in the internal language of ¢ by saying
that, for every a satisfying ¢ in . #, either there is b such that .# = w(a, b) or there
is ¢ such that . # = A(a, ¢) for some such A. In the special case that ¢(x) is true, this
1s precisely (the y instance of) the definition of being existentially closed. And the
general case, with arbitrary ¢(x), easily follows from the special case, for if A(x,2)
works in the special case then A(x, 2)A@(x) works with ¢(x). U

Theorem 5. The ropologies Jg, Jp, Ji and the double-negation toplogy J--, on ¢
satisfv

JI)QJE_C-JRQJ—!"-

Proof. That J; C Jg is just a restatement of the already established fact that all ex-
istentially closed models satisfy ./,. We sketch a direct proof. To show that the
sieve on {x frue} generated by the simple morphisms f and g from {x|R(x)} and
1x R} s in Jg, it suffices to check that it is the intersection of the sieves + f and
+g, since Grothendieck topologies are closed under intersection {13, p. 15]. And
checkiag this amounts to checking that no morphism can be incompatible with both
S and g. By Lemma 2, we need only consider simple morphisms, and the necessary
checking was done in the course of showing that existentially closed models satisfy
/.

Jy € Jy means that each sieve + f is in Jy. It suffices, by Lemma 2, to prove this



Classifying topoi and finite forcing 135

for simple f, say from {x, yl v(x, )} to {x|¢(x)}. To do this, we show that every
morphism g in the sieve |dy w(x, y)V Ty w(x, )| on {x|#(x)} also belongs to +f.
Again, we may assume g is a simple morphism, say from {x, 2 | 0(x,z)} to {x| o(x)}.
Suppose first that g belongs to | Zy w(x, y)|, so by Theorem 2 and the definition of
forcing,

0(x, 2) W w(x, t(x, 2))
for some terms ¢. Since y is a conjunction of atomic formulas, we have

Tava+ VX 2(0(x, 2) = w(x, KX, 2))).

Therefore, [x’ =x, y=t(x, z)] is a morphism in ¥ from {x, 2 I 0(x,z)} to {x’, yl w(x, M)},
and it clearly gives a factorization of g through f, so g € + f. There remains the case
that g belongs to |~y w(x,y)|. In this case, by Theorem 2 and the definition of
forcing, no extension of the conditicn 6(x, z) can force Hy w(x, y). In particular,
6(x, 2) Aw(x, ), with the lists z and y disjoint, must be inconsistent with ./, for
otherwise it would be a condition extending 6(x, z) and forcing Zy w(x, y). It follows
immediately that g and f are incompatible, so again ge +f.

Finally, that Jg C J.-, is clear because the double negation of a generating sieve
la(x)V ~a(x)] of R is the truth value of the intuitionistically valid formula
“(a(x)V-ax). O

We shall not discuss in detail the concept classified by the topos of sheaves on
(¢, J.-), since such a discussion would lead us away from model-theoretic forcing
to set-theoretic forcing. An instructive example in this connection is the theory .7,
with one constant symbol ¢ and denumerably many unary predicate symbols P,,
axiomatized by Vx(x=c). Models of .7, are essentially functions f from the set of
natural numbers into {true, false}, giving the truth values of the sentences P,(c).
Sheaves on (¥, Jo-) form the classifying topos for functions f that are Cohen-
generic over .#. For further discussion of this and related examples, see [14].

We can, however, give a model-theoretic description of the points of the sheaf
topos Sh(%, J--). The description involves the following slight strengthening of the
concept of atomic model.

Definition. A model .# of a theory ./ is a strongly atomic model of ./ if and only
if, for each list of elements a in M, there is a formula ¢(x), satisfied by a in . #, such
that, for every formula w(x) satisfied by a in . #,

7 = Vx(p(x) = w(x)).

This definition differs from Vaught’s notion of atomic model only in that the last
line has ““.7 " instead of . # ="’. Thus, the two notions agree if ./~ is complete.
Unlike atomicity, strong atomicity imposes a non-irivial requirement even when the
list @ is empty, for the definition then asserts that the complete theory of # is
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axiomatized by .7 plus a single sentence. It is not hard to check that this requirement
and atomicity together imply strong atomicity.

Recall that ./ T, the finite forcing companion of .7, consists of those sentences
whose negation is not forced by any condition; see [1,7]. Note that (7 f)d=(.ff;,)f,
so we may unambiguously write .7,.

Theorem 6. A flat functor F:¢—. is continuous for J.. if and only if the
corresponding model of .74y is a strongly atomic model of 7.

Proof. Let .# be the model corresponding to a J__-continuous flat functor F on
/. Since J-_. 2 Jg, Theorem 3 tells us that .# is a generic model of 7,, so it is a
model of 7].

Consider an arbitrary list @ of elements of .#, and let @ be the set of all the con-
ditions ¢(x, ) such that .# = -dy ¢(a, y). The simple morphisms

{x,y| o, )} = {x| true} (15)

for pe @ cannot form a J._-covering of {xl true} since none of the projections
obtained by applying F to them has a in its range. So there exists a morphism,
without loss of generality a simple one,

{x, 2| win, 2)} = {x | true}

incompatible with (15) for all ¢ € @. Thus, the existential formula Jz w(x,z2)
-;-provably implies all the formulas -3y ¢(x, y) satisfied by a in .#, where ¢
ranges over conditions. It follows immediately that . # = 4z w(a, z), for otherwise y
would belong to @, hence imply its own negation, which contradicts the fact that
w is consistent. To complete the proof that . # is a strongly atomic model of .7, we
show that every formuia y(x) satisfied in . # by a is deducible in .7 from Tz w(x, 2).
Suppose, therefore, that y(x) were a counterexample. Then Jz w(x, 2)A - y(x) is con-
sistent with ] and is therefore forced by some condition o(x, y). Then Hy ¢p(x, y)
is consistent with 7 w(x,2) in .74, so ¢ ¢ @. This means that we can find b in M
such that # =¢(a,b). By the choice of ¢ and the genericity of .#, we have
# = —y(a), a contradiction.

Conversely, suppose .# is a strongly atomic model of .7,. To show that the
associated flat functor F: » — + is J__-continuous, consider an arbitrary double-
negation dense sieve R on an object {x|@(x)}. To show that the family F(R) is
epimorphic, let @ be an arbitrary element of F{x{(z)(x)}, so a satisfies ¢(x) in . 7.
Since  « is strongly atomic, find a formula w(x), also satisfied by a in .#, that

- -provably implies every formula satisfied by @ in . #. Then w(x) is an atom in the
Lindenbaum algebra of ./ -equivalence classes of formulas with only x free. But,
since /) is a forcing companion, every consistent formula is above a consistent
existential formula in this Lindenbaum algebra [7]; therefore the atom y(x) can be
taken to be an existential formula. As in several previous arguments, we can write
wix) as a disjunction of formulas Jy O(x, y) where each 6 is a conjunction of atomic
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formulas of Ly. Since y is an atom, it is equivalent to one of these disjuncts
Ay O(x, y). Since y 7f-provably implies ¢, and since 74 and 7 prove the same
universal sentences, the universal Horn sentence Vx, y(6(x, y)— ¢(x)) is provable in
JavH, SO there s a simple morphism

{xy] 605 )}~ {x| p(x)}

in #. Some composite morphism of the form

{x, ».z2| A(x, ,2)} Z, {x, y| 6(x, '} = {x| p(x)} (16)

is in the double-negation dense sieve R; we are using Lemma 2 to justify assuming
that f is simple. The fact that f is a morphism means that the sentence

Vx(dy, zA(x, y,2)— dy 0(x, »)) (17)

is provable in 7y, hence also in 7; the fa.. that the domain of f is an object
means that Hy dz A(x, y,z) is consistent with 7,5, hence also with 7). But
dy 6(x, y) is an atom of .7, so the implication in (17) can be turned into an
equivalence. Since a satisfies Jy 8(x, y) in .#, it also satisfies y Az A(x, y,z) and
therefore lies in the range of the projection obtained by applying F to the morphism
(16) in R. Thus, F(R) is epimorphic and F is J__-continuous. [

This theorem implies that sti <gly atomic models of ./’ are automatically
generic.

We conclude this paper with a discussion of the possibilities for equalities and
strict inclusions in the chain

of Theorem 5.

If .7, or equivalently .7;, has a model companion .7 *, or .7, then the existen-
tially closed models of .7, the finitely generic models of .7, and the models of .7 *
are all the same in .%; see [7]. In this situation, the topologies Jr and Jy are the
same; in other words all existentially closed models are generic in arbitrary topoi,
not just .¥. To prove this, it suffices to check that each sieve |a(x)V —a(x)| on
{x| true} is in Jg, for these sieves generate Jg. In every model (in .¥) of .7, every
a satisfies Hy ¢(a, y) for some condition ¢(x, y) forcing a(x)V —a(x), by genericity.
A compactness argument shows that there are finitely many such ¢’s, say
&1, ...,0,, such that .7 Vx V", dy; ¢;(x, y;). It follows that no morphism into
{x|true} is incompatible with all n of the simple morphisms

Jit{x pi I @i(x, yi)} — {x l true}.

Thus, the intersection of the sieves +f;, which is in Jg, consists entirely of
morphisms that factor through an f; and therefore lie in |a(x)V —a(x)|. Thus,
la(x)Vv —a(x)| is also in JE.
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Of the eight possible patterns of equalities and strict inclusions in Jp C JgC
Jr € J--, the four that have Jg =Jg all occur, with theories that have model com-
panions. The simplest case, Jp=Jg=Jg=J.. occurs only in trivial situations, for
this chain of equalities means that the classifying topos of the universal theory 7,
is Boolean, and it was shown in [2] that 7; must then be the theory of a finite
collection of finite models no one of which admits a homomorphism to another. We
leave it to the reader to derive this description of .7; directly from the assumption
that every model of .7 is a strongly atomic model of 7.

Pure equality theory and the theory of linear order, with a constant symbol added
to conform to our convention, provide examples of JDgJE=JR=Jﬁ. More
generally, so does any universal theory that is not model complete but has an
Ko-categorical model companion; see [2].

If we add infinitely many constant symbols to pure equality theory, and if we add
axioms saying that the constants are all distinct, the resulting theory is model com-
plete and has Jp=Jg = ]Rg.lﬁ. Here the only (strongly) atomic model is the one
where every element is denoted by a constant symbol. The same situation occurs,
in a finite language, for the theory of (Z,0, S, P) where S and P are the successor
and predecessor functions.

The situation JpC Jg =JgCJ.- occurs for most interesting companionable
theories. For exampie, let ./ be the theory of fields; then .7* is the theory of
algebraically -losed fields, and the points of (%, J-.) are the algebraic closures of
prime fields. Similarly, if ./ is the theory of abelian groups, then .7 * is the theory
of divisible groups with infinitely many elements of each finite order, and the points
of (7, J--) are those models of .7 * that are torsion groups. Perhaps the simplest
example of this sort is the theory of one unary function and one constant, with no
nonlogical axioms. /* is then given by axioms asserting about the function that
every element has infinitely many pre-images and there are infinitely many cycles
of every finite size. The points of (v, J..) are the models of ./ * in which every
element satisfies f"(x) =f"(x) for some distinct m and n.

To get examples with JeCJR, it is necessary to have JpG Jg as well, because if
all models of ./; were existentially closed then .7; would be model complete, i.c.,
it would serve as its own model companion, and we would have Jg=Jg. The
standard examples, as in [7], of theories without model companions, such as the
theory of groups, all have JpGJeCJRC J-~. The last of these proper inclusions
can, in the examples we have in mind, be deduced as follows from our,results
together with a result of Macintyre [11] asserting the existence of 2¥) non-
isomorphic countable generic models under fairly general conditions. If Ji=J__,
then, by Theorems 3 and 6, every generic model is a strongly atomic model of /.
It follows that the complete theory of any generic model is finitely axiomatized over

', s0, if / is countable, there are only countably many such complete theories.
It also follows from atomicity that any two countable generic models having the
same complete theory are isomorphic. Thus, the existence of uncountably many
non-isomorphic generic models implies Jy #J... We leave it as an open problem
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to find a universal theory (preferably a naturally occurring one) with IpCJIEG
J R= J_.-. .

More generally, it seems reasonable to look for a useful model-theoretic descrip-
tion of the theories for which Jg=J-.., i.e., for which the finitely generic models
are classified by a Boolean topos. (The equivalence of these two conditions follows
from Lemma 1.2 of [2].) If, as before, we use the notation ¥ for the universal model
of Ty in ¥*° and G for its underlying object, then Jg is the topology forcing,
in the sense of [15], all subobjects of G" that are definable by Robinson formulas
to be complemented, while J__, forces all subobjects in .7 to be complemented.
Thus, we want to describe situations where every subobject is so closely related to
definable subobjects of G" that the property of complementation can be
transferred from the latter to the former. We have already remarked that such a
situation occurs when .7 has an X,-categorical model-companion. It can also be
made to occur by so enriching the language that everything in .#"* becomes
definable; the forcing languages (or Boolean-valued universes) used in set-theoretic
forcing are an example of this phenomenon. For less rich languages, in particular
for most countable theories, the topos of J-_-sheaves will have no points (set-
theoretically generic objects, over the universe, do not really exist except in
degenerate situations) while the topos of Jg-sheaves will have points (model-
theoretically generic structures do really exist). From this point of view, set-theoretic
forcing over countable standard models of set theory (rather than over the universe)
is more similar to model-theoretic forcing, i.e., to Jg, than to J- . An exposition
emphasizing this similarity is given in [10].

References

il] K.J. Barwise and A. Robinson, Completing theories by forcing, Ann. Math. Logic 2 (1970)
119-142.
[2] A. Blass and A. S€edrov, Boolean classifying topoi, J. Pure Appl. Algebra 28 (1983) 15-35.
{3] A. Boileau and A. Joyal, La logique des topos, J. Symbolic Logic 46 (1981) 6-16.
[4] C.C. Chang and H.J. Keisler, Model Theory (North-Holland, Amsterdam, 1973).
[5] R. Diaconescu, Change of base for toposes with generators, J. Pure Appl. Algebra 6 (1975)
191-218.
[6] A. Grothendieck and J.L. Verdier, Séminaire de Géométrie Algébrique IV, Tome 1, Lecture Notes
in Mathematics 269 (Springer, Berlin-New York, 1972).
[7] J. Hirschfeld and W. Wheeler, Forcing, Arithmetic, and Division Ring., tectur: Notes in
Mathematics 454 (Springer, Berlin-New York, 1975).
[8] P. Johastone, Topos Theory (Academic Press, New York, 1977).
[9] A. Joyal and G. Reyes, Forcing and generic models in categorical logic, preprint (1978).
[10] H.J. Keisler, Forcing and the omitting types theorem, in: M. Morley, Ed., Studies in Model Theory,
MAA Studies in Mathematics, Vol. 8 (1973) 96-133.
[11] A. Macintyre, Omitting quantifier-free types in generic structures, J. Symbolic Logic 37 (1972)
512-520.
[12] S. MacLane, Categories for the Working Mathematician (Springer, Berlin-New York, 1971).



140 A. Blass, A. S&edrov

[13] M. Makkai and G. Reyes, First Order Categorical Logic, Lecture Notes in Mathematics 611,
(Springer, Berlin-New York, 1977).

{14] A. SZedrov, Sheaves and forcing and their metamathematical applications, Thesis, SUNY at Buf-
falo (1981); to appear in Memoirs Amer. Math. Soc.

[15] M. Tierney, Forcing topologies and classifying topoi, in: A. Heller and M. Tierney, Eds., Algebra,
Topology, and Category Theory: a collection of papers in honor of Samuel Eilenberg (Academic
Press, New York, 1976) 189-210.



