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We show that Robinson’s finite forcing, for a theory +rT, is a universal construction in the sense 

of categorical algebra: it is the satisfaction relation for the universal model in the classifying topos 

6 of a certain universal Horn theory defined from .K Assuming, without loss of generality, that 

.I- is axiomatized by universal sentences, we construct, as sheaf subtopoi of 6, the classifying 

topoi for (i.e., universal examples of) finitely generic models, existentially closed models, and 

arbitrary models of .I- (with complemented primitive predicates). 
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Our purpose in this paper is to investigate the connection between the concepts 
of finite forcing in model theory [ 1,7] and classifying topoi in category theory 
[8,13,15,14]. After a preliminary section on the classifying topoi of universal Morn 
theories, we establish in Section 2 that the forcing relation for, a theory .T is essen- 
tially the same as the satisfaction relation for the universal model in the classifying 
topos of a related universal Horn theory .Y’&~. In Sections 3 and 4 we give explicit 
constructions of the classifying topoi for the finitely generic models and the 
existentially closed models of a universal theory 5 We also discuss the relationship 
of these topoi to each other, to the classifying topos of (a theory classically equi- 
valent to) Y, and to their common subtopos of double-negation sheaves. 

For notation and background information in model theory and category theory, 
we refer to [4] and [12,8] respectively, but we briefly review some o,f the topos- 
theoretic concepts that we shall need. We use the word ‘topos’ to mean Grothen- 
dieck topos [6,8,13], i.e., the category of sheaves on a site (%, J) where ‘f; is a small 
category and J is a Grothendieck topology on it. A geometric morphism f : L --+ 7 
consists of two functors, f* : 6 -+ .F and its left adjoint f * : .;(- --+ to such that the ‘in- 
verse’ part f * is left exact. A natuli.. 1Irqt t,ransformation f -+g is defined to be a natural 

transformation f * --x5* (or equivalently, by adjointness, g*--+_&). The internal logic 
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of topoi [3,8 $5.41 permits us to define the notion of a model, in a topos 8, of a 
first order theory ..d (possibly involving infinite conjunctions and disjunctions); all 
the axioms and rules of intuitionistic predicate logic are sound for such models. 
Geometric morphisms do not generally preserve the semantics of models, but the 
inverse parts f* do preserve the truth values of existential positive formulas, also 
called coherent or geometric formulas (in finitary logic; infinite disjunctions are 
also permissible but infinite conjunctions are not). It follows that, if .Q is a 
geometric theory, that is, one axiomatized by sentences Vx(@(x)-,ly(x)) where @ and 
ry are existential positive formulas, then f * sends models of ,T to models of Y. 

A classifying topos for a geometric theory 3 is a topos R(Y) such that, for any 
topos ,4, the category of models of .? in f; (and homomorphisms) is equivalent, 
naturally in c$, to the category of geometric morphisms r$+cT(.P) (and natural 
transformations). Thus I’ (:T) contains a model c 4 of Y with the universal property 
that any model of .- in any topos 8 is (isomorphic to) f*.// for a unique (up to 
natural isomorphism) geometric morphism f: (4 + Cc‘(Y). This I 4 is usually called the 
generic model of .& but we shall call it the universal model of .F to avoid conflict 
with the terminology ‘generic’ in forcing theory. (Fortunately, we shall not need the 
model-theoretic concept of universal model.) Every geometric theory has a 
classifying topos [ 15,s $6.5,7.4], and conversely, if we allow our geometric theories 
to be infinitary and multi-sorted, then every topos classifies some such theory. In 
particular, Diaconescu’s theorem [5,8 s4.31 asserts that the topos of presheaves on 
a small category ’ classifies flat functors on ‘6. (The definition of flatness is in 
Section 1.) More generally, the topos of sheaves on a site (x; J) classifies flat 
functors that are continuous in the sense that the covering families of J are sent to 
epimorphic families. 

In Section 1, we shall construct the classifying topos of a universal Horn theory 
as a topos of presheaves over a certain syntactically defined category H whose dual 
is the category of finitely presented models of the theory. In Section 2, we describe 
the satisfaction relation for the universal model of such a theory in terms of a 
concept of pseudo-forcing that essentially agrees with Robinson’s concept of finite 
forcing [ 1,7] except that no negations are allowed in the forcing conditions. We then 
construct for any universal theory .I‘, a universal Horn theory .i;dVH such that 
pseudo-forcing for /&tf is essentially the same as finite forcing for ./: Thus, finite 
forcing for f is identified with satisfaction in the universal model of ,Y&H. In 
Section 3, we define (finitely) generic models of ./‘ in arbitrary topoi, we prove the 
‘forcing equals truth’ lemma for these models, and we construct the classifying 
topos for generic /--models as the topos of sheaves on a certain (‘6, JR), where K’ 
is the syntactic category associated to ,I;,~~,. Finally. in Section 4, we relate the 
topology JR to other topologies Jo and JE on K whose sheaf topoi classify the 
models and the existentially closed models of (a geometric theory classically equi- 
vaicnt to) /~. We also discuss the double-negation topology on K’. 

Ioyiti and Rryes ]9] have discussed, from the point of view of categorical logic, 
~OIUC ot‘ the same concepts treated here. In particular, they define existentially 
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closed models and generic models - but not forcing - in this context. They do not, 
however, relate these definitions to the traditional ones in model theory. In fact, 
their ‘generic’ corresponds to what we call ‘pseudo-generic’ rather than to ordinary 
‘finitely generic’; thus; for example, their definition, applied to the theory of 
groups, yields that the only generic group is the trivial one (see the end of Section 
3). Nevertheless, it seems likely that their definition of ‘generic’ was motivated by 
something resembling our Theorem 2, perhaps in the context of pretopoi (the 
theories themselves, in categorical logic) rather than classifying topoi. 

As a final introductory point, we mention some matters of notation. We 
systematically use boldface letters, like X, to abbreviate finite sequences (also called 
lists or tuples) x1, . . . , x, whose length n is usually not specified; we tacitly assume, 
of course, that the lengths of various sequences agree whenever the context requires 
this, e.g., when one sequence is to be substituted for another. If x is as above and 
we refer to a formula #(x) or a term t(x), we intend that all free variables of 
# or I are among X, but we not require all (or even any) of x to actually occur 
in # or t. We write I?x@(x) for Vxi 0.. I?& e(x), and we write x=)-’ for 
(x’! =y )A l . . A@, =yn). We do not distinguish between formulas or terms that 
differ only by a renaming of bound variables, subject to the usual conventions For 
avoidi!rg clashes. 

1. The classifying topos of a universal Horn theory 

A universal Horn theory is a theory JY’ axiomatized by sentences of the form 
I?@-+ w) where @ is a conjunction of atomic formulas (possibly the empty conjunc- 
tion, true) and w is either an atomic formula or false. These are precisely the 
theories whose classes of models are closed under substructures and under direct 
products of one or more factors [4 $6.21; we shall need only the easy half of this 
result, uamely that universal Horn theories have these preservation properties. If we 
had not permitted false to occur as w in an axiom, then the class of models would 
have been closed under arbitrary products, even the empty product (a one element 
structure in which all primitive predicates hold of the unique tuple). This change 
would simplify much of this section but would exclude the intended applications in 
the next section. The preservation properties of universal Horn theories imply the 
following lemma, in which the hypothesis !hat the language of .I- has a constant 
symbol is used only to avoid the need to consider empty structures; this hypothesis 
is not essential here but it will be important in some of our later results. 

Lemma 1. Let .V be a universal Horn theory in a language with at least one constant 
symbol. Let e(x), a&, y), . . . , a,(x, y), with n > 1, be conjunctions of atomic 
formulas. If 
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is provable in .#, then so is 

Vx(@(x) + ai (x9 tW 

for some i and some terms t(x) with only x free. 

(2) 

Proof. Suppose not. For each i and each list of appropriate terms t, let &i,t be a 
model of .JY in which (2) is false. Choose witnesses ai,,E ctii,r attesting to the failure 

of (2), so 

.Y’i,r~=(a;,,)Alari(a,,,t(a,,)). (3) 

Let .:i be the direct product of all of the .~‘i,~, and let a be the elements of .ol whose 

(i, t)-components are the elements aLr of c-J’i,,t. Let .IB be the substructure of & 

generated by the elements II. Then .b is a model of J? because X’ is a universal Horn 

theory, and it satisfies @(a) because @ is a conjunction of atomic formulas and (3) 

holds. Thkerefore, by (l), there exists an i such that 2 F=I& oi(a, y). By definition 

of .ti, this means that there are terms t(x) such that .D I=CX&Z, t(a)). Since Qi is a con- 

junction of atomic formulas, it is preserved by the embedding ,$&.d and the pro- 
jection .:Y -+.:/j,/i.l, so we have .di,f cuCTi(ai,r, t(ai,,)), contradicting (3). q 

We are now ready to construct the classifying topos for a universal Horn theory. 

The construction, as a presheaf topos, is a straightforward generalization of the cor- 

responding construction for algebraic theories outlined in [13 $9.41; it also has con- 

nections, which we shall explore later, with the construction, presented in [8 $7.41, 

of the classifying topos for a geometric theory, i.e., one axiomatized by sentences 

bk(@~(x)+w(x)) where @ and I,Y are existential positive formulas. Of course, since 

universal Horn theories are geometric, the latter construction could be applied 

directly, but our construction is considerably simpler; in particular, we need only 

presheaves, not sheaves. 

Let .I be a universal Horn theory in a language with at least one constant symbol. 

We define a category %, a simplified version of the syntactic category in [8 $7.41, 

as follows. An object of % is formal class term (x 1 #(x)1, where x is a list of 

variables and @J(X) is a conjunction of atomic formulas, with free variables among 

x, such that Q(X) is consistent with .w: The variables x are, of course, considered 

bound in {x / o(x)), so this class term is unchanged by any proper substitution of 

other variables for x. To define morphisms from {x 1 G(x)) to ( y 1 IJI( JJ)}, we assume, 

by making a substitution if necessary, that the lists x and y are disjoint. A morphism 

is then given by a system of equations, J= t(x), expressing each of the variables in 

_r’ as a term involving only free variables from x, such that 

w t- tM#(x) -+ V@(x))); 

another such system, y= t’(x), defines the same morphism if 

x I- Vx(q?(x)+t(x) = t’(x‘l). 
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Composition is defined by substitution: 

k = UC Yll O [Y = to1 = [z = m(x))]; 

it is easily verified that V is a category. 
It will be useful to single out a class of morphisms of %‘, which seem to be quite 

special but are in fact, as we shall see, fairly representative of morphisms in general. 
Suppose (x, y 1 @(x, y)} and { y 1 w(y)} are objects of %’ such that 

Then there is a morphism between these objects given, after the bound variables are 
renamed so as to be distinct, by 

iY'=Yl : ix, Y 1 @(x, YJP{Y'( W(Y'))* 

We call this the simple morphism from {x, y I @(x, y)} to { y I w(y)} ; this involves a 
harmless abuse of language in that we are using the specific choice of bound 
variables (the y used in both objects) to indicate which simple morphism is meant. 
The following lemma shows that, in a certain sense, every morphism is equivalent 
to a simple one. 

Lemma 2. Every morphism A--+B of %’ can be factored as A+A’+B where A-+A’ 
is an isomorphism and A’ --+ B is simple. 

Proof. Let the given morphism be [ y = t(x)] : {x 1 e(x)} -+ { y 1 w(y)} . The factoriza- 
tion is given by 

and the simple morphism 

The first of these is an isomorphism with (simple) inverse [x=x’]. We leave the 
verification of the details to the reader. Cl 

The syntactic objects and morphisms of ‘6’ have a natural semantic interpretation 
as presentations of models of Y and homomorphisms between them. Specificaily, 
an object {x 1 @(x)} determines a model (x I e(x)) of X, generated by the (formal 
symbols) x subject to the relations e(x). The elements of (x I e(x)) are equivalence 
classes of terms t(x) modulo the equivalence relation 

Go-- Vx(@(x)+ t(x) = t’(X))* 

Function symbols are interpreted in (x / G(x)) in the obvious way, and relation 
symbols R are interpreted to hold of (the equivalence classes of) t(x) if and only if 

.tiy’t- Vx(@(x)-+R(t(x))). 
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It is easy to check that (xl@(x)) is well defined, that it is generated by (the 

equivalence classes of) x, and that a conjunction of atomic formulas holds of certain 

elements in (x ( @(x)) if and only if its holding is deducible in 9 from e(x), It follows 

that (x 1 @(A-)) is a model of X and its homomorphisms f into arbitrary models d 
of .x are in canonical one-to-one correspondence with lists a of elements satisfying 
@(P) in .Y’, the correspondence being that a is the image of x under J In other words, 

(X / t)(x)) is freely generated by x subject to 4(x). 

Any morphism I 

Iv=~(~)l:~~I~(~))-,{YIw(Y)J 

in 3’ defines a homomorphism 

of Y-models, namely the homomorphism sending (the equivalence class of) u(y) to 

(thet of) u(t(x)). It is an easy consequence of the definitions that ( > is a fully 

faithful contravariant functor from % to the category of models of .vl; its image con- 

sists of the fini,ely presented models of .w. Thus, % is the dual of the category of 

finitely presented models of 1~. 

In showing that ./” ‘I’) classifies models of .w; we shall want to know that % has 

finite limits. Unfortunately, it might not. In the first place, %’ would not have a 

terminal object, or any object at all, if .r/ were inconsistent. We leave this trivial case 

10 the reader and assume .Y is consistent. Then I: has a terminal object { 1 me}. (We 

never assumed that the list of variables x in an object {x 1 @(x)} is nonempty.) 

Pullbacks and even products do not exist in general. Indeed, if e(x) and t&y), with 

disjoint sets of variables x and y, are individually consistent but not jointly consis- 

tent in x, then (x j e(x)} and {y 1 w(yj} are objects with no product, since no object 

admits morphisms to both of them. For pullbacks in general, the situation is this. 
A pair of morphisms 

(4) 

ha< a pullback if and only if it can be completed to a commutative square, if and 

only if @@)A ant = u( y) is consistent with .H’ when x and y are disjoint lists. 

In thi; case, the pullback is giLen by the object {x,yl @(x)r\~y(y)~t(x)=u(y)) with 

simple morphisms to {x 1 Q(x)) and { y 1 t,u( y)}. Notice in particular that the pullback 
enever the two morphisms in (4) are the same; thus the usual characteriza- 

lion of ~~~~~o~p~~srns in terms of pullbacks works in Y. 

e~~em 1. I ” “: ’ & rhe riakj_Yving ropes for the universal Horn theory .w. 
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Proof. By Diaconescu’s theorem [5, 8 $4.31, geometric morphisms from any 
Grothendieck topos 9 to Y(“‘) correspond to flat internal functors on v in Y. 
We must prove that these functors sorrespond (functorially and naturally) to models 
of 2 in 9. For simplicity, we shall prove this under the assumption that Y= 9, but 
our argument can be made to apply to arbitrary 9 by interpreting suitable parts of 
it in the internal logic of K 

Consider an arbitrary flat functor F on %‘. Flatness means that 
(a) given finitely many (possibly zero) objects Ai of V and elements ai E F(Ai), 

we have an object B, morphisms ai : B +Ai, and an element b E F(B) such that 
F(Cri)(b) = ai for all i, and 

(b) given aE F(A) and finitely many morphisms ai : A +4’ such that all of the 
F(a,-)(a) are equal, we have a morphism p: B -+A such that all of the composites 
ai OP : B+A’ are equal and a is in the image of F(p). 

An easy consequence of (a) and (b) is that 
(c) given finitely many morphisms ai : Ai +A’ and elements ai E F(Ai) such that 

all of the F(ai)(ai) are equal, we have an object B, morphisms pi : B +Aj, and an 
element b E F(B) such that all of the composites ai opi are equal and F(pi)(b) = aj 
for all i. 

Another well-known and fairly easy consequence of flatness is that F preserves 
finite limits. Using these facts, we can construct a model . tf from a flat functor F 
on %’ as follo*ws: 

The universe M of , d’ is F{x 1 true}. It follows, by preservation of finite limits, 
that M’% F{ y 1 true}, where y is a list of E variables. The . H-interpretation of an 
n-ary function symbol f is F[x=f( y)] : F{ y 1 true} -+F{x 1 true}. The interpretation 
of an n-ary relation symbol R is the subobject F{ y 1 R(~)}GF{ y ( true) obtained by 
applying F to the trivial morphism (easily seen to be a monomorphism), provided 
R(y) is consistent with .fl so that { Jo 1 R(y)} ’ 1s an object of 6;‘. If R(y) is inconsistent 
with .,V then we interpret R in ..// as the empty relation. 

It is easy to verify, by induction on terms, that the interpretation in .,K of a term 
t(x) is 

F[ y = t(x)] : W = F{ x I true) -+ F{ y I true) = M 

where n is the number of variables in the list X. We shall show thilt, if e(x) is a con- 
junction of atomic formulas, then its extension in c c/, {a EM” ) c 4 I= @(a)} is the 
subobject of AP = F{x [ true} obtained by applying F to the simple morphism 
{x 1 q&r)} -+ {x I true} if this morphism exists, i.e., if G(X) is consistent with <,v, and 
this extension is empty if G(X) is inconsistent with .K To prove this, suppose first 
that G(x) is consistent with #I and let it be the conjunction of n atomic formulas 
Ri(tj(X)). Then it follows, from our description of pullbacks in E’, that {X I G(X)} is 
the limit of the diagram consisting of the n objects {x I R,(X))} tcrgether with their 
simple morphisms to {x I true} ; it also follows that each of these simple morphisms 
is the pullback along [yj = tj(X)] : (X 1 true] + (J; ] true!: of a si pie morphism 

(Yi ) Ri(Yi>! +IYi I true). The latter simple morphisms define, via F, the interpreta- 
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tions in A? of the Rj, so, since F preserves finite limits, it sends the former' simple 

morphisms to the extensions of the formulas Rj(tj(X)), and therefore sends 
{x / G(X)} to the extension of e(x), as claimed. There remains the case that g(x) is 
inconsistent with 2: In this case, some of the limits in the preceding argument fail 
to exist; suppose, for concreteness, that all the {x 1 Rj(ti(X))} exist but {xl #(x)} 
does not, i.e., each Rj(ti(X)) is consistent with #but their conjunction is not. (The 
other cases are (i) that some Ri(tj(X)) is inconsistent with .ri’ but Ri( yi) is consistent 
and (ii) that some Rj(Jpi) is inconsistent with JV’. Case (i) is similar to the case to be 
treated in detail, and case (ii) is trivial since Rj is interpreted as the empty relation 
in 1/.) Suppose, toward a contradiction, that a are elements satisfying # in . //. Then, 
for each i, a is in the extension of Ri(ti(x)), which we already know to be the 
subobject 

where cy, is a simple morphism; let a,! be such that F(cr;ba,f =a. By the flatness of F, 
specifically by (c) above, we can find an objet, ( JY 1 v(y)}, morphisms 

Pi = ix=Ui(J’)l : {Y) W(Y)I-+{XI Ri(tj(x))), 

and an element h of F{ y I w(y)} such that all the composites CY; 0 pi are equal and 
F( b,)(h) = a,' for every i. The equality of the composites means that, for all i and j, 

w t-- vYw+-+u,(J’) =q(y)), 

and the definition of morphism in f yields 

w t- F:,T w( -19 -+ R, (t, 0~; ( ~9))) l 

Combining these results, we have, for each i, 

But this is absurd, since t,~ is consistent and @ is not. This contradiction completes 
the proof of our description of {a E M" I . // E@(a)). 

Consider an arbitrary axiom of ,w; say b’x(#(x)--+ w(x)). If w(x) is false, then e(x) 
is inconsistent with 1 Y, and the result just obtained shows that the axiom is true in 
/I. On the other hand, ii’ w is atomic, then we can apply the result just obtained 

to twt h Cr, and ~1. In view ot’ the commutative diagram of simple morphisms 

{x 1 am) - -- --- 1 I x me), 

‘\ 
{x / v/(x,) /” 

,// 

we have that the extension of @ is included in that of w, so again the axiom holds. 
‘Therefore ii’ is a model of .w.. 

Conversely, given any model // of yl, we can define a flat functor F on 6 by 
taking F{s 1 G(x)) to bc !hc e.\itension in // of G(x) and taking 

F( _I’ = t(x)] : f--(x j @I(X)} -+ F{ _I' j w( ~9) 
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to be the map that sends any Q satisfying @ to t(u) (which satisfies I// by definition 
of morphisms). It is easy to check that F is a functor. It is flat because (a) if we 
are given Ui EF(Xi 1 @j&j)] for i= 1,2 , . . . ,n, then they are all images, under F of 
simple morphisms, of the concatenated sequence ut, ~2, . . . ,a, in 

where we have taken the sequences of bound variables xi to be disjoint, and (b) if 
we are given u~F(x 1 e(x)} and finitely many morphisms ai = [ y= ti!x)l : (x ( e(x)}+ 
( y 1 u/(y)] such that all the F(ai)(a) are equal, then u satisfies ti = fi for each pair 
i, j and therefore lies in the image of F of the simple morphism 

8: I rl@wp~=$4x) -{-+Nx)l 1 
whose composites with all the ai are equal. (Note that, in 
of flatness, the properties of the given elements guarantee 
of the formula that defines the required object.) 

each part of this proof 
the consistency with .w’ 

We leave to the reader the straightforward verifications that the constructions of 
. # from F and vice versa are functorial and that they are inverse to each other up 
to natural isomorphism. These verifications complete the proof of Theorem 1. 0 

Since universal Morn theories are a special sort of geometric theories, their classi- 
fying topoi can also be obtained by the general construction of Joyal and Reyes 
presented in $7.4 of [8]. It seems worthwhile to compare this construction with 
.‘j”‘*‘); the comparison will yield a second, less direct, proof of Theorem 1. 

The site (K~, JR) used in the Joyal-Reyes construction has as objects class terms 
{x) e(x)} where @ is an existential positive formula (not necessarily consistent with 
.x). Its morphisms from {xl G(X)> to (ul v(y)} are given by [x-y 16(x, y)] where 
8 is an existential positive formula such that the sentences saying “6 defines a single- 
valued function from {x I @(x)} to ( y 1 w(y)}” are provable in .K Two 19’s define the 
same morphism if they are .%provably equivalent. (For details, see 181.) A sieve 
covers ( y i w(y)] if and only if it contains finitely many morphisms 

tx,-Yleifxi,Y)l:(x,I#ifxi)j’(YlIv(Y)) 

such that 

.w t- vY(W(Y)’ V JXi~i(Xiv VI)* 

(In particular, the empty sieve covers {y 1 v(y)} if and only if w(y) is inconsistent 
with .r/‘.) 

There is a functor from %’ to ‘tg, sending each object (X ( @(x>} to itself and 
sending a morphism [y= t(x)I to [XM yl @(x)Ay= t(x)], where (X 1 @(x)) is the 
domain of the morphism. The definitions of equality of morphisms in ‘6 and ‘dg 
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easily imply that this functor is faitl’iful. In fact, it is also full. TO see this, suppose 

IX- ~7 j eh ~31 : {X I tw) + { Y I W(V)) (9 

is a morphism in ss between objects of ‘t-. This implies that 

.3y’t- VX(Q~(X)+-- e(s jq). 

Since e is existential and positive, it is logically equivalent to a formula of the form 
V,‘_ i 32 0,(x, ~7, g) where each 0; is a conjunction of atomic formulas. (To put 8 in 
this form, first put it in prenex form, then put the matrix in disjunctive normal‘ 
form, and finally distribute existential quantifiers over disjunctions.) Since 
{X j Q(X)) is an object of f , @ is consistent with #‘, so n > 1 and Lemma 1 is 
applicable to 

w t- vx #(AI)-++ 3jme,(~j~,g) 
( 

. 
_ I > 

This lemma provides an index i and terms i(x),u(x) such that 

v I- VX(~(X) -+ 8, (4 tw, U(X))) 

and t hcrcforc 

w k- t/x(~(~pe(x,t(~))). 

Since 8 n-provably defines a function, it easily follows that it defines the same func- 
tion as Q(X) r\y = r(x). Thus, the morphism (5) is the image, under our functor, of 
]J*= t(x)]. Therefore, this functor identifies f with a full subcategory of 8,. 

Every object (x i p(x)) of fX is J,-covered by morphisms whose domains are in 
I. Indeed, transforming @ to the form V, Yy &(x, y) where the & are conjunctions 

of atomic formulas (as we did with 0 in the preceding paragraph), we see that 
(x ; Q(X)} is covered by simple morphisms from the objects {x, y 1 &(x, y)} of Y;. 

what we have shown about the connection between sd’ and %g implies, by the 
comparison lemma [6, III.4.1], that the topos of sheaves on (v,,, J,), the 
Jo>Val-Reyes version of the classifying topos of X, is equivalent to the topos of 
+a~s on ’ with the topology induced by Jg. To complete the identification of 
thik form tvith / ” “‘), we still need to see that this induced topology is trivial, i.e., 
that t’~r! covering 5iei.e contains the identity. 

HOW, thcrr”fort3, that we have an object ( j’ ! t,u( jg)} of /. covered by a sieve R 
!!I rtw induced toplogy. By definition, this means that R contains finitely many 

be empty, so Lemma I gives 
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us an index i and terms u such that 

But then the morphism [y=ti(Xi)J in our covering sieve R, composed with 

[xi = u(y)], yields the identity morphism of {y 1 w(y)}, which is therefore also in R, 
as required. 

The proof of Theorem 1 provides an explicit description of the universal model 
?J of X in Y(‘O’), i.e., the model that corresponds to the identity geometric 
morphism on 3p (“‘) Indeed it is well known [8 54.31 that the flat functor cor- . 

responding to the identity morphism is the Yoneda embedding Y: 7;‘-+ .@‘op). 

Applying the proof of Theorem 1 with Y in place of F, we find that the underlying 
object G of the universal model ‘9 is the presheaf G = Y{x 1 true} whose value at an 
arbitrary object {y 1 e(y)} is 

HomJ{y ~@(~~~~{~~true)). 

But an element [X = t(y)] of this Horn-set is determined by an arbitrary term t(y) 
in the variables y, two terms yielding the same element if and only if 
.WF Vy(@(y)-+ t(y) = t’(y)). Thus, G({ y I e(y)}) is (in canonical one-to-one cor- 
respondence with) the underlying set of the finitely presented .w-model ( y ) #( y)). 
It is easy to verify that this correspondence respects the %model structure. 
Therefore, if we identify ‘c;‘OP with the category of finitely presented &models, then 
14’ E ,y4’ OP) is simply the underlying set functor on %‘Op, equipped with its natural 
%rnodel structure. 

2. Forcing 

Our objective in this section is to relate Robinson’s concept of finite forcing in 
model theory [l, 7, lo] to classifying topoi. Our first step is to introduce ‘pseudo- 
forcing’, a concept that has some of the flavor of Robinson’s forcing but is 
significantly different from it; the usefulness of this concept lies in its direct connec- 
tion with classifying topoi. 

Until further notice, let .# be a universal Horn theory, wish at least one constant 
symbol, and let .Y/‘(’ Op) be its classifying topos as constructed in Section 1. Pseudo- 
forcing is a relation between consistent (finite) conjunctions G(X) of atomic 
formulas, usually called conditions in this context, and formulas Q(X) built from 
atomic forrnulas by means of conjunction, disjunction, negation, and existential 
quantification. Before giving the definition, we point out that the crucial difference 
between pseudo-forcing and (honest) forcing is that negations are not allowed in our 
(pseudo) conditions. Another apparent difference, our use of free variablles in # and 
cy where Robinson used new constants, is only a matter of notation and has no effect 
on the theory. Formulas a(x) of the sort described above will, in accord with the 
terminology of [9], be called Robinson formulas. Although every formula is 
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equivalent, in classical logic, to a Robinson formula, the restriction to such 
formulas is non-vacuous because pseudo-forcing (like forcing) does not respect 
classical logic. 

The definition of the pseudo-forcing relation, G(x) I+ (X(X), is by induction on CX(X). 
fr’ a(x) is atomic, then #(x)tt a(x) if and only if J% V~(@(x)+a(x)). 
If CY is BAY (resp. /h/y) then @tcr if and only if &+/I and (resp. or) @+y. 

If (r is Zy b(y) then #H--U if and only if, for some term t, #t+/?(t). 
If (y is +, then @ + a if and only if there is no ly such that (@A t+~ is consistent 

and) @Arc/+@. 
The list of free variables x in e(x) and a(x), which we have omitted for the sake 

of brevity in most of the clauses, is never of any importance, as long as it contains 
all the free variables of @ and CL Even in the atomic clause, additional (dummy) 
variables added to the list x would make no difference, since the assumption that 
v has a constant symbol precludes any difficulties arising from empty structures. 

We emphasize that the z in the existential quantifier clause and the v in the negation 

clause may well contain free variables other than those in Q) and cr. In this respect, 
our definition agrees with the usual definition of forcing. 

The atomic clause in otir definition of )t differs from the usual one in not requir- 

ing a(x) to occur explicitly as a conjunct in o(x). This difference will be useful when 

we relate pseudo-forcing to classifying topoi. It could be incorporated into the usual 

definition of forcing without any substantial effect on the theory; generic models, 

weak forcing, and forcing companions are all unaffected. It would have the rather 

pleasant consequence that v-provably equivalent conditions force the same 

statements. 

We lca~ it to the reader to check that the usual properties of forcing hold for 

p\cudo-forcing. In particular, if @tt- by and if @A v/ is a condition, then f#~Ai,Ht- CL 

L-Mso, if @t (Y and if a’ results from a by substitution of a closed term for a variable 

not free in @, then Qtt- a’. 
The following theorem is based on the observation that the definition of pseudo- 

forcing closely resembles the Kripke-Joyal sheaf semantics for presheaf topoi. The 

resemblance is not perfect, however, so some work is needed in the proof. In par- 

ticular, an example to be given after the proof shows that the assumption that .W 

h;j\ a constant symbol is necessary. In the theorem, 4 is the universal model of ,# 
I.;_ , ( ’ ,‘; ‘, G is its underlying presheaf, and c is the sheaf satisfaction relation [9, 

it ion will be recalled in the course of the proof). 

‘I htrmm 2. L_ et (* L 1 f x 1 o(x)) be an object of f, and let a be elements of 

Ci(c) : (x f$)(x? $wz h,b- tcyuivalonce classes of) terms t(x). 

rocecd bv induction on a(z). If a(z) is atomic, then :4 ~~.a(a) means, 

at (I( ds in G(C) =(x j @i(x)>. This means, also by definition, 
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that 
Xt- VX(@(x)+a(t(x))). 

And this is just the definition of #(~)t+ac(t(~)). 
The cases of conjunction and disjunction are trivial, since 3 I=~ #DAY (rap. /3vy) 

if and only if 9 t=C /I? and (resp. or) 9 I=~?. (For disjunction, it is important that we 
are working in a presheaf topos so it is not necessary to pass to a covering of c.) 

If (x(z) is gy/I(z, y), then ?I I=~ a(a) if and only if there exists b E G(c) =(x 1 e(x)) 

such that Y I=~ &I, 6). Such a b is given by a term U(X), so, applying the induction 
hypothesis to p, we find that 3 t=C a(a) if and only if there is a term U(X) with only 
x free, such that G(X) ttP(t(~, U(X)). The restriction that all the free variables of u 
be among x can be removed, since any other free variables could be replaced with 
a constant symbol, which we have assumed to exist. But without the restriction on 
the variables of u, the requirement for % t==c Q(O) reduces to @(x)H- c@(x)). 

Finally, suppose a(z) is l/?(z). Then .B E&Z) if and only if there is no 
morphism ;t : c ‘-+c in g’ such that %‘I=~# /&I*(u)). Here ,I* means G(il), so if 
A = [x = u(y)], then A* sends a = [t(x)] to [t(rr( y))]. By Lemma 2, there is no ;oss of 
generality in assuming that 2 is a simple morphism from, say {x, y 1 ~(x, y)} to 
{x 1 e(x)}. Since I&X, y) provably implies G(x), we may, by composing with a 
(simple) isomorphism, replace the domain of A with {x, y [ ~#I(x)M,u(x, y)}. Thus, the 
statement % I=~ a(a) is equivalent to: there is no t,~(x, y) such that ~4’ I=~~ P(a), where 
c’ = {x, y ] e(x) A w(x, y)}, and where A*(a) has been simplified to 4 since A is simple. 
Now the induction hypothesis applied to p gives the further equivalent form: there 
is no I,U(X, y) such that @(x)A ~(x, y) tt-P(t(x)), i.e., g(x) tt a@(x)). This completes the 
proof of Theorem 2. 0 

We give some examples to clarify Theorem 2 and the concept of pseudo-forcing. 

Example 1. Let #’ be pure equality theory; it has no non-logical symbols and no 
non-logical axioms. Although .F is a universal Horn theory, it fails to satisfy our 
requirement that there be at least one constant symbol. We shall see that this failure 
results in Theorem 2 being false for YC To see this, simply observe that the empty 
conjunction, true, pseudo-forces Xx true, since arbitrary terms are allowed in the 
Z-clause of the definition of pseudo-forcing. However, the sentence 3~ true is not 
satisfied (in the sense of sheaf semantics) by 5’ at stage { ( true) = 1 in the classifying 
topos of .w’ (the object classifier), for, if it were, then, being a geometric formula, 
it would also be satisfied by all objects in all topoi, whereas in fact it is not satisfied 
by the empty set. 

The temptation to remedy this defect by requiring, in the definition of 
@+3x P(X), that t have no free variables other than those of @ and Yx P(X) must 
be resisted, since it would prevent us from connecting pseudo-forcing with Robinson 
forcing where no such requirement is imposed. 
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Example 2. Let us modify ihe .W of the preceding example by adding one constant 
symbol * to the language, so that Theorem 2 becomes applicable. Thus, Mis theory 

of pointed sets. We use Theorem 2 to check that the universal pointed set ./i is 

remarkably small: 

,+ t=+?xyx= *). 

It suffices to check that no condition @ pseudo-forces 3x1(x= *). This means that, 

given @ and an arbitrary term 1, we must find an extension @AI+U of @ that forces 
t = *. But @h(t = *) is such a condition; it is consistent because any conjunction of 
atomic formulas is consistent with I. 

The property of w just cited, that every conjunction of atomic formulas is a con- 

dition, holds for any universal Horn theory in whose axioms, ~‘x(@-+I,u), ry is always 
atomic (i.e. never false.) In particular, it holds for any equational theory. Thus, the 

universal algebra of any variety satisfies +x1(x= *) if * is a nullary operation of 
the variety (and it satisfies +x3yl(x=y) in any case). 

Rather than continuing with the theory of pseudo-forcing, by defining pseudo- 

generic models and the classifying topos for such models, we turn to the connection 
between pseudo-forcing and finite Robinson forcing. A comparison of our defini- 

tion ot‘ tt with Robinson’s reveals the following differences: 

(a) Robinson uses new constants where we use free variables; 
(h) Robinson’s conditions are sets of formulas, whereas ours are the conjunctions 

of those sets; 

(c) Robinson’s definition and ours have different clauses t’or the atomic case; 

cd) Robinson’s definition permits negsted atomic formulas to occur in condi- 

tion\, and ours does not. 
Dift‘trenccs (a) and (b) are purely notational. Difference (c) is non-trivial, but, as 

we remarked above, if Robinson’s theory were changed to agree with ours in this 

respect, nothing would be lost. The essential difference bet ween pseudo-forcing and 

forcing is (d). For example, in contrast to Example 2, for the theory considered there 
(or any non-trivial variety with a nullary operation *), no condition forces 

-3u-1(.~= 4, because every condition can be consistently extended by adding 
-(Y= *) where z is a new variable. Despite this crucial difference betfveen forcing 
:~ncf pseudo-for&q, we shall show that the former can be viewed as a special case 
\) t’ f a~ t tr by considering suitable theories. 

Sink ihc forcing relation (in Robinson’s sense) for an arbitrary first-order theory 

dcpcnil~ only on the universal part of 1, we consider only universal theories in 
I i-w follow ing discussion of forcing. 

Henceforth, 1 is a consistent universal theory in a first-order language L that has 

ained from L by adding, for each relation symbol R 
mbol), a new relation symbol fl with the same number 

e theory, in the language Lcly obtained by adding 
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to Y the axioms 

VWW e +W) (6) 

for all relation symbols R of L. Then Yi is a definitional extension of Y, so the two 
theories have essentially the same models; every model of Y’- is the L-reduct of a 
unique model of Yi. The category of models of Fi is, however, quite different 
from the category of models of Y, since a morphism of Fi-models must preserve 

not only the relations R of L but also their negations 8. 
The theory Yi is equivalent, in classical logic, to a geometric theory .Yti to be 

described below. Whenever we deal with interpretations in non-Boolean topoi, it 
will be & not 3$, that is relevant. The axioms of & are obtained as follows. 
First, there are the sentences 

Vx(true-+R(x)vj?(x)), (7) 

Vx(R(x)AJ?(x)-+false), (8) 

for all relation symbols R of L. These axioms are jointly equivalent to (6) in classical 
logic. (Only the implication from (6) to (7) requires classical logic.) Second, each 
axiom of .F is rewritten in prenex foHm with its matrix in conjunctive normal form, 
and the universal quantifiers are distributed over the conjunction to yield an 
equivalent axiom that is a conjunction cf sentences of the form Vxi/,‘!= 1 &(x) 

where each & is an atomic or negated atomic formula. Then each of these con- 
juncts is rewritten as 

Vx 
( 

A -@j(x)-+_false 
> i=l 

(9) 

where -&(x) is p(x) (resp. R(x)) if &(x) is R(x) (resp. 4!(x)). We take all the 
resulting sentences (9) as axioms of ./ ‘-d. In the presence of (7) and (8), these axioms 
(9) are clearly equivalent to the original axioms of .B from which they were derived. 

The notation .Y> was chosen to indicate that (in arbitrary topoi, not necessarily 
Boolean) the models of .Y> are the decidable models of Y, i.e. those models I # such 
that the interpretation of each n-ary relation symbol is a complemented subobject 
of Mn. 

Let ,Y&,,~ be the universal Horn part of ,&; that is, its axioms are all the 
universal Horn sentences provable in .y>. Thus, (8) and (9) are among the axioms 
of *I>~~, but (7) is not. Other axioms of J f&H include sentences that are like (9) ex- 
cept that one of the G,(x) has been left on the right of the implication sign instead 
of being transposed to (a --G;(x) on) the left. These sentences, and similar ones ob- 

I tained from the universal theorems of ./I (instead of 
axiomatization of Y&H, but we shall have no use 
proof. 

only its axioms) constitute an 
for this fact, so we omit its 

le 3. Let .Y be the theory of pointed sets, as in Exampie 2. Then .iC, is the 



126 A. Bfuss, A. %edrov 

theory, with one binary predicate symbol f, axiomatized by 

Vx Vy(true-+x=yVx#y), (10) 

Vx(x f x--+ false). (11) 

The second of these, but not the first, is an axiom of .y>t~~. It is not hard to check 
that />vH is axiomatized by (11) and 

vx Vy(x#y+y#x). 

Thus, 12~~ is simply the theory of (undirected, simple) graphs if we read # as 
“adjacent to”. From this point of view, the models of 3; are just the graphs satis- 
fying (lo), the complete graphs. 

Returning to a general theory .I- as above, observe that, since J&H is, by defini- 
tion, a universal Horn theory, our earlier work is applicable to it. In particular, we 
have a syntactic category /, dual to the category of finitely presented models of 
lriVHr such that . / ( ’ ““) is a classifying topos for .7&H with universal model *S. We 

also have pseudo-forcing related to truth in .G by Theorem 2. But pseudo-forcing 
for &+, is essentially the same as Robinson forcing for .E More precisely, if we 
modify Robinson’s definition of forcing so as to eliminate the differences (a), (b), 
(c) listed above, and if we rewrite forcing conditions by putting J7 in place of 1R 
whenever a negated atomic formula occurs, then the resulting definition of forcing 
for 1‘ agrees with our definition of pseudo-forcing for J&H. The proof of this is 
a straightforward induction, since the definitions are virtually identical. The only 
non-trivial points to notice are that the formula VX($I(X)--W(X)) occurring in the 
atomic clause is universal Horn and that g(x) pseudo-forces lR(x) because of (8). 
The previously crucial difference (d) between forcing and pseudo-forcing has been 
eliminated by the introduction of the new relation symbols &?, despite the fact that 
g is equivalent to 1R only in .& not in J-&~. 

Ignoring the inessential changes ((a), (b), (c) and the use of R for 1R) in 
Robinson’s definition, we may summarize the preceding discussion combined with 
Theorem 2, as: 

Finiie Jorcing for I- is truth in the universal model of ibrH. 

3. C’lassif?ing topoi for generic models 

We continue the convention that .I- is a consistent universal theory with at least 
one constant, and we let L, L(l, I /;I, /bvrr, r, and x4 be as before. The symbol H- 
will r&r to forcing for I‘, i.e., pseudo-forcing for ./-dVH. 

‘4 model // of /- (in the topos .Y of sets) is generic [ 1,7] if, for every Robinson 
a U(X) of L and every a in M”, where n is the length of X, there is a condition 

ere are elements &, in A4 such that 
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The conditions @(x, y) that force ct(x)V -a(x) are, according to Theorem 2, just the 
ones such that the simple morphism 

{x9 Y I m Y)l --) Ix I tw (12) 

is in the sieve (on IX 1 true} in U) that is the truth value Ifa(x)V v(x)ll in t4 of 
cr(x)v V(X). Since Y is Boolean, a model .,N of Y’ may be viewed as a model of 
&, hence also of Y dVH. The associated flat funCtOr F: %f+ 9’ (in the proof of 
Theorem 1) sends the simple morphism (12) to the projection 

and the requirement for genericity is that these projections be jointly epimorphic. 
Lemma 2 allows us to ignore any non-simple morphisms in the sieve IIa(x)v x$r)il, 
SO we conclude that a generic model of .F is one whose associated flat functor sends 
/a(x)v ill to an epimorphic family, for all Robinson formulas CT(X). This obser- 
vation suggests defining a Grothendieck topology on Y;’ such that this criterion for 
genericity becomes simply the continuity of F. 

Definition. The Robinson topology JR is the smallest Grothendieck topology on 16’ 
such that, for every object {x ( e(x)} of V and every Robinson formula a(~) with free 
variables among x, the sieve II a(x) v la(x) II on {x ( @(x)} belongs to JR. 

Several equivalent descriptions of JR will be useful. First, notice that the defini- 
tion would be unchanged if we replaced all three occurrences of ‘cy(x)’ with ‘c@(x))’ 
where t ranges over all terms. This is simply because &t(x)) is another Robinson for- 
mula p(x). Since every element of (xl G(X)) = G({x) e(x)} is of the form t(x) for 
some term t, we see that JR can also be described as the smallest topology which, 
for each object c of %;‘+ each Robinson formula a(x), and each a E G(c), contains the 
sieve Ilcr(a)v -cr(a)II on c. In this form, the definition makes it clear that the given 
generating family for JR is closed under pullbacks (of sieves). It also shows that the 
corresponding Lawvere-Tierney topology j, in Y (Co*) is the smallest one that makes 
the interpretation in Y of every Robinson formula in n variables a complemented 
subobject of Gn. 

Another reformulation of the de finition of JR is obtained by replacing both oc- 
currences of ‘G(x)’ with ‘true’. The reason this change does not affect the toplogy 

is that each sieve that is required to be in JR by the originai definition is the 
pullback, along a simple morphism {x 1 @(A-)} -+ {x 1 true), of one that is required to 
be in JR by the new definition. The new definition gives a slightly simpler 
genei-dting family for J R, and it connects more directly with our previous discus- 
sion of genericity, but the new generating family turns out to be less useful because 
it is not closed under pullbacks. 

To study continuous flat functors on %, we shall need the following lemma from 
the topos-theoretic folklore, which appears not to be published. To simplify its 
statement, we list for reference the axioms for a Grothendieck topology J. 
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(a) For every object c, the maximal sieve, consisting of all morphisms into c, is 
in J. 

(b) If J contains a sieve R on c and if f: c ‘--Y is any morphism, then J also con- 

tains the pullback f *R of R along f, which corC. ts of all morphisms into c’ whose 
composite with f belongs to R. 

(c) R and S are sieves on c, if R E J, and if f *S E J for all f e R, then SE J. 

Lemma 3. Let K be a family of sieves in a category %G’, and assume that K is closed 
-der pullbacks. Then the Grothendieck topology J generated by K is the smallest 

family of sieves in 6 that includes K and satisfies (a) and (c) above. A fiat functor 
from t to a topos (! is continuous for 9 if and only if it sends every sieve in K to 
an epimorphic family in 6. 

Praof. To establish the firt;t assertion, let J’ be the smallest family that includes K 
and satisfies (a) and (c). Smce J is the smallest family with these properties plus (b), 
all we need to show is that (b) holds for J’. We let J” consist of those sieves all of 
whose pullbacks are in J’, and we prove that J’c J” by showing that J’ has all the 
properties in the definition of J’. J” includes K because J’ does and K is closed under 
pullback. J” satisfies (a) because J’ does and pullbacks of maximal sieves are 
maximal. To show that 3” satisfies (c), let R and S be sieves on an object c, and 
assume that R E J” and f *S E J” for all f~ R. We must show that SE J”, so we con- 
sider an arbitrary g : c’ -+c’ and show that g*SE J’. Both g*R and g*S are sieves on 
c” and the former is in J’ because R E J”. So to show g*S E J’ it suffices, since J’ 
satisfies (c), to show h*g*SE J’ for every heg*R. But Hager means that ghe R. 
By our assumption about S, (gh)*S= h*g*S is in J” and therefore in J’, as required. 

The second assertion will follow from the first if we show that, for any flat 
functor F: f -+ f(, the family JF of sieves sent to epimorphic families satisfies (a) 
ancl (c); then if h’ C_ JI. we can infer J c JP as required. Part (a) is obvious since F 
preserves identity morphisms. For part (c), assume R, S are sieves on c, R E JF, 
CASE JF. for all f E R. To show that the family F(S) of morphisms into F(c) is 
epirnorphic, suppose p and q are two morphisms F(c)--+X such that pi F(h)= 
y F(h) for every h ES. We must show that p =q, and for this it suffices to show 

p F(J) = y F(_f) for all JE R, since F(R) is epimorphic. For a fixed J’E: R, to show 

/7 f-(-f‘) = y F(f), it suffices to show p c’ F(f) c) F(g) = q 2 F(f) (1 F(g) for all 

.c! E.!‘*S, since F(f*S) is epimorphic. But gifts means f CJgE S, so we have 

/J [I f‘ g) = y kI f~ g) by hypothesis, and we are done because F is a functor. . j 

W apply this lemma to describe the continuous functors from the site ( i, JR) to 

a topos tL. A flat funstor F: /: -+ is given, according to Theorem 1, by a model 
// of‘ /tlt,,I1 in ,I. For F to be continuous, it is, according to the lemma, necessary 

and $uffiAent that it send each sieve @(x)v w(x)II on any object {xl G(x)} to an 
q~irnorphic t‘timily. By Lemma 2, we may restrict our attention to the simple 
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morphisms in this sieve. These are, up to isomorphism, 

{L Y I 4wn w(x, Y)l -+ ix I 4m 

where @(x)qu(x, y)~-a(x)v w(x). F sends these morphisms to projections 
(a b E M” + k 1 .,R I== @)A ~(a, b)} -+ {a E M” 1 .,I I= q!@)) . Continuity of F requ res 
that, for each @ and CT, the projections so obtained from various w’s constitute an 
epimorphic family. In other words, the following statement must hold in the 
internal logic of (4’: 

(VaeM”) (.//~~(a))-,V(~b~Mk).X~V/(a,6) 
[ w 1 

where the disjunction is over w’s such that @(x)A~J(x, y)~=- a(x) --W(X). It is easy to 
see that this statement will hold for arbitrary @ if it holds when $J is true, SO we 
obtain the following simplification. 

Theorem 3. A mode/. // of &pH in a topos 6 corresponds to a continuous furrctor 
from (x, JR) to 8 if and only if, in the internal logic of (5, it is true, for each 
Robinson formula a(x), that 

VacMn36EMkV.#mp(a,b), 
W 

wher: the disjunction is over all conditions I,U(X, y) forcing a(x)v -a(x). 

Definition. A model u with the property in Theorem 3 is called a generic model 
c_f J7d. 

This terminology presupposes that such an . // is in fact a model of ~2; we shall 
confirm this supposition below. 

Corollary. The topos of sheaves on ( 6, JR) is the classi’ving topos for generic 
models of 12. 

Thus, the universal generic model of .Q is obtained from the universal model of 
&,)l by forcing (with jR) every Robinson formula to become decidable. 

To see that generic models of I;, are models of I’& we need the following analog 
of the well-known “forcing equals truth” lemma in finite forcing theory. 

emma 4. Let // f p a generic model of /(I in 1’. Then, for un_y Robinson fortm’a 

a(x), the following holds in the internal logic of ft : 

(VaEM”) .~~a(a)t+V(3b~M~).~~~(a,b) 
i CD 

is over conditions @(x, y) that force 
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Proof. We proceed by induction on CL Suppose first that ar is atomic. Working in 
the internal logic of A, we habe that, if . // I= a(a) then the disjunction in the desired 
formula holds because there is a disjunct in which @ is CT (and k= 0). Conversely, 
if the disjunct corresponding to @(x, y) holds, then, as @(x, y) forces a(x), we have 
that & y(@(& y)-+cr(x)) is provable in -TdVH9 hence true in L& so from 4 I= @(a, b) 
we can infer . // t= a(a). 

Next, suppose (x(x) is l/?(x). Again, we work in the internal logic of 8. If 
// I= a(x), then, by induction hypothesis, we do not have A! L= @(a, b) for any @(x, y) 

forcing P(X). But, by genericity, we do have . f/ t= @(a, b) for some @(x, y) forcing 
p(x)Vlp(x), so this Q) must force 1p, which is a. Conversely, suppose , k’ I= @(G, b:) 

and @(x, y) forces CT(X). Then . // cannot satisfy P(a) because to do so it would have 

to satisfy ~(0, &c) for some W(X, y, z) forcing p(x), and then @V,U would be 

consistent (since satisfied in I k’) and would be an extension of @ forcing p, which 

is absurd as @ forces +. 

If a(x) is P(x)RY(x), then, by induction hypothesis, we have in the internal logic 
that ff I= a(a) if and only if . // t= @(a, b)~ w(a, b) for some @ forcing p and some I,U 

forcing y. (We assumed that the b is the same in both parts, since we may add 

dummy variables to @ and w.) Then @M+Y is consistent (since satisfied in . R), c,o it 
is a condition forcing DAY; the converse direction is even easier. 

The case that a is a disjunction is trivial. 

Finally, let CT(X) be 3: p&z). Working again in the internal logic, we have that 
/f EC@) if and only if, for some b and c, s N L= @(G b, c) where Q(x, y, z) +-/4x, z). 

This certainly implies @(x, y. t) tt (r(x). Conversely, suppose @(x, y) t+- CT(X) and 

fi I= @(a, b). Then there is a ;r-rm t(x, y) such that 0(x, y) t-t-/3(x, r(x, y)); we have 
arranged that t has no free variables other than AT, y by replacing the others with a 

constant symbol. By induction hypothesis we have .1/ I=~(u, t(a, b)), so . N E a(a), as 

required. 2 

Using Lemma 4, we show that a generic model . K is a mode1 of ./d. It is, of 
course, a model of 

. .* 
/rlt~~, by defu;ltlon; the only axioms of C~-d that are not in ,l-dvH 

are those of the form 

Vx(tn,e+R(x)VR(x)). 

ow these hold in N, we work in the internal logic and find, for any a E Ml’, 
;I ionditian @(x. ~0, forcing /?(x)V$?(x), and satisfied in . /l by a, b for some b. By 

ccnerisiry, we can find @,(x, _a*), satisfied in IT by a, b, and forcing R(x)V +?(X), 

d w can find (9,(x, y), also satisfied in // by a, b (the same 6, by adding dummy 

\ ariables if necessary), and forcing J?(x)v +7(x). If @1 forces R(x) or @2 forces 

Rx(x), then it serves as the desired @ It remains to consider the case that & forces 

@z fcrces -J?(x); we shall show that this case cannot arise. If it did, 
c~j~~r~on of forcing of negations, neither @M?(x) nor Q2~J?(x) is a 

t’ former (resp. latter) would be an extension of & (resp. @) 



Classifying topoi and finite forcing 131 

forcing R(x) (resp. J?(x)), which is impossible. So both 

are theorems of Y&H, hence a fortiori of 9& But Yd has the axiom 
Vx(true+R(x)vg(x)) which together with (13) and (14) yields 

vx, Y(@l (x9 y)fqz(x, YPfa~~~h 

This sentence, being a universal Horn theorem of Y>, is an axiom of c&H, hence 
is true in .A% But in A, &A& is satisfied by a, b. This contradiction completes the 
proof that generic models satisfy &. 

Remark. Except for the verification that generic models satisfy 9& the material in 
this section has really involved only Y dVH, not Yd or .K We could, therefore, have 
started with an arbitrary universal Horn theory with a constant symbol, defined the 
Robinson topology JR on its syntactic category K’, shown that the topos of sheaves 
on (6, JR) classifies pseudo-generic models (defined just like generic models but 
using pseudo-forcing), and proved a “pseudo-forcing equals truth” result like 
Lemma 4 for these pseudo-generic models. We chose not to present the results in 
this generality, although no additional work would have been required, for two 
reasons. First, we did not want to postpone for too long establishing contact witb 
forcing, sincp it is our primary interest in this paper. Second, it turns out that, in 
some natural examples, pseudo-generic models are rather uninteresting. Specifi- 
cally, it follows easily from Example 2 and the subsequent discussion that the only 
pseudo-generic algebras for any variety are the trivial algebras. 

4. Other topologies 

In this section, we discuss some naturally occurring topologies, other than JR, on 
%, the syntactic category of Y&+,; we are interested particularly in their relation- 
ships to JR and to each other and in the concepts classified by their sheaf topoi. 

The theory, ,+“, being geometric, has a classifying topos; the methods of [14,15] 
enable us to describe this topos as a sheaf subtopos of the classifying topos ,‘/ (’ Op) 
of J&H. Indeed, it is clear from the discussion of & and *&+., in Section 2 that 
the former is obtained from the latter by adding the axioms 

Therefore, by [14] or [ 151 the classifying topos for J> is the topos of sheaves on 
(c, Jo), where Jo is the smallest topology on ‘I! such that, for each relation symbol 
R of L, the object {xi true) is CG /ered by the sieve 11 (XMW II . This sieve is 

generated by the simple morphisms to {x 1 true} from {x 1 R(x)} and {x 1 g(x)}. Since 
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generic models satisfy .Td, we have Jo c JR, a fact which can also be verified 
directly (by a method closely resembling our proof that generic models satisfy &J 
or deduced from more detailed information given below. 

In ordinary [in ./ ) model theory, the existentially closed models of 3 form an 
important class intermediate between the classes of all models of ,3- and of generic 
models of ./. We shall generalize the concept of existentially closed model to 
arbitrary topoi and construct a classifying topos for it as a sheaf subtopos of 
.I( ’ Or’. Joyal and Reyes [9] have defined the concept ‘existentially closed’ for 

geometric theories in the context of categorical logic and have related it to a certain 
Grot”nendieck topology on the pretopos that (from their poi.nt of view) is the 
geometric theory. We work only with universal theories, since in ordinary model 
theory the existentially closed models of an arbitrary theory are just those models 
of that theory which, considered as models of its universal part, are existentially 
closed. Also, we view theories and models in a less abstract way than Joyal and 
Reyes do. As a result, our definition of ‘existentially closed’ seems quite different 
from theirs However, the similarity between their Grothendieck topology on the 
theory and the Grothendieck topology JE on Y: that we define below leads us to 
suspect that the two definitions are basically the same. 

Definition. A model I/ of $VH in a topos t is existentially closed if and only if, 
for every conjunction W(X, y) of atomic formulas of Ld, the following statement 
holds in the internal logic of (C : 

uhcrc the disjunction is over all conjunctions 3.(x, z) of atomic formulas of Ld, 
5uch that ~(x, _P)AE~(x, Z) (with y and t disjoint lists of variables) is inconsistent with 

WC point out immediately that such a model . // necessarily satisfies .& Indeed, 
applying the definition of extentially closed, first with R(x) and then with g(x) as 
w(r), we find (in the internal logic) that every a EM” either satisfies R(a)V4?(a) as 
clekxxi or else satisfies &(a, c)l\&(a, c) for some c, where &(x, y) and &(x, y) con- 
tradict K(x) and g(x) in &M, hence in />. (We can take the same c for both A’s 

ing dummy variables if necessary.) It follows that ,&(x, y)A&(x, y) con- 
,!, hence also contradicts .i dFH because Vx, y(& A& -+fal.se) is a universal 
tcnce. Yet a, c satisfies &A& in a model , /f of -i;dVH. This contradiction 

K(a)vJ?(a) must hold, so .//t= I>. 

t iemma serves to justify our definition of existentially closed by showing 
it agrees with the usual definition. Recall that, in ,4c’ or in any Boolean 

5 of jd are essentially the same as models of ,P, we shall therefore 
etween these theories. 
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Lemma 5. A model JZ of F in Y is existentially closed if and only if, for all 
existential formulas q(x), for all a EM”, and for all extensions A 2 .A that are 
models of Y, if ,/f; t= q(a) then A? t= q(a). 

Proof. Suppose first that 4 is existentially closed, and let q(x), a, and &’ be as in 
the statement of the lemma, with JV’F q(a). By putting q into prenex form, putting 
its matrix into disjunctive form, and distributing existential quantifiers across dis- 
junctions, we can assume U(X) is a disjunction of formulas of the form gy I&, y) 
where ay is a conjunction of atomic formulas of Ld. (We have gone from .F to Yd 
and replaced any 1R in rl with 47.) Let ZIy v/(x, y) be one of the disjuncts that is 
satisfied by a in q; we shall show that it and hence also q(x) are satisfied by a in 
M. If it were not, then, as J is existentially closed, we could find e E M’ satisfying 
A(a, c) in A, where d&z) is a conjunction of atomic formulas of Ld and con- 
tradicts u/(x, y) in Y& But then n(a, c) still holds in c k because I t 2 A’, and this is 
absurd since 3y r&a, y) holds in - +’ as well. 

Conversely, suppose .4’ satisfies the criterion in the lemma. Let ry(x, y) be a con- 
junction of atomic formulas of Ld, and let aE M”. We must show that either 
.J? I= Zy t&a, y) 01: there is a conjunction n(x, z) of atomic formulas of Ld, such that 
+v(x, y)~l(x, z) is inconsistent with Yd and such-~ that .,# I= gz n&z). Suppose, 
therefore, that no such A exists. Then, in the language obtained by adding to Ld 
names for all elements of M and additional constants p, the set of sentences 

.Y> U Diagram of c // U { w(a, p)} 

is consistent, by a compactness argument. A model ..,Z of it is, up to isomorphism, 
an extension of .4 in 
is assumed to satisfy 
required. zl 

We now begin the 

which p witnesses that 3y v/(a, y) holds. Therefore, since .// 

the criterion in the lemma, Z?y t&a, y) holds also in t k’, as 

construction of a classifying topos for existentially closed 
models of &. 

Definition. & is the smallest Grothendieck topology on Y;’ such that, for each 
morphism f : c’ -+c in %, JE contains the sieve +f that consists of 

(a) ali morphisms into c that factor through f, and 
(b) all morphisms g into c such that no morphism into c factors through both f 

and g. 

Note that (a) Describes the sieve generated by f, while (b) describes its negation, 
the largest sieve disjoint from the one generated by J This explains the notation k f. 

Note also that no special properties of %’ are used in defining S,. The same 
definition gives ;3 topology on any category, and the preceding remark shows that 
this topology is always included in the double-negation topology. 
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Theorem 4. The topos of sheaves on (%, JE) is the classifying topos for existwtiufly 
closed modeis G$ . 72. 

Proof. If f and. g are morphisms with a common codomain c, then either thev are 
incompatible, in the sense that no morphism factors through both, or they have a 
pullback. In the first case, g*+f is the maximal sieve on the domain of g. In the 
second case, g*:+f is Ith, where h is the pullback of f along g. Therefore, the 
generating family given in the definition of JE becomes closed under pullbacks if 
we adjoin to it the maximal sieves. Therefore, by Lemma 3, to check that a flat 
functor F of d is continuous for &, we need only check that it sends each sieve +f 
to an epimorphic family. By Lemma 2, we need only consider the sieves +f where 
the morphism j* is simple. 

So let F: / --y ,J be a flat functor, corresponding to a model . h’ of Y>rH in a 
ropoc If, and len 

be a simple morphism in ‘4. To say that F(+ f) is an epimorphic family means, in 
view of Lemma 2, that f and the simple morphisms 

quch that 10, I) implies G(x) but is inconsistent with I&X, y) in Y>, are sent by F to 
an epimorphic f,amily. This can be expressed in the internal language of & by saying 
that, for etery LI satisfying @ in /1, either there is b such that 1 /f I= w(a, b) or there 
i$ c such that 1/ t=A(a,c) for some such I,. In the special case that Q(x) is true, this 
ic precisely (the w instance of) the definition of being existentially closed. And the 
general case, with arbitrary o(x), easily follows from the special case, for if I 
i+orks in the special case then &x,z)A@(x) works with G(x). Cl 

Theorem 5. The topoiogles JR, JD, JE and the double-negation toplogy J,, on ‘1: 
sli fkfj 

Prod. That Jn G & is just a restatement of the already established fact that all ex- 
i\tcntially closed models satisfy ./d. We sketch a direct proof. To show that the 
c&e on {s true) generated by the simple morphisms f and g from {x 1 R(x)} and 
(_v R(.J.-)) is in f J E, it suffises to check that it is the intersection of the sieves +-f and 
.r~. 5incc Grothendieck topologies are closed under intersection [ 13, p. 151. And 

ecki.lg this amounts to checking that no morphism can be incompatible with both 
. BJ, Lemma 2, we need only consider simple morphisms, and the necessary 

\vils done in the course of showing that existentially closed models satisfy 

at each sieve Ifr f is ilil J K. It suffices, by Lemma 2, to prove this 
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for simple f, say from {x, y 1 I,U(X, y)} to {x 1 e(x)}. To do this, we show that every 
morphism g in the sieve Ilily ~(x, y)V -3~ w(x, y) 11 on {x 1 e(x)} also belongs to + f. 
Again, we may assume g is a simple morphism, say from {x, z IO@, z)} to {x I e(x)} . 
Suppose first that g belongs to II gy r&x, y)ll , so by Theorem 2 and the definition of 
forcing, 

for some terms t. Since w is a conjunction of atomic formulas, we have 

Therefore, [x’ =x, y = t(x, z)] is a morphism in g from {x, z I 0(x, z>} to {x’, y I I,Y(X, y)} , 
and it clearly gives a factorization of g through f, so g E + f. There remains the case 
that g belongs to 11 +y y/(x,y)ll. In this case, by Theorem 2 and the definition of 
forcing, no extension of the condition 0(x, z) can force gy t,~(x, y). In particular, 
0(x, z)A~c/(x, y), with the lists z and y disjoint, must be inconsistent with ,I>~~, for 
otherwise it would be a condition extending 0(x, Z) and forcing 3y J&X, y). It follows 
immediately that g and f are incompatible, so again gE kf. 

Finally, that JR c J,, is clear because the double negation of a generating sieve 

IIQ(x)v1Q(x)II of R is the truth value of the intuitionistically valid formula 
11(a(x)V X(X)). cl 

We shall not discuss in detail the concept classified by the topos of sheaves on 
((6, J-J, since such a discussion would lead us away from model-theoretic forcing 
to set-theoretic forcing. An instructive example in this connection is the theory X, 
with one constant symbol c and denumerably many unary predicate symbols P,,, 
axiomatized by vx(x= c). Models of .& are essentially functions f from the set of 
natural numbers into {true, false}, giving the truth values of the sentences P,(c). 
Sheaves on (‘6; J-,-J form the classifying topos for functions f that are Cohen- 
generic over Y. For further diocussion of this and related ertamples, see [14]. 

We can, however, give a model-theoretic description of the points of the sheaf 
topos Sh(‘& J, -,). The description involves the following slight strengthening of the 
concept of atomic model. 

Definition. A model . 4 of a theory .F is a strongly atomic model of .I- if and only 
if, for each list of elements a in 1M, there is a formula G(x), satisfied by a in . /I, such 
that, for every formula w(x) satisfied by a in . fl, 

‘F I- Vx((b(x) -+ l/Y(x)). 

This definition differs from Vaught’s notion of atomic model only in that the last 
line has “.O-” instead of “, // I= “. Thus, the two notions agree if .I- is complete. 

Unlike atomicity, strong atomicity imposes a non-trivial requirement even when the 
list a is empty, for the definition then asserts that the complete theory of ,/f is 
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axiomatized by .F plus a single sentence. It is not hard to check that this requirement 
and atomicity together imply strong atomicity. 

Recall that .I-‘, the finite forcing companion of .7, consists of those sentences 
whose negation is not forced by any conditilon; see [l, 71. Note that (.Ff)d=(.Fd)f, 
so we may unambiguously write .Tdf. 

Theorem 6. A flat functor F: % -+ .Y is continuous for J,, if and only if the 
corresponding model of .I -&H is a strongly atomic model of 3$. 

Proof. Let /f be the model corresponding to a J,,-continuous flat functor F on 
‘. Since J-., 2 JR, Theorem 3 tells us that . /( is a generic model of .&, so it is a 

model of .I>~. 
Consider an arbitrary list a of elements of -4, and let @ be the set of all the con- 

ditions Q>(x, y) such that .1/ 'F +~@(a, y). The simple morphisms 

{x,y~O(n;~)}-,{x~true} (15) 

for r7, E @ cannot form a J,, -covering of {xl true} since none of the projections 
obtained by applying F to them has a in its range. So there exists a morphism, 
ti it hout loss of generality a simple one, 

{x, z i w(x, 29) --+ (x 1 true} 

incompatible with rJ5) for all @ E @. Thus, the existential formula .Yz I,U(X, E) 

I1 -provably implies all the formulas %!y@(x, y) satisfied by a in - //, where $I 
ranges over conditions. It follows immediately that .1/ E Zifz t&a,& for otherwise w 
tsould belong to @, hence imply it5 own negation, which contradicts the fact that 
I,I i\ ionGstcnt. To complete the proof that // is a strongly atomic model of .;idf, we 

ION that t’~ cry formu’ia y(x) satisfied in // by a is deducible in .J>~ from 3z W(X, z). 
Suppose, therefore, that v(x) were a counterexample. Then 3z ~,u(x, Z)A ly(x) is con- 
sictent with /j and is therefore forced by some condition @(x, y). Then Z?y @(x, y) 
is consistent with 3~ I&X, z) in .;I d, so @ $ !P. This means that we can find b in M 
$uch that tr E@(a,b). By the choice of 0 and the genericity of & we have 
R i= ly(a), :I contradiction. 

C‘on\ersei~, cuppose . // is a strongly atomic model of %jbf. To show that the 
at functor F: / + 1 is J,, -continuous, consider an arbitrary double- 
se sieve R on an object {x 1 Q(x)}. To show that the family F(R) is 
let a be an arbitrary element of F(x / Q(x)}, so a satisfies e(x) in c H. 

44 is strongly atomic, find a formula w(x), also satisfied by a in , /1, that 
I-W ably implies every formula satisfied by a in N. Then v(x) is an atom in the 

f ~~~c~~a~rn algebra of 1: -equivalence classes of formulas with only x free. But, 
is a forcing companion, every consistent formula is above a consistent 

la in this Lindenbaum algebra [7]; therefore the atom t&x) can be 
ula. As in several previous arguments, we can write 
as .Yy 0(x, y) where each 6 is 2 conjunction of atomic 
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formulas of Ld. Since w is an atom, it is equivalent to one of these disjuncts 
3y 6(x, y). Since w Y&provably implies @, and since CFi and Yd prove the same 
universal sentences, the universal Horn sentence I?x, y@(x, y)+@(x)) is provable in 
YdVH, so there s a simple morphism 

in %. Some composite morphism of the form 

is in the double-negation dense sieve R; we are using Lemma 2 to justify assuming 
that f is simple. The fact that f is a morphism means that the sentence 

VWY, zmG Y9 2) -+ 2Y WJG Y)) (17) 

is provable in Y&H, hence also in Yf* d, the fa. _ that the domain of f is an object 
means that gy 22 2(x, y, z) is consistent with fdVH, hence also with .Fdf. But 
Z?y e(x, y) is an atom of .Fi, so the implication in (17) can be turned into an 
equivalence. Since a satisfies 2) 0(x, y) in ._//, it also satisfies 2?y 2z 1(x, y, z) and 
therefore lies in the range of the projection obtained by applying F to the morphism 
(16) in R. Thus, F(R) is epimorphic and F is J,,-continuous. Cl 

This theorem implies that st; :gly atomic models of .jsf are automatically 
generic. 

We conclude this paper with a discussion of the possibilities for equalities and 
strict inclusions in the chain 

of Theorem 5. 
If I& or equivalently .Fd, has a model companion X*, or ~2, then the existen- 

tially closed models of .F, the finitely generic models of ?F, and the models of .f* 
are all the same in CP, see [7]. In this situation, the topologies JE and JR are the 
same; in other words all existentially closed models are generic in arbitrary topoi, 
not just 9’. To prove this, it suffices to check that each sieve Ila(x)v w(x)II on 
{X 1 true} is in &, for these sieves generate JR. In every model (in Y) of ,T$, every 

a satisfies Z.. @(a, y) for some condition @(x, y) forcing a(x)v w(x), by genericity. 
A compactness argument shows that there are finitely many such #‘s, say 

@I # 9’.‘9 n, such that &?t- VX V,!I, ZIyi @i(X, yi). It follows that IIO morphism into 
{x 1 true} is incompatible with all n of the simple morphisms 

J;: : {XV Y; 1 #i(x, Yi)} + {X 1 true) - 

Thus, the intersection of the sieves +A, which is in JE, consists entirely of 
morphisms that factor through an if;. and therefore lie in leak -m(x)ll. Thus, 
IIct(x)~w(x)II is also in JE. 
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Of the eight possible patterns of equalities and strict inclusions in & 5 & E 

JRG J-m, the four that have JE =JR all occur, with theories that have model com- 

panions. The simplest case, JD = JE = JR = J,-, occurs only in trivial situations, for 
this chain of equalities means that the classifying topos of the universal theory Td 
is Boolean, and it was shown in [2] that ,Fd must then be the theory of a finite 
collection of finite models no one of which admits a homomorphism to another. We 
leave it to the reader to derive this description of r& directly from the assumption 
that every model of .Td is a strongly atomic model of Y& 

Pure equality theory and the theory of linear order, with a constant symbol added 
to conform to our convention, provide examples of JD$ JE = JR = J,,. More 
generally, so does any universal theory that is not model complete but has an 
&-categorical model companion; see 121. 

If we add infinitely many constant symbols to pure equality theory, and if we add 
zlxioms saying that the constants are all distinct, the resulting theory is model corm- 
plete and has JD = JE = lR 5 J,, . Here the only (strongly) atomic model is the one 
-where every element is denoted by a constant symbol. The same situation occurs, 
in a finite language, for the theory of (Z,O, S, P) where S and P are the successor 
and predecessor functions. 

The situation JD~ JE = JR5 J,, occurs for most interesting companionable 
theories. For exampie, let .I- be the theory of fields; then .Y* is the theory of 
algebraically closed fields, and the points of (‘6, J, 7) are the algebraic closures of 

prime fields. Similarly, if .I- is the theory of abelian groups, then .Y* is the theory 

of divisible groups with infinitely many elements of each finite order, and the points 

of ( /, J--) are those models of Y* that are torsion groups. Perhaps the simplest 

example of this sort is the theory of one unary function and one constant, with no 
nonlogical axioms. I’* is then given by axioms asserting about the function that 

every element has infinitely many pre-images and there are infinitely many cycles 
of every finite size. The points of (%, J,,) are the models of .;T-* in which every 

element satisfies f”(x) =f”(x) for some distinct m and n. 

To get examples with JE 5 J R, it is necessary to have Jo5 JE as well, because if 

all models of .I> were existentially closed then X7> would be model complete, i.e., 

it would serve as its own model companion, and we would have JE = JR. The 

standard examples, as in [7], of theories without model companions, such as the 

theory of groups, all have Jo5 J& JRs J,,. The last of these proper inclusions 

in the examples we have in mind, be deduced as follows from our,results 

!ogether with a result of Macintyre [ 111 asserting the existence of 2HI non- 

orphic countable generic models under fairly general conditions. If Jr4 = J,, , 
by Theorems 3 and 6, every generic model is a strongly atomic mode! of i-f. 

It follows that the complete theory of any generic model is finitely axiomatked over 
is countable, there are only countably many such complete theories. 

‘s from atomicity that any two countable generic models ha’wing the 

Thus, the existence of uncountably many 
odels implies JR + 9, T. We leave it as an open problem 
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to find a universal theory (preferably a naturally occurring one) with JD$JEq 
&=JT7. 

More generally, it seems reasonable to look for a useful model-theoretic descrip- 
tion of the theories for which JR =J7.-,, i.e., for which the finitely generic models 
are classified by a Boolean topos. (The equivalence of these two conditions follows 
from Lemma 1.2 of [2].) If, as before, we use the notation 9 for the universal model 
of 9&H in .IJt(xop) and G for its underlying object, then JR is the topology forcing, 
in the sense of [ 151, all subobjects of G” that are definable by Robinson formulas 
to be complemented, while J,-, forces a/Z subobjects in Y(KopJ to be complemented. 
Thus, we want to describe situations where every subobject is so closely related to 
definable subobjects of G” that the property of complementation can be 
transferred from the latter to the former. We have already remarked that such a 
situation occurs when .P has an So-categorical model-companion. It can also be 
made to occur by so enriching the language that everything in .7’(“‘) becomes 
definable; the forcing languages (or Boolean-valued universes) used in set-theoretic 
forcing are an example of this phenomenon. For less rich languages, in particular 
for most countable theories, the topos of J.-,-,-sheaves will have no points (set- 
theoretically generic objects, over the universe, do not really exist except in 
degenerate situations) while the topos of &-sheaves will have points (moclel- 
theoretically generic structures do really exist). From this point of view, set-theoretic 
forcing over countable standard models of set theory (rather than over the universe) 
is more similar to model-theoretic forcing, i.e., to JR, than to J, -, . An exposition 
emphasizing this similarity is given in [lo]. 
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