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1. Introduction

This paper is a contribution to the study of affine and degenerate affine Birman–Wenzl–Murakami
(BMW) algebras. In order to study the finite dimensional representation theory of these infinite di-
mensional algebras, one introduces cyclotomic quotients, which are BMW analogues of cyclotomic and
degenerate cyclotomic Hecke algebras (see [2,1,15]).

A peculiar feature of the cyclotomic algebras is that the parameters cannot be chosen arbitrarily;
that is, unless the parameters satisfy certain relations, the algebras (defined over a field) collapse
to cyclotomic or degenerate cyclotomic Hecke algebras. These “obligatory” conditions did not seem
adequate at first to develop the representation theory. Consequently, several authors, notably Ariki,
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Mathas and Rui [3], Wilcox and Yu [23], and Rui and Xu [21] introduced stronger “admissibility”
conditions under which the algebras could be shown to have a well-behaved representation theory.

Up until now, the cyclotomic algebras have been studied only under the assumption of admissi-
bility of the parameters. Despite the successes achieved, this was not satisfactory, since a priori the
admissibility requirement might be too restrictive to capture the entire finite dimensional representa-
tion theory of the affine algebras.

In this paper, we extend the analysis of cyclotomic and degenerate cyclotomic BMW algebras to
include the case of non-admissible parameters. We show that the structure and representation theory
of the cyclotomic algebras with non-admissible parameters can be derived from that of the algebras
with admissible parameters.

1.1. Background

Affine and cyclotomic BMW algebras and their degenerate versions arise naturally by several differ-
ent “affinization” processes. One such process amounts to making the Jucys–Murphy elements in the
ordinary BMW or Brauer algebras into variables, retaining the relations between these elements and
the standard generators of the BMW or Brauer algebras. This point of view was stressed by Nazarov,
in defining degenerate affine BMW algebras [17]. For the BMW algebras, there is a geometric affiniza-
tion process: The ordinary BMW algebras can be realized as algebras of tangles in the disc cross the
interval, modulo Kauffman skein relations [16]. To affinize these algebras, one should replace the disc
by the annulus; alternatively, one replaces the ordinary braid group by the affine or type B braid
group. This is the motivation cited by Häring-Oldenburg [14] for introducing affine and cyclotomic
BMW algebras. Finally, Orellana and Ram provide an affinization of Schur–Weyl duality [18] which
produces representations of the affine braid group by Ř-matrices of a quantum group; for symplectic
or orthogonal quantum groups, this process yields representations of cyclotomic BMW algebras (over
the complex numbers, with special parameters).

As mentioned above, degenerate affine BMW algebras were introduced by Nazarov [17] under
the name affine Wenzl algebras. The cyclotomic quotients of these algebras were introduced by Ariki,
Mathas, and Rui in [3] and studied further by Rui and Si in [19], under the name cyclotomic Nazarov–
Wenzl algebras. Affine and cyclotomic BMW algebras were introduced by Häring-Oldenburg in [14] and
studied by Goodman and Hauschild Mosley [10–12,5], Rui, Xu, and Si [21,20], Wilcox and Yu [23,24,
22,25], and Ram, Orellana, Daugherty and Virk [18,4].

The papers cited above study the algebras under the assumption of admissibility. It has been
shown that the algebras with admissible parameters are cellular [3,24,25,21,20,5,8,9]; simple mod-
ules over a field have been classified [19,20]; and the non-degenerate cyclotomic BMW algebras have
been shown to be isomorphic to algebras of tangles [11,12,24,22,25].

1.2. Summary of results

In this note, we show that the structure of the cyclotomic and degenerate cyclotomic BMW al-
gebras for general parameters can be derived from the admissible case. An affine (resp. degenerate
affine) BMW algebra An contains a copy of the finite dimensional BMW algebra (resp. Brauer alge-
bra) Bn and an additional “affine” generator y1, satisfying several relations with the generators of Bn .
A cyclotomic quotient is determined by a polynomial relation

(y1 − u1) · · · (y1 − ur) = 0. (1.1)

Denote the cyclotomic quotient determined by (1.1) by An,r(u1, . . . , ur). Let Jn,r(u1, . . . , ur) denote the
ideal generated by the “contraction” e1 in An,r(u1, . . . , ur). Then we have a short exact sequence

0 → Jn,r(u1, . . . , ur) → An,r(u1, . . . , ur) → Hn(u1, . . . , ur) → 0, (1.2)

where Hn(u1, . . . , ur) is the cyclotomic Hecke algebra (resp. degenerate cyclotomic Hecke alge-
bra). Admissibility of the parameters means that {e1, y1e1, . . . , yr−1

1 e1} is linearly independent in
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A2,r(u1, . . . , ur); this condition translates into specific conditions on the parameters of the algebra
which are discussed in Sections 3 and 4. Suppose now that we are working over a field and that
admissibility fails, but e1 �= 0; then there exists a d with 0 < d < r such that {e1, y1e1, . . . , yd−1

1 e1}
is linearly independent in A2,r(u1, . . . , ur) but {e1, y1e1, . . . , yd

1e1} is linearly dependent. We say that
the parameters are d-semi-admissible. We show that there exists a subset {v1, . . . , vd} ⊂ {u1, . . . , ur}
such that

(1) An,d(v1, . . . , vd) has admissible parameters, and
(2) Jn,d(v1, . . . , vd) ∼= Jn,r(u1, . . . , ur).

Thus we have

0 → Jn,d(v1, . . . , vd) → An,r(u1, . . . , ur) → Hn(u1, . . . , ur) → 0. (1.3)

Two consequences of this analysis are the following:

(1) The cyclotomic algebras are cellular, under very mild hypotheses; in particular, when the ground
ring is a field, the algebras are always cellular.

(2) Every finite dimensional simple module of an affine (resp. degenerate affine) BMW algebra over
an algebraically closed field factors through a cyclotomic (resp. degenerate cyclotomic) BMW al-
gebra with admissible parameters, or through a cyclotomic (resp. degenerate cyclotomic) Hecke
algebra.

The latter result is a step towards classifying the simple modules of the affine and degenerate affine
BMW algebras over an algebraically closed field.

The main results of Ariki, Mathas and Rui [3] regarding degenerate cyclotomic BMW algebras de-
pend on the hypothesis that 2 is invertible in the ground ring. We point out in that this hypothesis
can be eliminated; see Section 3.

Finally, we characterize those parameter sets for affine BMW algebras over an algebraically closed
field that permit the algebras to have non-trivial cyclotomic quotients, or equivalently, finite dimen-
sional modules M with e1M �= 0; see Theorem 7.9. The analogous result for degenerate affine BMW
algebras was proved in [3]; we have made a minor improvement by removing the restriction that the
characteristic of the field should be different from 2; see Theorem 7.1.

2. Preliminaries

2.1. Definition of degenerate affine and cyclotomic BMW algebras

Fix a positive integer n and a commutative ring S with multiplicative identity. Let Ω = {ωa: a � 0}
be a sequence of elements of S .

Definition 2.1. (See [17].) The degenerate affine BMW algebra N̂n,S = N̂n,S (Ω) is the unital associative
S-algebra with generators {si, ei, y j: 1 � i < n and 1 � j � n} and relations:

(1) (Involutions) s2
i = 1, for 1 � i < n.

(2) (Affine braid relations)
(a) si s j = s j si if |i − j| > 1.
(b) si si+1si = si+1si si+1, for 1 � i < n − 1.
(c) si y j = y j si if j �= i, i + 1.

(3) (Idempotent relations) e2
i = ω0ei , for 1 � i < n.

(4) (Compression relations) e1 ya
1e1 = ωae1, for a > 0.

(5) (Commutation relations)
(a) sie j = e j si , and eie j = e jei if |i − j| > 1.
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(b) ei y j = y jei , if j �= i, i + 1.
(c) yi y j = y j yi , for 1 � i, j � n.

(6) (Tangle relations)
(a) ei si = ei = siei , for 1 � i � n − 1.
(b) siei+1ei = si+1ei , and eiei+1si = ei si+1, for 1 � i � n − 2.
(c) ei+1ei si+1 = ei+1si , and si+1eiei+1 = siei+1, for 1 � i � n − 2.
(d) ei+1eiei+1 = ei+1, and eiei+1ei = ei , for 1 � i � n − 2.

(7) (Skein relations) si yi − yi+1si = ei − 1, and yi si − si yi+1 = ei − 1, for 1 � i < n.
(8) (Anti-symmetry relations) ei(yi + yi+1) = 0, and (yi + yi+1)ei = 0, for 1 � i < n.

Definition 2.2. (See [3].) Fix an integer r � 1 and elements u1, . . . , ur in S . The degenerate cyclo-
tomic BMW algebra Nn,S,r =Nn,S,r(Ω; u1, . . . , ur) is the quotient of the degenerate affine BMW algebra
N̂n,S (Ω) by the cyclotomic relation (y1 − u1) · · · (y1 − ur) = 0.

Note that, due to the symmetry of the relations, N̂n,S has a unique S-linear algebra involution ∗
(that is, an algebra anti-automorphism of order 2) such that e∗

i = ei , s∗
i = si , and y∗

i = yi for all i. The
involution passes to cyclotomic quotients.

2.2. Definition of affine and cyclotomic BMW algebras

Fix an integer n � 0, and a commutative ring S with invertible elements ρ and q, and a sequence
of elements Ω = (ωa)a�0, satisfying

ρ−1 − ρ = (
q−1 − q

)
(ω0 − 1). (2.1)

Definition 2.3. (See [14].) The affine BMW algebra Ŵn,S = Ŵn,S (ρ,q,Ω) is the unital associative S-
algebra with generators y±1

1 , g±1
i and ei (1 � i � n − 1) and relations:

(1) (Inverses) gi g−1
i = g−1

i gi = 1 and y1 y−1
1 = y−1

1 y1 = 1.
(2) (Affine braid relations)

(a) gi gi+1 gi = gi+1 gi gi+1 and gi g j = g j gi if |i − j|� 2.
(b) y1 g1 y1 g1 = g1 y1 g1 y1 and y1 g j = g j y1 if j � 2.

(3) (Idempotent relation) e2
i = ω0ei .

(4) (Compression relations) For j � 1, e1 y j
1e1 = ω je1.

(5) (Commutation relations)
(a) gie j = e j gi and eie j = e jei if |i − j|� 2.
(b) y1e j = e j y1 if j � 2.

(6) (Tangle relations)
(a) giei = ei gi = ρ−1ei and ei gi±1ei = ρei .
(b) eiei±1ei = ei .
(c) gi gi±1ei = ei±1ei and ei gi±1 gi = eiei±1.

(7) (Kauffman skein relation) gi − g−1
i = (q − q−1)(1 − ei).

(8) (Unwrapping relation) e1 y1 g1 y1 g1 = e1 = g1 y1 g1 y1e1.

Definition 2.4. (See [14].) Fix an integer r � 1 and invertible elements u1, . . . , ur in S . The cyclo-
tomic BMW algebra Wn,S,r = Wn,S,r(ρ,q,Ω; u1, . . . , ur) is the quotient of the affine BMW algebra
Ŵn,S (ρ,q,Ω) by the cyclotomic relation (y1 − u1) · · · (y1 − ur) = 0.

As in the degenerate case, Ŵn,S has a unique S-linear algebra involution ∗ such that e∗
i = ei and

g∗
i = gi , for all i, and y∗

1 = y1. The involution passes to cyclotomic quotients.
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2.3. Admissibility

Notation 2.5. Let An,S,r denote either the cyclotomic BMW algebra Wn,S,r (with parameters ρ , q,
Ω = (ωa)a�0, and u1, . . . , ur ) or the degenerate cyclotomic BMW algebra Nn,S,r (with parameters
Ω = (ωa)a�0 and u1, . . . , ur ) over a commutative ring S . Let

p(u) = (u − u1) · · · (u − ur) =
r∑

j=0

a ju
j. (2.2)

The coefficients a j for j < r are signed elementary symmetric functions in u1, . . . , ur , namely a j =
(−1)r− jεr− j(u1, . . . , ur), and ar = 1.

Lemma 2.6. The left ideal A2,S,re1 in A2,S,r is equal to the S-span of {e1, y1e1, . . . , yr−1
1 e1}.

Proof. For both the cyclotomic and degenerate cyclotomic BMW algebras, it is easy to check using the
relations that the S-span of {e1, y1e1, . . . , yr−1

1 e1} is invariant under multiplication by the generators
on the left. �
Lemma 2.7. Assume that e1 is not a torsion element over S in A2,S,r . Then the elements ω j , j � 0, satisfy the
following recursion relation:

r∑
j=0

a jω j+� = 0, for all �� 0. (2.3)

Proof. Multiply the cyclotomic condition:
∑r

j=0 a j y j
1 = 0 by y�

1, and then multiply from both sides
by e1. Use the compression and idempotent relations to obtain

∑r
j=0 a jω j+�e1 = 0. Since e1 is not a

torsion element over S , the result follows. �
Definition 2.8. Consider the cyclotomic or degenerate cyclotomic BMW algebras over a commutative
ring S with suitable parameters. We say that the parameters are admissible if {e1, y1e1, . . . , yr−1

1 e1} is
linearly independent over S in A2,S,r .

For both the cyclotomic and degenerate cyclotomic BMW algebras, admissibility as defined above
translates into explicit conditions on the parameters. We review this for the two classes of algebras
separately in the following two sections.

3. Admissibility for degenerate cyclotomic BMW algebras

Consider the degenerate cyclotomic BMW algebras Nn,S,r with parameters Ω = (ωa)a�0 and
u1, . . . , ur over a commutative ring S . Define a0, . . . ,ar−1 by (2.2).

Lemma 3.1. (See [7, Lemma 4.1].) Suppose that {e1, y1e1, . . . , yr−1
1 e1} is linearly independent over S in N2,S,r .

Then the parameters satisfy the following relations:

r− j−1∑
μ=0

ωμaμ+ j+1 = −2δ(r − j is odd)a j + δ( j is even)a j+1, (3.1)

for 0 � j � r − 1.
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We are going to show that admissibility (i.e. linear independence of {e1, y1e1, . . . , yr−1
1 e1}) is

equivalent to the parameters satisfying conditions (2.3) and (3.1).

Lemma 3.2. (See [7, Lemma 4.4].) There exist universal polynomials Ha(u1, . . . , ur) for a � 0, symmetric
in u1, . . . , ur , with integer coefficients, such that whenever S is a commutative ring with parameters Ω =
(ωa)a�0 and u1, . . . , ur satisfying (2.3) and (3.1), one has

ωa = Ha(u1, . . . , ur) for a � 0. (3.2)

Conversely, if ωa = Ha(u1, . . . , ur) for a � 0, then the parameters satisfy (2.3) and (3.1).

Proof. The system of relations (3.1) is a unitriangular linear system of equation for the variables
ω0, . . . ,ωr−1. In fact, if we list the equations in reverse order then the matrix of coefficients is⎡⎢⎢⎢⎢⎣

1
ar−1 1
ar−2 ar−1 1

...
. . .

. . .

a1 a2 · · · ar−1 1

⎤⎥⎥⎥⎥⎦ .

Solving the system for ω0, . . . ,ωr−1 gives these quantities as polynomial functions of a0, . . . ,ar−1,
thus symmetric polynomials in u1, . . . , ur . The recursion relations

∑r
j=0 a jω j+m = 0, for all m � 0

yield (3.2) for a � r. The converse is obvious, since the ωa given by (3.2) are the solutions of Eqs. (2.3)
and (3.1). �
3.1. The admissibility condition of Ariki, Mathas, and Rui

Ariki, Mathas and Rui used a different approach to admissibility for degenerate cyclotomic BMW
algebras in their fundamental work [3]. Let u1, . . . , ur and t be algebraically independent indetermi-
nants over Z. Define symmetric polynomials qa(u) in u1, . . . , ur by

r∏
i=1

1 + uit

1 − uit
=

∑
a�0

qa(u)ta.

The polynomials qa are known as Schur q-functions. Define

η±
a (u) = qa+1(u) ± (−1)r−1

2
qa(u) + 1

2
δa,0, (3.3)

for a � 0. Then (cf. [3, Lemma 3.8])

∑
a�0

η±
a (u)t−a =

(
1

2
− t

)
+

(
t ± (−1)r−1

2

) r∏
i=1

t + ui

t − ui
, (3.4)

as one sees by expanding the series, using the definition of the Schur q-functions. Ostensibly, η±
a (u) ∈

Z[1/2, u1, . . . , ur], but actually:

Lemma 3.3.

(1) q0(u) = 1.
(2) For a � 1, qa ≡ 2pa(u) mod 4Z[u1, . . . , ur], where pa denotes the a-th power sum symmetric function.
(3) η±

a (u) ∈ Z[u1, . . . , ur].
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Proof. Part (1) is obvious. Using the identity:

1 + vt

1 − vt
= 1 + 2vt(1 − vt)−1 = 1 + 2vt + 2v2t2 + 2v3t3 + · · · ,

one sees that the coefficient of ta in
∏r

i=1
1+ui t
1−ui t

is 2
∑

i ua
i plus a sum of terms divisible by 4. This

gives (2), and (3) follows as well. �
Example 3.4. Consider a ring S of characteristic 2 and u1, . . . , ur ∈ S . Then qa(u1, . . . , ur) = 0 for
a � 1, but 1

2 qa(u1, . . . , ur) = ∑
i ua

i ; that is, we consider 1
2 qa in Z[u1, . . . , ur], and then evaluate at

(u1, . . . , ur) ∈ Sr . Furthermore,

η+
0 (u1, . . . , ur) = δ(r is odd) and η+

a (u1, . . . , ur) = pa(u1, . . . , ur),

for a � 1.

Definition 3.5. (See [3].) Let S be a commutative ring with parameters Ω = (ωa)a�0 and u1, . . . , ur .
Say that the parameters are (u1, . . . , ur)-admissible, or that Ω is (u1, . . . , ur)-admissible, if for all
a � 0,

ωa = η+
a (u1, . . . , ur). (3.5)

Lemma 3.6. (Cf. [7, Lemma 5.1].)

(1) η+
a (u1, . . . , ur) = Ha(u1, . . . , ur), where Ha are the polynomials as in Lemma 3.2.

(2) Let S be a commutative ring with parameters Ω = (ωa)a�0 and u1, . . . , ur . The parameters are
(u1, . . . , ur)-admissible if and only if they satisfy (2.3) and (3.1).

Proof. Part (1) is proved in [7, Section 5] by showing that the sequence (η+
a (u))a�0 satisfies (2.3)

and (3.1); that is,

r∑
j=0

a jη
+
j+�

(u) = 0, for all � � 0, (3.6)

and

r− j−1∑
μ=0

η+
μ(u)aμ+ j+1 = −2δ(r − j is odd)a j + δ( j is even)a j+1, (3.7)

for 0 � j � r − 1, where a j = (−1)r− jεr− j(u1, . . . , ur). Part (2) follows from part (1) together with
Definition 3.5 and Lemma 3.2. �
3.2. Recovering the results of Ariki, Mathas, and Rui

The main results of [3] regarding degenerate cyclotomic BMW algebras are stated for ground rings
S in which 2 is invertible. The primary reason for this restriction on the ground ring was that it
seemed to be needed in order to use the quantities η+

a (u1, . . . , ur), which play a central role in [3],
via Definition 3.5. Using Lemma 3.3, the restriction on the ground ring can be eliminated. We proceed
to outline how the proofs have to be adjusted.
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Let us define a universal ring with (u1, . . . , ur)-admissible parameters. Let u1, . . . , ur be indeter-
minants over Z. Let Z = Z[u1, . . . , ur]; define a j = (−1) jεr− j(u1, . . . , ur) for 0 � j � r, where εk is
the k-th elementary symmetric function, and define ωa for a � 0 by

ωa = Ha(u1, . . . , ur) = η+
a (u1, . . . , ur) for a � 0. (3.8)

The parameters Ω = (ωa)a�0 and u1, . . . , ur are (u1, . . . , ur)-admissible by definition. (This is the
same construction as in [3, page 105] except that we don’t need to adjoin 1/2 to the ring.) If S
is any commutative ring with parameters Ω = (ωa)a�0 and u1, . . . , ur , such that Ω is (u1, . . . , ur)-
admissible then there is a unique algebra homomorphism from Z to S taking u j 	→ u j . Since Ω is
(u1, . . . , ur)-admissible, it follows that ωa 	→ ωa for all a � 0. For all n � 0, we have

Nn,S,r(Ω; u1, . . . , ur) ∼= Nn,Z,r(Ω; u1, . . . , ur) ⊗Z S. (3.9)

See [11, Remark 3.4] for a justification.
Let S be any commutative ring with parameters Ω = (ωa)a�0 and u1, . . . , ur (with no conditions

imposed on the parameters). We recall a construction of a spanning set in Nn =Nn,S,r(Ω; u1, . . . , ur)

from [3]. Remark that there is a homomorphism from the Brauer algebra Bn(ω0) with parameter ω0
to Nn,S,r taking si 	→ si and ei 	→ ei; this follows from the presentation of the Brauer algebra cited
in [3, Proposition 2.7]. For a Brauer diagram γ , we will also write γ for the image of γ in Nn,S,r . The
“r-regular monomials” in Nn,S,r are defined to be the elements

y pγ yq, (3.10)

where γ is a Brauer diagram, y p = y1
p1 · · · yn

pn , and yq = y1
q1 · · · yn

qn ; moreover, pi and qi are non-
negative integers, in the interval 0,1, . . . , r − 1, and pi = 0 unless the i-th vertex at the bottom of γ
is the left endpoint of a horizontal strand, and qi = 0 unless the i-th vertex at the top of γ is either
the left endpoint of a horizontal strand, or the top endpoint of a vertical strand. Note that there are
at most n strictly positive exponents pi or qi , and the number of r-regular monomials is rn(2n − 1)!!.

Proposition 3.7. (See [3, Proposition 2.15].) Let S be any commutative ring with parameters Ω = (ωa)a�0
and u1, . . . , ur . For all n � 0, Nn,S,r(Ω; u1, . . . , ur) is spanned over S by the set of r-regular monomials.
Furthermore, the ideal Nnen−1Nn is spanned by those r-regular monomials y pγ yq such that γ has at least
two horizontal strands.

Remark 3.8. It may appear from the presentation in [3] that this result depends on the invertibility of
2 in the ground ring and on an additional condition on the parameters (called “admissibility” in [3],
see Definition 2.10 in that paper). However, in fact, the result does not depend on any additional
assumptions. From Theorem 2.12 in [3], one only needs the statement that the degenerate affine
BMW algebra is spanned by regular monomials, and the argument for this part of Theorem 2.12 is
valid over an arbitrary ring. The argument given for Proposition 2.15 itself in [3] is also valid over an
arbitrary ring.

Theorem 3.9. (See [3].) Let F = Q(u1, . . . , ur) denote the field of fractions of Z . Then the algebra
Nn,F ,r(Ω; u1, . . . , ur) is split-semisimple of dimension rn(2n − 1)!!.

This theorem is proved by explicit construction of sufficiently many irreducible representations.

Corollary 3.10. (Cf. [3, Theorem 5.5].) Let S be a commutative ring with parameters Ω = (ωa)a�0 and
u1, . . . , ur . Assume that Ω is (u1, . . . , ur)-admissible. Then for all n � 0, Nn,S,r(Ω; u1, . . . , ur) is a free S-
module with basis the set of r-regular monomials.
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Proof. Because of (3.9), it suffices to show that Nn,Z,r(Ω; u1, . . . , ur) is a free Z-module with basis
the set M of r-regular monomials. By Proposition 3.7, M is a spanning set, and M ⊗ 1 := {m ⊗ 1:
m ∈M} is a spanning set in Nn,Z,r ⊗Z F =Nn,F ,r . But by Theorem 3.9, the latter algebra over F has
dimension rn(2n − 1)!!, and hence M⊗ 1 is linearly independent over F . It follows that M is linearly
independent over Z . �

The following theorem concerns cellularity of degenerate cyclotomic BMW algebras. The definition
of cellularity is given in Section 6.

Theorem 3.11. (Cf. [3, Theorem 7.17].) Let S be a commutative ring with parameters Ω = (ωa)a�0 and
u1, . . . , ur . Assume that Ω is (u1, . . . , ur)-admissible. Then Nn,S,r(Ω; u1, . . . , ur) is a cellular algebra of rank
rn(2n − 1)!!.

Proof. Because of (3.9), it suffices to prove this when S = Z . For this special case, one can follow
the proof in [3, Theorem 7.17] substituting Corollary 3.10 for [3, Theorem 5.5]. For an alternative
treatment of cellularity, see [9, Section 6.5]. �
3.3. Equivalence of admissibility conditions

The following theorem establishes the equivalence of the various admissibility criteria for degen-
erate cyclotomic BMW algebras.

Theorem 3.12. (Cf. [7, Theorem 5.2].) Let S be a commutative ring with parameters Ω = (ωa)a�0 and
u1, . . . , ur . Consider the degenerate cyclotomic BMW algebra N2 = N2,S,r(Ω; u1, . . . , ur). The following are
equivalent:

(1) The parameters are admissible, i.e. {e1, y1e1, . . . , yr−1
1 e1} is linearly independent over S in N2 .

(2) {ya
1e1 yb

1, s1 ya
1 yb

2, ya
1 yb

2: 0 � a,b � r − 1} is an S-basis of N2 .
(3) The parameters satisfy (2.3) and (3.1).
(4) The parameters are (u1, . . . , ur)-admissible.

Proof. (1) ⇒ (3) results from Lemmas 2.7 and 3.1. We have (3) ⇔ (4) by Lemma 3.6. The implication
(4) ⇒ (2) is a special case of Corollary 3.10. Finally, the implication (2) ⇒ (1) is trivial. �
4. Admissibility for cyclotomic BMW algebras

Fix an integral domain S with parameters ρ , q, Ω = (ωa)a�0 and u1, . . . , ur ; assume that ρ
and q are invertible and that Eq. (2.1) holds. Consider the cyclotomic BMW algebras Wn,S,r =
Wn,S,r(ρ,q,Ω; u1, . . . , ur).

4.1. Admissibility conditions of Wilcox and Yu

Explicit relations on the parameters that are equivalent to admissibility (i.e. linear independence
of {e1, y1e1, . . . , yr−1

1 e1}) have been found by Wilcox and Yu [23,22,25]. The form of these relations
depends on whether q2 �= 1 is satisfied in S . Note that the conditions q2 �= 1 (in the non-degenerate
case) and char(S) �= 2 (in the degenerate case) should be regarded as analogous.

Theorem 4.1. (See Wilcox and Yu [23].) Let S be an integral domain with parameters ρ , q, Ω = (ωa)a�0 , and
u1, . . . , ur satisfying Eq. (2.1) and (q − q−1) �= 0. The following conditions are equivalent:

(1) {e1, y1e1, . . . , yr−1
1 e1} ⊆W2,S,r is linearly independent over S.
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(2) The parameters satisfy the recursion relation (2.3) and the following relations:

(
q − q−1)[ r−�∑

j=1

a j+�ω j

]
= −ρ(a� − ar−�/a0)

+ (
q − q−1)[ �(�+r)/2�∑

j=max(�+1,�r/2�)
a2 j−� −

min(�,�r/2�−1)∑
j=��/2�

a2 j−�

]
(4.1)

for 1 � � � r − 1, and

ρ = ±a0 if r is odd, and ρ ∈ {
q−1a0,−qa0

}
if r is even. (4.2)

Note that Eqs. (2.1), (4.1), and (4.2) determine ω0, . . . ,ωr−1 and ρ in terms of q, u1, . . . , ur while
the recursion relation (2.3) determines ωa for a � r.

In [22] and [25] Wilcox and Yu derive explicit relations on the parameters that are equivalent to
linear independence of {e1, y1e1, . . . , yr−1

1 e1} also in the case that q − q−1 = 0; their new conditions
reduce to those of Theorem 4.1 in the case q − q−1 �= 0.

4.2. The admissibility criterion of Rui and Xu

Rui and Xu [21], following [3], take a different approach to admissibility for cyclotomic BMW
algebras when q − q−1 �= 0. Let u1, . . . , ur , ρ , q, and t be algebraically independent indeterminants
over Z. Define

G(t) = G(u1, . . . , ur; t) =
r∏

�=1

t − u�

tu� − 1
. (4.3)

Let

Z(t) = Z(t; u1, . . . , ur,ρ,q) = −ρ−1 + (
q − q−1) t2

t2 − 1
+ A(t)G

(
t−1), (4.4)

where

A(t) =
{

ρ−1(
∏

j u j) + (q − q−1)t/(t2 − 1) if r is odd, and

ρ−1(
∏

j u j) − (q − q−1)t2/(t2 − 1) if r is even.
(4.5)

Definition 4.2. (See Rui and Xu [21].) Let S be an integral domain with parameters ρ , q, Ω = (ωa)a�0
and u1, . . . , ur satisfying (2.1) and q − q−1 �= 0. One says that the parameters are (u1, . . . , ur)-
admissible, or that Ω is (u1, . . . , ur)-admissible, if

(
q − q−1)∑

a�0

ωat−a = Z(t; u1, . . . , ur,ρ,q), (4.6)

where Z is defined in Eqs. (4.4) and (4.5).
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Remark 4.3. Let S be an integral domain with (u1, . . . , ur)-admissible parameters, as in Definition 4.2.
With p = ∏

j u j , we have

ρ = ±p if r is odd, and ρ ∈ {
q−1 p,−qp

}
if r is even. (4.7)

The condition (4.7) on ρ was included in the definition of u-admissibility in [21], but it actually
follows from (2.1) and (4.6), as explained in [6, Remark 3.10].

4.3. Equivalence of admissibility conditions

The following theorem establishes the equivalence of the various admissibility conditions for cy-
clotomic BMW algebras, in case the ground ring is integral and q − q−1 �= 0.

Theorem 4.4. (See [6, Theorem 4.4].) Let S be an integral domain with parameters ρ , q, Ω = (ωa)a�0 , and
u1, . . . , ur satisfying Eq. (2.1) and (q − q−1) �= 0. The following are equivalent:

(1) {e1, y1e1, . . . , yr−1
1 e1} ⊆W2,S,r is linearly independent over S.

(2) The parameters satisfy the recursion relation (2.3) and the conditions (4.1) and (4.2) of Wilcox and Yu.
(3) Ω is (u1, . . . , ur)-admissible.

5. Semi-admissibility

Let An,S,r = An,S,r(u1, . . . , ur) denote either the cyclotomic BMW algebra Wn,S,r , with parameters
ρ , q, Ω = (ωa)a�0 and u1, . . . , ur , or the degenerate cyclotomic BMW algebra Nn,S,r , with parameters
Ω = (ωa)a�0 and u1, . . . , ur , over an integral domain S .

From here on, we impose the following standing assumption:

Assumption 5.1. The ground ring S is an integral domain, and the left ideal A2,S,re1 ⊆A2,S,r is torsion
free as an S-module.

This assumption holds, in particular, whenever S is a field.
Under Assumption 5.1, exactly one of the following three possibilities must hold:

(1) e1 = 0 in A2,S,r . In this case, en−1 = 0 in An,S,r for all n � 2. The (degenerate) cyclotomic BMW
algebras reduce to (degenerate) cyclotomic Hecke algebras.

(2) The parameters are admissible, i.e. {e1, y1e1, . . . , yr−1
1 e1} is linearly independent over S in A2,S,r .

This case has been studied in the literature and is well understood.
(3) There is a d with 0 < d < r such that {e1, y1e1, . . . , yd−1

1 e1} is linearly independent over S in
A2,S,r , but {e1, y1e1, . . . , yd

1e1} is linearly dependent. This case remains to be investigated.

Definition 5.2. Consider the cyclotomic or degenerate cyclotomic BMW algebras An,S,r over an integral
domain S with suitable parameters. Let 0 < d < r. We say that the parameters are d-semi-admissible
if {e1, y1e1, . . . , yd−1

1 e1} is linearly independent over S in A2,S,r , but {e1, y1e1, . . . , yd
1e1} is linearly

dependent.

Suppose d-semi-admissibility of the parameters. Then there is a polynomial of p0(u) ∈ S[u] of
degree d such that p0(y1)e1 = 0 but r(y1)e1 �= 0 for any non-zero polynomial r(u) ∈ S[u] of degree
less than d. Let F denote the field of fractions of S , and write p(u) = (u − u1) · · · (u − ur) ∈ S[u]. Since
p(y1) = 0, it follows that p0(u) divides p(u) in F [u]. Because of unique factorization in F [u], we have
(after renumbering the roots ui of p(u)) p0(u) = α(u − u1) · · · (u − ud) for some non-zero α in F . In
fact α ∈ S , since it is the leading coefficient of p0(u). Then we have α(y1 − u1) · · · (y1 − ud)e1 = 0.
Because we assumed A2,S,re1 is torsion-free over S , we can conclude that (y1 −u1) · · · (y1 −ud)e1 = 0.
Thus without loss of generality, we can take p0(u) = (u − u1) · · · (u − ud).
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Assumption 5.3. For the remainder of this section, we assume the parameters of An,S,r are d-semi-
admissible for some d with 0 < d < r. Assume without loss of generality that p0(y1)e1 = 0, where
p0(u) = (u − u1) · · · (u − ud) = ∑d

j=0 b ju j .

Lemma 5.4. There is a surjective homomorphism θ :An,S,r(u1, . . . , ur) →An,S,d(u1, . . . , ud) taking genera-
tors to generators. Moreover, θ maps the ideal generated by en−1 in An,S,r(u1, . . . , ur) onto the ideal generated
by en−1 in An,S,d(u1, . . . , ud).

Proof. The existence of the surjective homomorphism θ is evident because the generators of
An,S,d(u1, . . . , ud) satisfy the defining relations of An,S,r(u1, . . . , ur).

In general, if A and B are algebras and ϕ : A → B is a surjective algebra homomorphism, then
for any e ∈ A, we have ϕ(Ae A) = Bϕ(e)B . In particular, θ maps the ideal generated by en−1 in
An,Sr(u1, . . . , ur) onto the ideal generated by en−1 in An,S,d(u1, . . . , ue). �
Lemma 5.5.

(1) The sequence Ω = (ωa)a�0 satisfies the recurrence relation
∑d

j=0 b jω j+� = 0 for all � � 0.

(2) The parameters Ω = (ωa)a�0 and u1, . . . , ud in the degenerate case (respectively, ρ,q,Ω = (ωa)a�0 ,

and u1, . . . , ud in the non-degenerate case) are admissible. That is, the set {e1, y1e1, . . . , yd−1
1 e1} is lin-

early independent over S in A2,S,d(u1, . . . , ud).

Proof. For part (1), multiply the equation p0(y1)e1 = 0 by e1 y�
1 on the left, and employ the idem-

potent and compression relations to get
∑d

j=0 b jω j+�e1 = 0. The conclusion follows since e1 is not a
torsion element over S .

We should pause to see why something needs to be proved for part (2). We have assumed
that {e1, y1e1, . . . , yd−1

1 e1} ⊆ A2,S,r(u1, . . . , ur) is linearly independent, and we have to prove that

{e1, y1e1, . . . , yd−1
1 e1} ⊆ A2,S,d(u1, . . . , ud) is linearly independent. The latter set is the image of the

former under the algebra homomorphism θ :A2,S,r(u1, . . . , ur) →A2,S,d(u1, . . . , ud).

Consider the degenerate case. Apply the proof of (1) ⇒ (3) in Theorem 3.12 to the linearly in-
dependent set {e1, y1e1, . . . , yd−1

1 e1} ⊆ N2,S,r(u1, . . . , ur). This yields the analogue of condition (3.1)
with r replaced by d and a j by b j , namely

d− j−1∑
μ=0

ωμbμ+ j+1 = −2δ(d − j is odd)b j + δ( j is even)b j+1, (5.1)

for 0 � j � d − 1. Part (1) of this lemma together with the implication (3) ⇒ (1) in Theorem 3.12,
applied now to N2,S,d(Ω; u1, . . . , ud), gives the conclusion (2).

For the non-degenerate case, one uses the theorem of Wilcox and Yu (Theorem 4.1 in the case
q − q−1 �= 0, or [22] in general) in the same manner. �
5.1. A spanning set for Wn,S,r

In this section, write Wn for Wn,S,r(ρ,q,Ω; u1, . . . , ur).
Define elements y′

j and y′′
j for j � 1 in the affine or cyclotomic BMW algebras by

y′
1 = y′′

1 = y1,

y′
j = g j−1 y′

j−1 g−1
j−1 and y′′

j = g−1
j−1 y′′

j−1 g j−1 for j � 2.

Since the elements y′
j and y′′

j are all conjugate, we have p(y′
j) = (y′

j − u1) · · · (y′
j − ur) = 0, for all j,

and similarly for the elements y′′
j .
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Lemma 5.6. In any affine or cyclotomic BMW algebra, ei and gi commute with y′
j and y′′

j if j /∈ {i, i + 1}.

Proof. We will prove the commutation relations for the element y′
j ; the proof for the elements y′′

j is
essentially the same.

For i � 2, ei and gi commute with y1 and with g±1
1 , . . . , g±1

i−2, hence with y′
j for j < i. One sees

from the defining relations that

gi gi+1ei g−1
i+1 g−1

i = ei+1 and gi
−1 gi+1

−1ei gi+1 gi = ei+1, (5.2)

for all i. Using this, and the already established commutation relation [ei+1, y′
i] = 0, we have

ei y′
i+2 = ei(gi+1 gi)y′

i

(
g−1

i g−1
i+1

)
= (gi+1 gi)ei+1 y′

i

(
g−1

i g−1
i+1

)
= (gi+1 gi)y′

iei+1
(

g−1
i g−1

i+1

)
= (gi+1 gi)y′

i

(
g−1

i g−1
i+1

)
ei = y′

i+2ei . (5.3)

Similarly, using the braid relations and the commutation relation [gi+1, y′
i] = 0, we obtain that

[gi, y′
i+2] = 0. If j � i + 3, we have

y′
j = (g j−1 · · · gi+2)y′

i+2

(
g−1

i+2 · · · g−1
j−1

)
, (5.4)

and we see that gi and ei commute with y′
j because they commute with all the factors on the right

hand side of (5.4). �
Lemma 5.7. In Wn, we have p0(y′

j)ei = ei p0(y′
j) = 0 for all j �= i + 1. The same statement holds with y′

j

replaced by y′′
j .

Proof. We will verify explicitly that p0(y′
j)ei = 0 for j �= i + 1. An identical argument shows the same

with y′
j replaced by y′′

j , and the statement ei p0(y′
j) = ei p0(y′′

j ) = 0 for j �= i + 1 follows as well by
applying the involution ∗.

We first show that p0(y′
j)e j = 0 for all j, by induction. This is given for j = 1. If p0(y′

j)e j = 0
holds for some particular value of j, then

0 = g j g j+1 p0
(

y′
j

)
e j g−1

j+1 g−1
j = p0

(
y′

j+1

)
e j+1,

and our assertion follows.
Next we check that p0(y′

j)ei = 0 for all j � i, by induction on i − j. We have already checked the
case j = i. If this holds for some particular j � i, then

p0
(

y′
j

)
ei+1 = p0

(
y′

j

)
ei+1eiei+1 = ei+1 p0

(
y′

j

)
eiei+1 = 0.

It remains to check that p0(y′
j)ei = 0 for i � j − 2. We have

p0
(

y′
j

)
ei = g j−1 · · · (gi+1 gi)p0

(
y′

i

)(
gi

−1 gi+1
−1) · · · g j−1

−1ei

= g j−1 · · · (gi+1 gi)
[

p0
(

y′
i

)
ei+1

](
gi

−1 gi+1
−1) · · · g j−1

−1 = 0,

since p0(y′
i)ei+1 = 0 by the previous part of the proof. �
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We now describe a certain basis of the affine BMW algebra Ŵn = Ŵn,S (ρ,q,Ω) that was intro-
duced in [5, Section 3.2]. Given a permutation π ∈ Sn , with reduced expression π = si1 si2 · · · si� , let
gπ = gi1 gi2 · · · gi� in Ŵn; in fact, gπ is independent of the choice of the reduced expression of π ,
see [5, Section 2.4]. Fix an integer f with 0 � 2 f � n, and let γ be a Brauer diagram with 2 f hori-
zontal strands and s = n −2 f vertical strands. Then γ has a unique factorization in the Brauer algebra
of the form

γ = α(e1e3 · · · e2 f −1)πβ−1, (5.5)

where π is a permutation of {2 f + 1, . . . ,n − 1,n} and α and β are in a certain subset D f ,n of Sn

described in [5, Section 3.2]. Consider a sequence of n integers

(a,b, c) = (a1,a3, . . . ,a2 f −1,b1,b3, . . . ,b2 f −1, c2 f +1, . . . , cn).

Corresponding to γ and the sequence (a, b, c), we let Tγ ,a,b,c be the following element of Ŵn ,

Tγ ,a,b,c = gα y′′ a(e1e3 · · · e2 f −1)gπ y′′ c y′ b(gβ)∗,

where

y′′ a = y′′
1

a1 y′′
3

a3 · · · y′′
2 f −1

a2 f −1 ,

y′ b = y′
2 f −1

b2 f −1 · · · y′
3

b3 y′
1

b1 ,

and

y′′ c = y′′
n

cn · · · y′′
2 f +2

c2 f +2 y′′
2 f +1

c2 f +1 .

If γ has no horizontal strands (i.e. γ is a permutation diagram), the elements Tγ ,a,b,c still make
sense, but then f = 0, α and β are trivial, γ = π , and a and b are empty sequences. We have

Tγ ,a,b,c = Tγ ,c = gγ y′′ c .

It is shown in [5, Section 3.2] that the set of Tγ ,a,b,c , as γ ranges over Brauer diagrams and (a, b, c)
ranges over n-tuples of integers forms an S-basis of Ŵn , and, moreover, the subset corresponding to
Brauer diagrams with 2 f > 0 horizontal strands, forms a basis of the ideal Ŵnen−1Ŵn .

Let b′(n) denote the number of Brauer diagrams on n strands with at least one horizontal strand,
b′(n) = (2n − 1)!! − n!.

Lemma 5.8. The ideal Wnen−1Wn is spanned by a set of dnb′(n) elements. The algebra Wn is spanned by a
set of dnb′(n) + rnn! elements.

Proof. We also write Tγ ,a,b,c for the image of that element in the cyclotomic BMW algebra Wn . The
set of all Tγ ,a,b,c spans Wn , while those with γ a Brauer diagram with 2 f > 0 horizontal strands
span the ideal Wnen−1Wn .

If γ is a permutation diagram, then we can write any element Tγ ,a,b,c = Tγ ,c as a linear combi-
nation of elements Tγ ,c′ , with 0 � c′

i � r, using the relations p(y′′
j ) = (y′′

j − u1) · · · (y′′
j − ur) = 0.

In the following, take f > 0 and let γ be a Brauer diagram with 2 f horizontal strands. We claim
that any element Tγ ,a,b,c can be written as a linear combination of elements Tγ ,a′,b′,c′ where a′

i , b′
i ,

and c′
i lie in the interval 0,1, . . . ,d − 1. Using the commutation relations of Lemma 5.6, we can write
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Tγ ,a,b,c = gα

(
y′′

1
a1 e1

)(
y′′

3
a3 e3

) · · · (y′′
2 f −1

a2 f −1 e2 f −1
)

gπ y′′ c y′ b(gβ)∗.

Now, using Lemma 5.7, we can write any such element as a linear combination elements Tγ ,a′,b,c
with the a′

i in the desired interval. Using the commutation relations again, we can also write

Tγ ,a′,b,c = gα y′′ a′
gπ y′′ c(e2 f −1 y′

2 f −1
b2 f −1

) · · · (e3 y′
3

b3
)(

e1 y′
1

b1
)
(gβ)∗,

and using Lemma 5.7, we can write any such element as a linear combination of elements Tγ ,a′,b′,c
with the b′

i in the desired interval. Finally, e2 f −1 commutes with gπ and with all y′′
2 f + j . Using

e2 f −1 p0(y′′
2 f + j) = 0, we can reduce any Tγ ,a′,b′,c to a linear combination elements Tγ ,a′,b′,c′ with

the c′
i in the desired interval.

It follows that Wn is spanned by elements Tγ ,c , where γ is a permutation diagram and 0 � ci � r,
and by elements Tγ ,a,b,c where γ is a Brauer diagram with at least 2 horizontal strands and 0 �
ai,bi, ci � d. Moreover, the latter set spans Wnen−1Wn . �
5.2. A spanning set for Nn,S,r

In this section, write Nn for Nn,S,r(Ω; u1, . . . , ur).
Consider first the free non-commutative polynomial algebra in the generators {si, ei, y j: 1 � i < n

and 1 � j � n}. Assign degrees to the generators, deg(ei) = deg(si) = 0, deg(y j) = 1. This makes the
non-commutative polynomial algebra into a graded algebra. As the homomorphic image of a graded
algebra is a filtered algebra, the degenerate cyclotomic BMW algebra Nn is filtered by degree, as is
the ideal Nnen−1Nn . Let G = gr(Nn) denote the associated graded algebra. We will write ei, si, y j also
for the images of these elements in G .

Note that (Nn)0, the degree zero part of Nn , is the unital subalgebra generated by {si, ei: 1 �
i < n}. The canonical map from Nn to G restricts to an algebra isomorphism from (Nn)0 to G0.

To produce a spanning set in the ideal Nn,S,ren−1Nn,S,r , it suffices to produce a spanning set in
Gen−1G .

Lemma 5.9. In G , we have p0(y j)ei = ei p0(y j) = 0 for all j �= i + 1.

Proof. In G , the elements yi become conjugate, si yi si = yi+1. It follows that the proof of Lemma 5.7
carries over unchanged (replacing y′

j with y j and gi with si everywhere). �
We have already discussed the surjective homomorphism from the Brauer algebra Bn(ω0) with

parameter ω0 to (Nn)0 taking si 	→ si and ei 	→ ei; see the discussion just before Proposition 3.7.
For a Brauer diagram γ , we will also write γ for the image of γ in (Nn)0 and in G0. According to
Proposition 3.7, Nn is spanned by the set of r-regular monomials

y pγ yq. (5.6)

Furthermore, the ideal Nnen−1Nn is spanned by those elements y pγ yq such that γ has 2 f > 0
horizontal strands.

If γ is a permutation diagram, then pi = 0 for all i and

y pγ yq = γ yq := Tγ ,q.

If γ is not a permutation diagram, then using the factorization of γ in Eq. (5.5), and using si yi =
yi+1si in G , the image of the element (3.10) in G can be written as
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y pγ yq = y pα(e1e3 · · · e2 f −1)πβ−1 yq

= αyα−1(p)(e1e3 · · · e2 f −1)π yβ−1(q)β−1, (5.7)

where yα−1(p) = y1
pα(1) · · · yn

pα(n) and yβ−1(p) = y1
pβ(1) · · · yn

pβ(n) . Taking into account the restrictions
on p and q, this can be written in the form

Tγ ,a,b,c = αya(e1e3 · · · e2 f −1)π yc ybβ−1 (5.8)

where

ya = y1
a1 y3

a3 · · · y2 f −1
a2 f −1 ,

yc =
∏

2 f +1� j�n

y
c j

j ,

and

yb = y1
b1 y3

b3 · · · y2 f −1
b2 f −1 .

Lemma 5.10. The ideal Nnen−1Nn is spanned by a set of dnb′(n) elements. The algebra Nn is spanned by a set
of dnb′(n) + rnn! elements.

Proof. It is enough to work instead in the associated graded algebra G . We have that G is spanned by
the elements Tγ ,c , where γ is a permutation diagram and 0 � ci � r −1 for all i, and by the elements
Tγ ,a,b,c where γ is a Brauer diagram with at least 2 horizontal strands. The argument of Lemma 5.8,
with Lemma 5.7 replaced by Lemma 5.9, shows that any Tγ ,a,b,c , where γ has horizontal strands,
can be written as a linear combination of elements Tγ ,a′,b′,c′ , with 0 � ai,bi, ci � d − 1. Moreover, the
latter set of elements spans Gen−1G . �
5.3. Freeness of An,S,r

Let us recall from Lemma 5.4 that there is a surjective algebra homomorphism

θ : An,S,r(u1, . . . , ur) → An,S,d(u1, . . . , ud)

and that θ maps the ideal generated by en−1 in An,S,r(u1, . . . , ur) onto the ideal generated by en−1 in
An,S,d(u1, . . . , ud).

Proposition 5.11. θ induces an isomorphism from the ideal generated by en−1 in An,S,r(u1, . . . , ur) onto the
ideal generated by en−1 in An,S,d(u1, . . . , ud).

Proof. Write 〈en−1〉r for the ideal generated by en−1 in An,S,r(u1, . . . , ur) and 〈en−1〉d for the ideal
generated by en−1 in An,S,d(u1, . . . , ud).

The parameters of An,S,d(u1, . . . , ud) are admissible, by Lemma 5.5. Hence, we know that
An,S,d(u1, . . . , ud) is a free S module of rank dn(2n − 1)!!, and 〈en−1〉d is free of rank

dn((2n − 1)!! − n!) = dnb′(n),

where b′(n) denotes the number of Brauer diagrams on n strands with at least one horizontal strand.
We know that 〈en−1〉r has a spanning set of the same cardinality by Lemmas 5.8 and 5.10. Therefore,
θ : 〈en−1〉r → 〈en−1〉d is an isomorphism. (In fact, if B is spanning set of 〈en−1〉r of cardinality dnb′(n),
then θ(B) spans 〈en−1〉d . Since S is an integral domain and 〈en−1〉d is free over S with a basis of the
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same cardinality, it follows that θ(B) is a basis of 〈en−1〉d . Therefore, B is a basis of 〈en−1〉r , and θ is
an isomorphism.) �
Theorem 5.12. For all n � 0, An,S,r is a free S-module of rank dnb′(n) + rnn!, and An,S,r imbeds in An+1,S,r .

Proof. The ideal 〈en−1〉r is free of rank dnb′(n), by Proposition 5.11, and the quotient An,S,r/〈en−1〉r
is isomorphic to the cyclotomic Hecke algebra or degenerate cyclotomic Hecke algebra, which is free
of rank rnn!. Therefore, An,S,r is free of rank dnb′(n) + rnn!.

We have given spanning sets of the same cardinality in Lemmas 5.8 and 5.10, and hence those
spanning sets are actually S-bases. It is straightforward to check that the homomorphism from An,S,r

to An+1,S,r taking generators to generators maps the given basis of An,S,r injectively into the basis of
An+1,S,r . Therefore the map is injective. �
6. Cellularity

The following is a slight weakening of the original definition of cellularity from Graham and
Lehrer [13].

Definition 6.1. (See [13].) Let R be an integral domain and A a unital R-algebra. A cell datum for A
consists of an algebra involution ∗ of A; a partially ordered set (Λ,�) and for each λ ∈ Λ a set T (λ);
and a subset C = {cλ

s,t : λ ∈ Λ and s, t ∈ T (λ)} ⊆ A; with the following properties:

(1) C is an R-basis of A.
(2) For each λ ∈ Λ, let Ăλ be the span of the cμ

s,t with μ > λ. Given λ ∈ Λ, s ∈ T (λ), and a ∈ A, there
exist coefficients rs

v(a) ∈ R such that for all t ∈ T (λ):

acλ
s,t ≡

∑
v

rs
v(a)cλ

v,t mod Ăλ.

(3) (cλ
s,t)

∗ ≡ cλ
t,s mod Ăλ for all λ ∈ Λ and, s, t ∈ T (λ).

A is said to be a cellular algebra if it has a cell datum.

For brevity, we will write that (C,Λ) is a cellular basis of A. In the original definition in [13] it is
required that (cλ

s,t)
∗ = cλ

t,s . All the conclusions of [13] remain valid with the weaker definition, and,
in fact, the two definitions are equivalent if 2 is invertible in R . The main advantage of the weaker
definition is that it allows a graceful treatment of extensions.

Definition 6.2. Let A be an algebra with involution and let J be a ∗-invariant ideal. Say that J is a
cellular ideal if it satisfies the axioms for a cellular algebra (except for being unital) with cellular basis{

cλ
s,t : λ ∈ Λ J and s, t ∈ T (λ)

} ⊆ J

and we have, as in point (2) of the definition of cellularity,

acλ
s,t ≡

∑
v

rs
v(a)cλ

v,t mod J̆λ

not only for a ∈ J but also for a ∈ A.

Lemma 6.3 (On extensions of cellular algebras). If J is a cellular ideal in A, and H = A/ J is cellular (with
respect to the involution induced from the involution on A), then A is cellular.
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Proof. Let (Λ J ,�) be the partially ordered set in the cell datum for J and C J the cellular basis.
Let (ΛH ,�) be the partially ordered set in the cell datum for H and {h̄μ

u,v} the cellular basis. Let
Λ = Λ J ∪ΛH , with partial order agreeing with the original partial orders on Λ J and on ΛH and with
λ > μ if λ ∈ Λ J and μ ∈ ΛH . A cellular basis of A is C J ∪ {hμ

s,t}, where hμ
s,t is any lift of h̄μ

s,t . �
Theorem 6.4. Consider the sequence An,S,r of cyclotomic or degenerate cyclotomic BMW algebras over an
integral domain S. Suppose that Assumption 5.1 holds. Then

(1) An,S,r imbeds in An+1,S,r for all n � 0.
(2) An,S,r is a cellular algebra.

Proof. In the case e1 = 0 in A2,S,r , the cyclotomic or degenerate cyclotomic BMW algebras reduce
to cyclotomic or degenerate cyclotomic Hecke algebras; in this case the results are known. If the
parameters are admissible, these results are obtained in the papers cited in the introduction.

It remains to verify the results in the semi-admissible case. We already have shown in the semi-
admissible case that An,S,r is a free S module, and that An,S,r imbeds in An+1,S,r . Adopt the
notation and conventions of Section 5. We know that An,S,d(u1, . . . , ud) has admissible parameters
by Lemma 5.5, and therefore is a cellular algebra by the papers cited in the introduction. More-
over, 〈en−1〉d is a cellular ideal in An,S,d(u1, . . . , ud). It follows that 〈en−1〉r is a cellular ideal in
An,S,r , with cellular basis {θ−1(cλ

s,t)}, where {cλ
s,t} is a cellular basis of 〈en−1〉d . The crucial point

regarding the expansion of aθ−1(cλ
s,t) in terms of basis elements, for a ∈ An,S,r follows because

aθ−1(cλ
s,t) = θ−1(θ(a)cλ

s,t).
Since An,S,r/〈en−1〉r is isomorphic to the cyclotomic Hecke algebra, or degenerate cyclotomic Hecke

algebra, which is cellular, it follows from Lemma 6.3 that An,S,r is cellular. �
Corollary 6.5. Any cyclotomic or degenerate cyclotomic BMW algebra over a field is cellular.

Proof. In case the ground ring is a field, Assumption 5.1 holds automatically. �
Corollary 6.6. Let F be an algebraically closed field and consider an affine (resp. degenerate affine) BMW
algebra Ân,F over F . Let M be a simple finite dimensional Ân,F -module. If e1M = 0, then M factors through a
cyclotomic (resp. degenerate cyclotomic) Hecke algebra. If e1M �= 0, then M factors through cyclotomic (resp.
degenerate cyclotomic) BMW algebra with admissible parameters.

Proof. In the degenerate case, this result is contained in [3, Theorem 7.19 and Proposition 3.11] (but
with the hypothesis that the characteristic of the field is �= 2.)

Because the field is algebraically closed, the minimal polynomial of y1 on M factors over F . Hence
M factors through some cyclotomic (resp. degenerate cyclotomic) BMW algebra. If e1M = 0, then M
factors through the corresponding cyclotomic (resp. degenerate cyclotomic) Hecke algebra. If e1M �= 0,
then the parameters of the cyclotomic (resp. degenerate cyclotomic) BMW algebra must be either
admissible or semi-admissible.

Let us assume a cyclotomic (resp. degenerate cyclotomic) BMW algebra An,F ,r = AnF ,r(u1, . . . , ur)

with d-semi-admissible parameters (d < r). Then M is the simple head of a cell module �λ , and since
e1M �= 0, the cell module belongs to the ideal 〈en−1〉r . But the cell modules belonging to 〈en−1〉r

factor through θ :AnF ,r(u1, . . . , ur) →AnF ,d(u1, . . . , ud), and the latter algebra has admissible param-
eters. �

The following proposition depends only on the material in this paper up through Lemma 5.5.

Proposition 6.7. Let F be an algebraically closed field and consider an affine (resp. degenerate affine) BMW
algebra Ân,F over F . The following are equivalent:
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(1) There exist r > 0 and u1, . . . , ur ∈ F such that the parameters of Ân,F together with u1, . . . , ur are ad-
missible.

(2) Ân,F admits a finite dimensional module on which e1 is non-zero.

Proof. If (1) holds, then An,F ,r(u1, . . . , ur) is a finite dimensional Ân,F module on which e1 �= 0. If
(2) holds, let u1, . . . , ur be the roots of the minimal polynomial of y1 acting on M . The module
M factors through the cyclotomic algebra An,F ,r(u1, . . . , ur). Since e1M �= 0, it follows that e1 �= 0
in An,F ,r(u1, . . . , ur) and hence also in A2,F ,r(u1, . . . , ur). Since F is a field, Assumption 5.1 holds
for A2,F ,r(u1, . . . , ur). Therefore, the parameters of A2,F ,r(u1, . . . , ur) are either admissible or d-
semi-admissible for some d with 0 < d < r. In the latter case, after renumbering the roots ui ,
A2,F ,d(u1, . . . , ud) has admissible parameters, by Lemma 5.5. Thus (1) holds. �
7. Rationality of parameters for affine algebras

7.1. Rationality of parameters for degenerate affine BMW algebras

Ariki, Mathas, and Rui call the parameter set Ω of a degenerate affine (or cyclotomic) BMW al-
gebra rational if the generating function

∑
a�0 ωat−a is a rational function. They prove the following

theorem, under the additional hypothesis that the characteristic of the field is different from 2.

Theorem 7.1. Consider the degenerate affine BMW algebra N̂n, n � 2, over an algebraically closed field F , with
parameters Ω = (ωa)a�0 . Suppose that e1 �= 0 in N̂n. The following are equivalent.

(1) The generating function
∑

a�0 ωat−a is a rational function in F (t).
(2) Ω satisfies a linear homogeneous recursion; i.e. there exist r > 0, N � 0 and a0,a1, . . . ,ar−1 ∈ F such

that ωr+� + ∑r−1
j=0 a jω j+� = 0, for all �� N.

(3) There exist r > 0 and a0,a1, . . . ,ar−1 ∈ F such that ωr+� + ∑r−1
j=0 a jω j+� = 0, for all �� 0.

(4) There exist r > 0 and u1, . . . , ur ∈ F such that the parameters Ω and u1, . . . , ur are admissible.
(5) N̂n admits a finite dimensional module on which e1 is non-zero.

Proof. (1) ⇔ (2) ⇐ (3) is easy, and (3) ⇐ (4) holds by Lemma 2.7. Proposition 6.7 gives (4) ⇔ (5).
The implication (1) ⇒ (4) is proved in [3, Proposition 3.11] under the assumption that the char-
acteristic of the field is not equal to 2. So it remains only to prove this implication for a field of
characteristic 2. This will be done with the aid of two lemmas. �
Lemma 7.2. Consider the degenerate affine BMW algebra N̂2,S over a ring S, with parameters Ω = (ωa)a�0 .
Suppose that e1 is not a torsion element over S. Then:

(1) 2ω2a+1 = −ω2a + ∑2a+1
b=1 (−1)b−1ωb−1ω2a+1−b for a � 0.

(2) If the characteristic of S is 2, then ω2a = ω2
a for a � 0.

Proof. Part (1) is [3, Corollary 2.4]. If the characteristic is 2, then the equation in part (1) simplifies
to ω2a = ω2

a . �
The proof of the following lemma was suggested by Kevin Buzzard, via mathoverflow.net.

Lemma 7.3. Let F be an algebraically closed field of characteristic 2. Suppose that Ω = (ωa)a�0 satisfies
a linear homogeneous recursion, as in Theorem 7.1(2) and ω2a = ω2

a for a � 0. Then there exist distinct

u1, . . . , ud ∈ F such that ωa = ∑d
i=1 ua

i for all a � 1, and ω0 ∈ {0,1}.

Proof. Our assumptions include ω0 = ω2
0 . Thus ω0 ∈ {0,1}. Let v1, . . . , vm be the distinct roots of the

characteristic polynomial of the linear recursion relation satisfied by Ω . Then there exist polynomials
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h1, . . . ,hm such that ωa = ∑m
i=1 hi(a)va

i for a � N . Let αi be the constant term of hi for each i. Since
char(F ) = 2, we have hi(2a) = αi for all a. For a � N ,∑

i

αi v4a
i = ω4a = ω2

2a =
∑

i

α2
i v4a

i . (7.1)

Because the characteristic of F is 2, each element has a unique 2k-th root for all k � 1; in particular
all the v4

i are distinct, so Eq. (7.1) implies that α2
i = αi for all i, i.e. αi ∈ {0,1}. Let u1, . . . , ud be the

list of those v j such that α j = 1. Then we have ω2a = ∑
i u2a

i for a � N . For an arbitrary a � 1, chose

k such that 2k−1a � N . Then ωa is the unique 2k-th root of ω2ka = ∑
i u2ka

i , namely ωa = ∑
i ua

i . �
Conclusion of the proof of Theorem 7.1. Let us prove (1) ⇒ (4) when the characteristic of the field
is 2. Since the ground ring is a field and e1 �= 0, we have ω2a = ω2

a for a � 0, by Lemma 7.2. Hence,
by Lemma 7.3, there exist u1, . . . , ud ∈ F such that

ωa = pa(u1, . . . , ud) = pa(u1, . . . , ud,0)

for a � 1 and ω0 ∈ {0,1}. Using Example 3.4 and Definition 3.5, Ω is either (u1, . . . , ud)-admissible or
(u1, . . . , ud,0)-admissible, so by Theorem 3.12, on equivalent conditions for admissibility, condition (4)
holds. �
Corollary 7.4. (See Rui and Si [19].) Assume char(F ) �= 2. The conditions of Theorem 7.1 are equivalent to the
existence of a simple finite dimensional module on which e1 is non-zero, as long as Ω is not the zero sequence
or n �= 2.

Proof. By the results of [19], a degenerate cyclotomic BMW algebra Nn,F ,r(Ω; u1, . . . , ur) with admis-
sible parameters has a simple module on which e1 is non-zero, as long as Ω is not the zero sequence
or n �= 2. (Rui and Si assumed char(F ) �= 2, and I have not checked whether their results remain valid
in characteristic 2.) �
7.2. Rationality of parameters for affine BMW algebras

We are going to obtain a result analogous to Theorem 7.1 for the affine BMW algebras.

Lemma 7.5. Consider an affine BMW algebra Ŵn,S with parameters ρ , q, and Ω = (ωa)a�0 .

(1) There exist elements ω−a ∈ S such that e1 y−a
1 e1 = ω−ae1 for a � 1.

(2) Suppose that e1 is not a torsion element over S. Then:

−ωa + ω−a + ρ
(
q − q−1) a∑

i=1

(ωa−iω−i − ωa−2i) = 0 for a � 1. (7.2)

(3) Suppose that S is an integral domain, that q − q−1 �= 0, and that e1 is not a torsion element over S. Then:[∑
a�0

ωat−a − t2

t2 − 1
+ ρ−1

q − q−1

][∑
b�1

ω−bt−b − 1

t2 − 1
− ρ−1

q − q−1

]

= t2

(t2 − 1)2
− 1

(q − q−1)2
. (7.3)
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Proof. Statement (1) is from [10, Corollary 3.13]. Statement (2) is proved in [21, Lemma 2.17] and (in
a different but equivalent form) in [10, Corollary 3.13] and [11, Lemma 2.6]. Eq. (7.3) appears as (2.30)
in [21]. If S is integral and q − q−1 �= 0, then (7.2) is equivalent to (7.3). To see this, expand the left
side of (7.3) and isolate the coefficient of t−n for each n � 0. �
Remark 7.6. The equivalence of (7.2) and (7.3) seems to be implicit in [21]. The left side of (7.3) can
also be written as:[∑

a�0

ωat−a − t2

t2 − 1
+ ρ−1

q − q−1

][∑
b�0

ω−bt−b − t2

t2 − 1
− ρ

q − q−1

]
.

Ram et al. [4] have given an interesting non-inductive direct proof of (7.3).

Lemma 7.7. Consider a cyclotomic BMW algebra Wn,S,r with parameters ρ , q, and Ω = (ωa)a�0 and
u1, . . . , ur . Let ai be given by Eq. (2.2). If e1 is not a torsion element over S, then

∑r
j=0 a jω j+� = 0 for all

� ∈ Z.

Proof. Same as the proof of Lemma 2.7. �
Lemma 7.8. Consider an affine BMW algebra Ŵn,F with parameters ρ , q, and Ω = (ωa)a�0 over a field F .

Suppose that there exist r > 0 and a0,a1, . . . ,ar−1 ∈ S such that ωa+r +∑r−1
j=0 a jω j+a = 0 for all a ∈ Z. Then

w+(t) = ∑
a�0 ωat−a and w−(t) = ∑

b�1 ω−bt−b are rational functions in F (t) and w−(t) = −w+(t−1).
Moreover, w+(0) = 0 and w+(∞) = ω0 .

Proof. Let p(t)= tr +∑r−1
j=0 a jt j . Then one computes, using the recursion on (ωa)a∈Z , that p(t)w+(t) =

q1(t), where q1 is an explicit polynomial of degree � r. Similarly, p(t)w−(t−1) = q2(t). Using the re-
cursion again, one sees that q1 = −q2. The coefficient of tr in q1(t) is ω0 and the constant term is
zero; this gives w+(0) = 0 and w+(∞) = ω0. �
Theorem 7.9. Consider an affine BMW algebra Ŵn over an algebraically closed field F , with parameters ρ , q,
and Ω = (ωa)a�0 . Suppose that e1 �= 0 in Ŵn. Consider the following statements:

(1) w+(t) = ∑
a�0 ωat−a and w−(t) = ∑

b�1 ω−bt−b are rational functions in F (t) and w−(t) =
−w+(t−1). Moreover, w+(t) does not have a pole at 0 or at ∞.

(2) There exist r > 0 and a0,a1, . . . ,ar−1 ∈ F such that ωr+� + ∑r−1
j=0 a jω j+� = 0, for all � ∈ Z.

(3) There exist r > 0 and u1, . . . , ur ∈ F such that the parameters ρ , q, Ω , and u1, . . . , ur are admissible.
(4) Ŵn admits a finite dimensional module on which e1 is non-zero.

The following implications hold:

(1) ⇐ (2) ⇐ (3) ⇔ (4).

If q − q−1 �= 0, then all the conditions are equivalent.

Proof. The implication (1) ⇐ (2) is from Lemma 7.8, and (2) ⇐ (3) from Lemma 7.7. The equivalence
(3) ⇔ (4) comes from Proposition 6.7.

It remains to prove (1) ⇒ (3) if q − q−1 �= 0. Assume (1). Since the ground ring is a field and
e1 is assumed to be non-zero, (7.3) holds. But by assumption, we have that w+(t) = ∑

a�0 ωat−a

and w−(t) = ∑
b�1 ω−bt−b are rational functions, and w−(t) = −w+(t−1). Substituting in (7.3), and

writing
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h(t) = − t2

t2 − 1
+ ρ−1

q − q−1
,

we have

−[
w+(t) + h(t)

][
w+(

t−1) + h
(
t−1)] = t2

(t2 − 1)2
− (

q − q−1)−2
. (7.4)

Define

B(t) = (
q − q−1)−1 + t

t2 − 1
= (t + q)(t − q−1)

(q − q−1)(t2 − 1)
.

Note that

−B(t)B
(
t−1) = t2

(t2 − 1)2
− (

q − q−1)−2
. (7.5)

We can write w+(t) in the form

w+(t) = −h(t) + B(t)A0tm

∏s
�=1(tu� − 1)∏r

j=1(t − v j)
,

where m ∈ Z, A0 ∈ F , no u� or v j is zero, and u� �= v−1
j for all j, �. Then, taking into account Eqs. (7.4)

and (7.5) we have

1 = A2
0

∏s
�=1(tu� − 1)(t−1u� − 1)∏r

j=1(t − v j)(t−1 − v j)
= A2

0(−t)r−s

∏
� u�∏
j v j

∏s
�=1(t − u−1

� )(t − u�)∏r
j=1(t − v−1

j )(t − v j)
. (7.6)

Considering the restrictions placed on the u� and v j , we must have r = s, A2
0 = 1, and the multisets

{u1, . . . , us} and {v1, . . . , vs} coincide. Thus

w+(t) = −h(t) + (−1)α B(t)tm
s∏

j=1

tu j − 1

t − u j
, (7.7)

with α ∈ {0,1} and m ∈ Z. Because w+ does not have a pole at 0 or ∞, we have m = 0. Using the
definition of h(t), we have finally

w+(t) = t2

t2 − 1
− ρ−1(q − q−1)−1 + (−1)α B(t)

s∏
j=1

tu j − 1

t − u j
. (7.8)

Moreover, using w+(∞) = ω0, we obtain that

(ω0 − 1)
(
q − q−1) = −ρ−1 + (−1)α

∏
j

u j,

and (2.1) implies that ρ = (−1)α
∏

j u j . Now there are four cases to consider, according to the parity
of α and of s.
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Case 1, α = 0 and s is odd. Then ρ = ∏
j u j . Comparing the expression (7.8) for w+(t) with the

formulas (4.4) and (4.5) and Definition 4.2, we see that the parameters ρ , q, Ω are (u1, . . . , us)-
admissible.

Case 2, α = 1 and s is odd. Then ρ = −∏
j u j . Let v = (u1, . . . , us,−1,1). Then

w+(t) = t2

t2 − 1
− ρ−1(q − q−1)−1 − B(t)

(
s∏

j=1

u j

)
s∏

j=1

t − u−1
j

t − u j

= t2

t2 − 1
− ρ−1(q − q−1)−1 + B(t)

(
s+2∏
j=1

v j

)
s+2∏
j=1

t − v−1
j

t − v j
,

and ρ = −∏s
j=1 u j = ∏s+2

j=1 v j . Again, comparing with the formulas of Section 4.2, we see that the
parameters ρ , q, Ω are (u1, . . . , us,−1,1)-admissible.

Case 3, α = 0 and s is even. Then ρ = ∏
j u j . By a similar calculation as in Case 2, one checks that

the parameters ρ , q, Ω are (u1, . . . , us,1)-admissible.
Case 4, α = 1 and r is even. Then ρ = −∏

j u j . By a similar calculation again, one checks that the
parameters ρ , q, Ω are (u1, . . . , us,−1)-admissible.

In each of the four cases, there exists r > 0 and v1, . . . , vr such that ρ , q, Ω and v1, . . . , vr satisfy
the Rui–Xu criterion for admissibility. Thus we have shown (1) ⇒ (3) when q − q−1 �= 0. �
Corollary 7.10. (See Rui and Si [20].) Assume q − q−1 �= 0. The conditions of Proposition 7.9 are equivalent
to the existence of a simple finite dimensional module on which e1 is non-zero, as long as Ω is not the zero
sequence or n �= 2.

Proof. By the results of [20], a cyclotomic BMW algebra Wn,S,r(ρ,q,Ω; u1, . . . , ur) with admissible
parameters and q − q−1 �= 0 has a simple module on which e1 is non-zero, as long as Ω is not the
zero sequence or n �= 2. �
Conjecture 7.11. Theorem 7.9 remains valid when q − q−1 = 0.

8. Construction of examples of semi-admissible parameters

Examples of cyclotomic (resp. degenerate cyclotomic) BMW algebras with semi-admissible param-
eters can easily be constructed. For the sake of clarity, we carry this out for the degenerate cyclotomic
BMW algebras only; non-degenerate cyclotomic BMW algebras with q2 �= 1 can be treated in a similar
way, using the admissibility criterion of Rui and Xu [21].

Let S be an integral domain with 1/2 ∈ S . Take 0 < d < r and u1, . . . , ur ∈ S . Assume that ui �= ±u j

for any i, j and that ui �= ±1/2 for any i. Let p(u) = ∏
1� j�r(u − u j) and p0(u) = ∏

1� j�d(u − u j).
Define ωa for a � 0 via the (u1, . . . , ud)-admissibility criterion of [3],

ωa = qa+1(u1, . . . , ud) + 1

2
(−1)d−1qa(u1, . . . , ud) + 1

2
δa,0. (8.1)

By [3], this is equivalent to

∑
a�0

ωau−a = 1/2 − u + (
u − (−1)d/2

) d∏
j=1

u + u j

u − u j
. (8.2)
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By the implication (4) ⇒ (1) in Theorem 3.12 (which is from [3]), the parameters Ω = (ωa)a�0

and u1, . . . , ud are admissible; i.e. the set {e1, y1e1, . . . , yd−1
1 e1} is linearly independent over S in

N2,S,d(Ω, u1, . . . , ud).
Now consider N2,S,r(Ω; u1, . . . , ur). Since we have an algebra map

θ : N2,S,r(Ω; u1, . . . , ur) → N2,S,d(Ω; u1, . . . , ud),

we have {e1, y1e1, . . . , yd−1
1 e1} is linearly independent over S in N2,S,r(Ω; u1, . . . , ur). Let r′ be max-

imal such that {e1, y1e1, . . . , yr′−1
1 e1} is linearly independent in N2,S,r(Ω; u1, . . . , ur). Then by the

argument following Definition 5.2, there is a subset {v1, . . . , vr′ } of {u1, . . . , ur} such that p1(y1)e1 :=∏r′
j=1(y1 − v j)e1 = 0, and h(y1)e1 �= 0 for any polynomial h of degree less than r′ . Now by Lemma 5.5

and Theorem 3.12, the set of parameters Ω, v1, . . . , vr′ satisfies the (v1, . . . , vr′ )-admissibility condi-
tions. Hence we also have

∑
a�0

ωau−a = 1/2 − u + (
u − (−1)r′

/2
) r′∏

j=1

u + v j

u − v j
. (8.3)

Comparing Eqs. (8.2) and (8.3), and taking into account the assumptions on {u1, . . . , ur}, we conclude
that d = r′ and {v1, . . . , vd} = {u1, . . . , ud}. Thus the parameters Ω, u1, . . . , ur are d-semi-admissible.
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