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We study the back-reaction of moduli fields on the inflaton potential in generic models of F-term 
inflation. We derive the moduli corrections as a power series in the ratio of Hubble scale and modulus 
mass. The general result is illustrated with two examples, hybrid inflation and chaotic inflation. We find 
that in both cases the decoupling of moduli dynamics and inflation requires moduli masses close to the 
scale of grand unification. For smaller moduli masses the CMB observables are strongly affected.
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1. Introduction

Supergravity F-term inflation is an attractive theoretical frame-
work for describing the anisotropies of the cosmic microwave 
background radiation [1]. This includes hybrid inflation [2,3] as 
well as chaotic inflation [4] for which a large class of models has 
recently been constructed [5].

Supergravity is a low-energy effective theory, which motivates 
attempts to embed supergravity inflation into higher-dimensional 
UV-complete theories, in particular string theory. However, in such 
constructions stabilization of all moduli including the dilaton, Käh-
ler and complex structure moduli is a potential problem. A stan-
dard procedure is to use gaugino condensates and fluxes [6–8], 
which can lead to metastable Minkowski vacua. In general, mod-
uli stabilization in the entire cosmological history leads to upper 
bounds on the reheating temperature [9] and the energy scale of 
inflation [10]. In the simple setup by KKLT the modulus mass and 
the barrier protecting the vacuum are proportional to the gravitino 
mass. This leads to a tension between high-scale inflation and low-
energy supersymmetry breaking.

As a possible alternative we study supersymmetric moduli sta-
bilization, in the sense that all moduli masses are large and in-
dependent of the gravitino mass. Examples of this type are ‘race-
track models’ where the height of the barrier protecting metastable 
Minkowski space can be arbitrarily large, independent of the scale 
of supersymmetry breaking [10]. Detailed analyses of moduli dy-
namics in specific inflation and supersymmetry breaking models 
have been carried out in [11–14].

In this Letter we consider the consistency of supersymmetric 
moduli stabilization and generic F-term inflation. In general, the 
coupling to the modulus generates corrections to the inflaton po-
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tential which can be expanded in powers of H/mρ , the ratio of 
Hubble scale during inflation and modulus mass.

In small-field inflation, such as hybrid inflation, this produces 
a linear term in the inflaton at leading order. This is analogous to 
the effect of supersymmetry breaking which induces a linear term 
proportional to the gravitino mass [15]. Depending on its size such 
a linear term can have a significant effect on inflationary observ-
ables, in particular the spectral index of scalar fluctuations [16–19].

In chaotic inflation the leading order correction is suppressed 
by an additional power of H/mρ compared to hybrid inflation. 
Nevertheless, the modulus-induced terms can have severe con-
sequences for CMB observables in the case of a large Hubble 
scale during inflation, which is suggested by the recently released 
B-mode polarization data [20].

2. Supersymmetric moduli stabilization and inflation

In a four-dimensional effective theory a single modulus ρ resid-
ual from a higher-dimensional supergravity theory is usually de-
scribed by the classical tree-level Kähler potential1

Kmod(ρ, ρ̄) = −κ log(ρ + ρ̄), (1)

where, for example, κ = 1 for the dilaton in heterotic string theory 
and κ = 3 for a Kähler modulus in type IIB string theory. Stabiliza-
tion of ρ is achieved by an appropriate superpotential Wmod(ρ). 
In the remainder of this Letter we assume that Wmod is such that 
the scalar potential has a local minimum at ρ0 = ρ̄0 ≡ σ0 which is 
supersymmetric and Minkowski, i.e.,

Wmod(σ0) = 0, Dρ Wmod(σ0) = 0, (2)

1 We restrict our discussion to a single modulus, assuming that all other moduli 
are stabilized supersymmetrically at a higher scale.
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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where Dρ denotes the Kähler covariant derivative with respect 
to ρ . If the conditions Eq. (2) are met one finds

|mρ | = 1

κ
(2σ0)

2−κ/2
∣∣W ′′

mod(σ0)
∣∣, (3)

where primes denote derivatives with respect to ρ . For simplicity, 
we choose W ′′

mod(σ0) to be real. To ensure the modulus remains 
stabilized its mass is required to be large compared to the scale of 
any other dynamics in the effective theory, for example, the scale 
of inflation.

An example for this kind of moduli stabilization, the KL-model, 
was developed in [10]. Here the superpotential is of a racetrack 
type, i.e.,

Wmod(ρ) = W0 + Ae−aρ + Be−bρ, (4)

and W0 is tuned such that Wmod(σ0) vanishes. The metastable 
Minkowski vacuum at ρ = σ0 is separated from a global AdS min-
imum by a high barrier. In addition, mρ is independent of the 
gravitino mass in the effective theory, regardless of the mechanism 
which breaks supersymmetry.

To study the impact of a stabilized modulus with a large super-
symmetric mass on the inflationary potential, we consider a class 
of supergravity theories defined by

Ktot = −κ log (ρ + ρ̄) + K (φα, φ̄ᾱ),

W = Wmod(ρ) + W inf(φα), (5)

where φα , with α = 1, 2, ... , denote the chiral superfields in the 
inflation model. Note that in general the Kähler potential of the 
inflaton sector is moduli-dependent. The coupling of moduli to 
matter fields depends on the considered string model.2 In some 
cases the dependence on the lightest modulus can even be absent. 
In the following we neglect the dependence of the inflaton sector 
on ρ , following Refs. [11–13,22]. The relevance of the considered 
supergravity models to string constructions has to be examined for 
each particular case.

The scalar potential resulting from Eq. (5) can be written as

V = eK

(ρ + ρ̄)κ

{
(ρ + ρ̄)2

κ
|Dρ W |2

+ K αᾱ DαW DᾱW − 3|W |2
}
. (6)

Generically, there is a non-trivial interaction between the modulus 
and inflaton sectors. Due to the large positive energy density dur-
ing inflation the minimum of the modulus is shifted by δρ . The 
displacement is obtained by imposing ∂ρ V |σ0+δρ = 0 at the new 
minimum. The expression for δρ can be expanded in powers of 
H/mρ , where H = √

V /3 is the Hubble scale during inflation. The 
aforementioned requirement of mρ > H makes this analysis self-
consistent. Including all terms up to second order in H/mρ , we 
find3

δρ = W inf

(2σ0)κ/2−1mρ
+ 1

(2σ0)κ−1 m2
ρ

[
K αᾱ DαW inf∂ᾱW inf

− |W inf|2 − W 2
inf

(
1 − κ

2
+ W ′′′

mod(σ0)

2κ (2σ0)κ/2−3 mρ

)]

+O
(

H3

m3
ρ

)
. (7)

2 See, for example, the discussion in [21,22].
3 We assume that W ′′

mod is not hierarchically suppressed compared to higher 
derivatives of Wmod.
This implies

Dρ W |σ0+δρ = κ

(2σ0)κ/2+1 mρ
K αᾱ DαW ∂ᾱW +O

(
H2

m2
ρ

)
, (8)

i.e., Dρ W is suppressed by one power of mρ . After setting the 
modulus to its proper minimum, the inflaton potential reads

V = V inf(φα)

(2σ0)κ
− κ

2(2σ0)3κ/2 mρ

{
W inf

[
V inf(φα)

+ eK K αᾱ∂αW inf DᾱW inf
] + c.c.

}
− κ eK

(2σ0)2κ m2
ρ

∣∣K αᾱ DαW inf∂ᾱW inf
∣∣2

, (9)

at leading order in H/mρ . Here V inf(φα) denotes the inflationary 
potential in the absence of a modulus sector, i.e.,

V inf(φα) = eK {
K αᾱ DαW inf DᾱW inf − 3|W inf|2

}
. (10)

Notice that all powers of 2σ0 in Eq. (9) can be absorbed by a re-
definition of W inf . As naively expected, all corrections vanish in the 
limit of an infinitely heavy modulus. In the following, we study the 
effect of the leading order terms in two representative examples of 
F-term inflation.

3. Examples

3.1. Hybrid inflation

As a first example we consider F-term hybrid inflation with a 
canonical Kähler potential [3],

K = φφ̄ + S1 S̄1 + S2 S̄2, (11)

where φ and S1,2 denote the inflaton and waterfall fields, respec-
tively. As is well known, with this form of K the η-problem of 
supergravity inflation is evaded for a superpotential linear in φ, in 
particular for

W = λφ

(
v2

2
− S1 S2

)
, (12)

which defines the hybrid inflation model. During inflation, as long 
as φ > φc = v/

√
2, the waterfall fields remain at the origin of field 

space, and the superpotential effectively reduces to

W inf = 1

2
λv2φ. (13)

The corresponding scalar potential reads

V = 1

4
λ2 v4 + V loop + V sugra. (14)

In the small field regime the slope of the potential is dominated 
by the Coleman–Weinberg potential V loop while the supergravity 
corrections V sugra can be neglected. The latter contain only quar-
tic and higher order terms in φ. Notice that the potential equa-
tion (14) only depends on |φ|.

Including the leading order modulus correction Eq. (9), the ef-
fective tree-level potential is given by

V tree(φ) = V 0

{
1 −

√
V 0

mρ
κ(φ + φ̄)

}
+O

(
φ3), (15)

with

V 0 = 1
λ̃2 v4, λ̃2 = λ2

κ
. (16)
4 (2σ0)
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Evidently, the modulus induces a linear term in the inflaton po-
tential. In the limit mρ → ∞ the original potential is recovered up 
to a total rescaling factor which can be absorbed by a redefinition 
of λ.

A linear term in the inflaton field is also induced by soft su-
persymmetry breaking [15]. Depending on its size relative to the 
one-loop potential, it can significantly affect the dynamics of in-
flation [15–17]. This is important in particular for the spectral 
index of scalar fluctuations, which in hybrid inflation is typically 
ns � 0.98 [3]. This value can be reduced to the currently measured 
value ns � 0.96 if the linear term is taken into account [17–19].

Based on Eq. (15) one may expect that the modulus alters in-
flation for mρ �

√
V 0 ∼ H . But, as we will show, important correc-

tions to the CMB observables already arise at considerably larger 
values of mρ . The linear term in the inflaton potential distinguishes 
the real and imaginary part of φ. Therefore, it effectively turns the 
single-field inflation model into a two-field model which has re-
cently been studied in detail [19]. A qualitative understanding of 
the constraints on the modulus mass can be obtained by consider-
ing the special case of inflation along the real axis.

In this case the canonically normalized inflaton is
ϕ = (φ + φ̄)/

√
2. The modulus affects the slope of the inflaton 

potential: including the one-loop potential we find

V ′(ϕ)

V (ϕ)
� λ̃2

8π2

1

ϕ
− κ√

2

λ̃v2

mρ
, (17)

where we have assumed ϕc 
 ϕ 
 1. The relative sign of the two 
contributions depends on the sign of ϕ during inflation. A particu-
larly interesting situation arises when the modulus-induced slope 
partially cancels the slope of the Coleman–Weinberg potential. 
This flattens the inflationary trajectory and reduces the distance 
in field space corresponding to the N∗ ∼ 55 e-folds of inflation. 
More specifically, ϕ∗ , the value of ϕ at horizon crossing of a scale 
relevant for the CMB observables, is reduced. At smaller ϕ∗ the 
potential is more curved, i.e., the second slow roll parameter η
increases, which in turn affects the spectral index. For a careful 
choice of the inflationary parameters and mρ , a value ns � 0.96
can be obtained. Hence, modulus-induced corrections to the infla-
ton potential can be used to reconcile F-term hybrid inflation with 
Planck observations.

Notice that the linear term induces a second minimum in the 
inflaton potential. Therefore, a careful choice of initial conditions 
is necessary to avoid that ϕ gets trapped in the second minimum. 
However, this problem is alleviated when considering inflation in 
the full complex plane rather than along the real axis [19]. In this 
case a wide range of initial conditions leads to successful inflation 
in accordance with the Planck data.

To estimate the value of mρ at which the modulus correc-
tions become relevant, let us first consider hybrid inflation with-
out the modulus. Neglecting supergravity corrections and assuming 
ϕ∗ � ϕc, one finds ϕ∗ = λ̃

√
N∗/2π . Furthermore, with N∗ ∼ 55, 

the measured amplitude of scalar fluctuations implies v � 0.3MGUT
[3], where MGUT � 2 · 1016 GeV is the scale of gauge coupling uni-
fication in the supersymmetric standard model. By use of Eq. (17)
we then find that the modulus induces an O(1) correction to the 
slope of the potential if

mρ ∼ 2π
√

2N∗κv2 ∼ 6 · 10−2κMGUT. (18)

This implies that even if the modulus is stabilized at a scale close 
to MGUT, it can significantly affect the dynamics of hybrid inflation. 
Notice that mρ in Eq. (18) is much larger than the naive estimate 
mρ ∼ H ∼ 1011 GeV, where we have assumed λ̃ ∼ 10−2, the largest 
coupling for which hybrid inflation works.
In [19] a detailed analysis has been carried out for hybrid in-
flation with a linear term whose strength is controlled by the 
gravitino mass, V 3/2 = −λv2m3/2(φ + φ̄). Comparing this expres-
sion with Eq. (15), one can match the parameters which yield 
successful inflation with ns � 0.96. Let us consider an example 
with large coupling, λ � 3 · 10−3, for which the condition ϕ∗ � ϕc
is fulfilled. The measured spectral index is then obtained4 for
mρ � 6 · 10−2κMGUT, in agreement with the estimate equa-
tion (18). For smaller couplings λ the modulus mass which gives 
the right spectral index decreases.

We conclude that in hybrid inflation modulus corrections are 
generically important even if the modulus is stabilized close to the 
GUT scale. This may appear surprising since the Hubble parameter 
is much smaller than MGUT, but it is a consequence of the enor-
mous flatness of the inflaton potential.

3.2. Chaotic inflation

As a second example we consider chaotic inflation. Its simplest 
supergravity embedding is defined by the Kähler potential [4,5]

K = −1

2
(φ − φ̄)2 + S S̄ − ξ(S S̄)2, (19)

and the superpotential

W inf = S f (φ). (20)

The scalar field S generates the inflaton potential via its F-term 
but decouples from the inflationary dynamics. This situation is en-
gineered by including a sufficiently large (S S̄)2-term in the Kähler 
potential. The latter lifts the mass mS beyond the Hubble scale 
during inflation and stabilizes S at the origin of field space. The 
inflaton is identified with the real part of φ which is protected 
against supergravity corrections by a shift symmetry. Including the 
leading order modulus correction, the scalar potential can be ex-
pressed as

e(φ−φ̄)2/2 V = m2
S |S|2 + ∣∣ f̃ (φ)

∣∣2 +O
(|S|4) − κ

∣∣ f̃ (φ)
∣∣2

mρ

×
[(

S f̃ (φ) + c.c.
) + | f̃ (φ)|2

mρ
+O

(|S|2)], (21)

with

f̃ (φ) = f (φ)

(2σ0)κ/2
,

m2
S = ∣∣ f̃ ′(φ) − (φ − φ̄) f̃ (φ)

∣∣2 + 4ξ
∣∣ f̃ (φ)

∣∣2
. (22)

Notice that the modulus induces a displacement of S which in turn 
affects the potential of φ. At leading order in H/mρ , the new min-
imum lies at

S̄ = κ | f̃ (φ)|2 f̃ (φ)

mρm2
S

. (23)

The inflaton potential at the minimum of S reads

e(φ−φ̄)2/2 V (φ) = V 0(φ)

{
1 − κ

V 0(φ)

m2
ρ

− κ2 V 2
0 (φ)

m2
ρ m2

S

}
,

V 0(φ) = ∣∣ f̃ (φ)
∣∣2

. (24)

4 The spectral index ns � 0.96 is related to v � 4 · 1015 GeV and m3/2 � 105 GeV, 
see Fig. 3 in [19]. This corresponds to the modulus mass mρ =̂ κλ2 v4/8m3/2.
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In case the imaginary part of φ is stabilized at the origin, the expo-
nential factor becomes unity and V 0 denotes the inflaton potential 
without modulus corrections. This happens for standard choices 
of f (φ), in particular for monomial functions. Furthermore, notice 
that the leading modulus correction only appears at order m−2

ρ . 
The absence of a correction of order m−1

ρ results from the suppres-
sion of W inf by one power of mρ . This is an important difference 
compared to the case of hybrid inflation.

In chaotic inflation the scale V 0(φ∗) is fixed by the ampli-
tude of scalar fluctuations, without modulus corrections one finds 
V 1/4

0 (φ∗) � MGUT. Thus, our perturbative analysis breaks down for 
mρ � M2

GUT and inflation and modulus stabilization are no longer 
decoupled. For modulus masses up to MGUT significant corrections 
to the CMB observables arise.

4. Conclusion

We have analyzed the back-reaction of a supersymmetrically 
stabilized modulus on F-term inflation in supergravity. Generically, 
the inflaton potential receives corrections due to a shift of the 
modulus minimum which can be written as a power series in the 
ratio of Hubble scale during inflation and modulus mass. Hence, 
in the limiting case of an infinitely heavy modulus all corrections 
vanish. For a modulus mass between the Hubble and the Planck 
scale there can be sizeable effects in many F-term inflation mod-
els, as we have demonstrated in two examples.

In hybrid inflation the leading order correction is linear in 
the inflaton and necessitates a two-field description. For a mod-
ulus mass close to the GUT scale, the correction term can resolve 
the well-known tension between the predicted and the measured 
scalar spectral index. In fact, one can show that any small-field in-
flation model with non-vanishing superpotential receives a leading 
order linear correction, with a wide and model-dependent range 
of possible effects. Note, however, that small-field inflation models 
are might be disfavored by the recently released BICEP2 data [20].

In chaotic inflation the leading order correction to the scalar 
potential is suppressed by an additional power of H/mρ compared 
to hybrid inflation. This is due to the fact that the superpotential 
is suppressed itself. Nevertheless, the leading correction may have 
similarly grave effects on predicted observables as in hybrid infla-
tion.

The BICEP2 data seems to suggest a large Hubble parameter 
during inflation, H ∼ M2

GUT ∼ 1014 GeV. According to our analysis 
this has severe implications for higher-dimensional theories. Sta-
bilized extra dimensions during inflation require moduli masses 
close to the scale of grand unification, MGUT, which appears to co-
incide with the energy scale of inflation.
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