Matrix manifolds and the Jordan structure of the bialternate matrix product

W. Govaerts *,1, B. Sijnave
Department of Applied Mathematics and Computer Science, University of Gent, Krijgslaan 281-S9, B-9000 Gent, Belgium

Received 16 March 1998; accepted 31 January 1999
Submitted by P. Van Dooren

Abstract

The bialternate product of matrices was introduced at the end of the 19th century and recently revived as a computational tool in problems where real matrices with conjugate pairs of pure imaginary eigenvalues are important, i.e., in stability theory and Hopf bifurcation problems. We give a complete description of the Jordan structure of the bialternate product $2 A \odot I_{n}$ of an $n \times n$ matrix A, thus extending several partial results in the literature. We use these results to obtain regular (local) defining systems for some manifolds of matrices which occur naturally in applications, in particular for manifolds with resonant conjugate pairs of pure imaginary eigenvalues. Such defining systems can be used analytically to obtain local parameterizations of the manifolds or numerically to set up Newton systems with local quadratic convergence. We give references to explicit numerical applications and implementations in software. We expect that the analysis provided in this paper can be used to further improve such implementations. © 1999 Elsevier Science Inc. All rights reserved.

AMS classification: 15A18
Keywords: Rank; Jordan normal form; Defining equations

[^0]
1. Introduction

The study of matrix manifolds presents interesting mathematical features $[18,2]$ and also leads to numerical applications; we cite $[8,9]$ among a long list of publications. Recently an interest emerged in manifolds of (real) matrices with one or more conjugate pairs of pure imaginary eigenvalues, and generalizations of this setting, see [6,7]. This leads to a combination of bialternate matrix product and bordered matrix methods. In [6] some analysis of the Jordan structure of the bialternate product matrix is given and the regularity of the obtained defining systems is discussed in a particular situation. We go further by describing the complete Jordan structure and proving the regularity in a more explicit way (in [6] the choice of two among four equations is essentially left unresolved so that the numerical code has to decide this choice by an optimization step). The present approach therefore has a potential for further applications in computational work.

The origins of the notion of a bialternate product go back to the paper [17] of Stéphanos (1900); Stéphanos' term is "composition bialternée". An extensive treatment is given in [3]; bialternate products were considered in [11-14] to compute Hopf bifurcations; their importance for multiple Hopf was established in [6].

Since we are interested in complex eigenvalues and since the complex Jordan normal form of a matrix is somewhat simpler than the real form, we prefer to formulate the results first for general complex matrices. In this way we avoid some awkward notational problems. However, when applied to real matrices (the case that is important in the applications) all matrix constructions that we consider will again yield real matrices. Also, the rank of a real matrix (over the real numbers) is the same as its rank as a complex matrix (over the complex numbers). Hence the results that we obtain on geometric multiplicities of eigenvalues, in particular, in Propositions 11 and 12 hold also for real matrices.

2. Basic properties of the bialternate product of matrices

We briefly recall the definition of the tensor product of two matrices (e.g., [15]). Let $\left\{e_{i}: 1 \leqslant i \leqslant n\right\}$ be the canonical base of unit vectors in \mathbb{C}^{n}. The tensor product $\mathbb{C}^{n} \otimes \mathbb{C}^{n}$ is the space $\mathbb{C}^{n^{2}}$ with formal base $\left\{e_{i} \otimes e_{j}: 1 \leqslant i, j \leqslant n\right\}$. If $x=\sum_{i=1}^{n} x_{i} e_{i} \in \mathbb{C}^{n}, y=\sum_{i=1}^{n} y_{i} e_{i} \in \mathbb{C}^{n}$ then we define $x \otimes y=\sum_{i=1}^{n}$ $\sum_{j=1}^{n} x_{i} y_{j} e_{i} \otimes e_{j} \in \mathbb{C}^{n^{2}}$. The mapping $(x, y) \rightarrow x \otimes y$ is clearly bilinear.

Two matrices $A, B \in \mathbb{C}^{n \times n}$ can be identified with linear mappings $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$. The tensor product $A \otimes B \in \mathbb{C}^{n^{2} \times n^{2}}$ is then defined as the linear mapping from $\mathbb{C}^{n} \otimes \mathbb{C}^{n}$ into itself for which $(A \otimes B)\left(e_{k} \otimes e_{l}\right)=A e_{k} \otimes B e_{l}=$ $\sum_{i, j=1}^{n} a_{i k} b_{j l}\left(e_{i} \otimes e_{j}\right)$. It is easily seen that

$$
\begin{equation*}
(A \otimes B)(x \otimes y)=A x \otimes B y \tag{2.1}
\end{equation*}
$$

for all $x, y \in \mathbb{C}^{n}$. Denoting by $(A \otimes B)_{(i, j),(k, l)}$ the $\left(e_{i} \otimes e_{j}\right)$-component of $(A \otimes$ $B)\left(e_{k} \otimes e_{l}\right)$ we have
$(A \otimes B)_{(i, j),(k, l)}=a_{i k} b_{j l}$.

Proposition 1. Let $A, A_{1}, A_{2}, B, B_{1}, B_{2} \in \mathbb{C}^{n \times n}$. Then

1. $A \otimes\left(B_{1}+B_{2}\right)=A \otimes B_{1}+A \otimes B_{2}$.
2. $\left(A_{1}+A_{2}\right) \otimes B=A_{1} \otimes B+A_{2} \otimes B$.
3. $\left(A_{1} \otimes B_{1}\right)\left(A_{2} \otimes B_{2}\right)=\left(A_{1} A_{2}\right) \otimes\left(B_{1} B_{2}\right)$.
4. $I_{n} \otimes I_{n}=I_{n^{2}}$.
5. If A, B are nonsingular, then so is $A \otimes B$ and $(A \otimes B)^{-1}=A^{-1} \otimes B^{-1}$.

Proof. Obvious from (2.1).
There exists a natural linear mapping $\sigma: \mathbb{C}^{n} \otimes \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} \otimes \mathbb{C}^{n}$ defined by

$$
\begin{equation*}
\sigma\left(e_{i} \otimes e_{j}\right)=e_{j} \otimes e_{i} \quad(1 \leqslant i, j \leqslant n) \tag{2.3}
\end{equation*}
$$

Clearly σ is an involution, i.e., $\sigma^{2}=I_{\mathbb{C}^{n} \otimes \mathbb{C}^{n}}$ and one has $\sigma(x \otimes y)=y \otimes x$ for all $x, y \in \mathbb{C}^{n}$ and $\sigma(A \otimes B)=(B \otimes A) \sigma$ for all $A, B \in \mathbb{C}^{n \times n}$.

The spectrum (set of eigenvalues) of σ is remarkable. For every pair of indices (i, j) with $1 \leqslant i, j \leqslant n$ we define the vectors

$$
\zeta_{i j}=e_{i} \otimes e_{j}-e_{j} \otimes e_{i}, \quad \eta_{i j}=e_{i} \otimes e_{j}+e_{j} \otimes e_{i}
$$

We denote by E_{a} and E_{s}, respectively, the subspaces of $\mathbb{C}^{n} \otimes \mathbb{C}^{n}$ spanned by all vectors of the form $\zeta_{i j}$, respectively, $\eta_{i j}$. Then the following holds.

Proposition 2. The operator σ has two eigenvalues, namely the eigenvalue -1 with algebraic and geometric multiplicity $\frac{1}{2} n(n-1)$ and the eigenvalue +1 with algebraic and geometric multiplicity $\frac{1}{2} n(n+1)$. The eigenspace corresponding to -1 is E_{a} and has a base consisting of all vectors $\zeta_{i j}(n \geqslant i>j \geqslant 1)$; the eigenspace corresponding to +1 is E_{s} and has a base consisting of all vectors $\eta_{i j}(n \geqslant i \geqslant j \geqslant 1)$.

Proof. Easy.
Let $A, B \in \mathbb{C}^{n \times n}$. We define the bialternate product or biproduct matrix by

$$
\begin{equation*}
A \odot B=\frac{1}{2}(A \otimes B+B \otimes A) \tag{2.4}
\end{equation*}
$$

Some properties of bialternate products are immediate.

Proposition 3. Let $A, B, B_{1}, B_{2} \in \mathbb{C}^{n \times n}$. Then

1. $A \odot B=B \odot A$.
2. $A \odot\left(B_{1}+B_{2}\right)=A \odot B_{1}+A \odot B_{2}$.
3. $A \odot A=A \otimes A$.
4. If A is nonsingular, then so is $A \odot A$ and $(A \odot A)^{-1}=A^{-1} \odot A^{-1}$.
5. $\sigma(A \odot B)=(A \odot B) \sigma$.

Proof. The first four claims follow immediately from (2.4). The last one follows from $\sigma(A \odot B)=\frac{1}{2} \sigma(A \otimes B+B \otimes A)=\frac{1}{2}(B \otimes A+A \otimes B) \sigma=(A \odot B) \sigma$.

Proposition 4. For every $A, B \in \mathbb{C}^{n \times n}$ the spaces E_{a} and E_{s} are invariant subspaces of $A \odot B$.

Proof. If $f \in E_{a}$ then $\sigma(A \odot B) f=(A \odot B) \sigma f=-(A \odot B) f$, i.e., $(A \odot B) f \in E_{a}$. The proof for E_{s} is similar.

For our purposes only the restriction of $(A \odot B)$ to E_{a} is important. For the numerical applications we need a representation of this operator with respect to a suitable base of E_{a}. From Proposition 2 it follows that $\left(\zeta_{i j}\right)_{i>j}$ is such a base. The representation of $A \odot B$ is then given by the following proposition (see [17]).

Proposition 5. With respect to the base $\left(\zeta_{i j}\right)_{i>j}$ the restriction of $A \odot B$ to E_{a} is represented by

$$
(A \odot B)_{(i, j),(k, l)}=\frac{1}{2}\left\{\left|\begin{array}{cc}
a_{i k} & a_{i l} \tag{2.5}\\
b_{j k} & b_{j l}
\end{array}\right|+\left|\begin{array}{cc}
b_{i k} & b_{i l} \\
a_{j k} & a_{j l}
\end{array}\right|\right\} .
$$

Proof. By a straightforward computation the result follows.
Convention. With an abuse of notation we will from now on identify the linear operator represented in the canonical base by $A \odot B$ with its restriction to the invariant subspace E_{a} and take the matrix representation on this invariant subspace in Proposition 5 as the standard one.

The special case of a bialternate product of the form $2 A \odot I_{n}$ is so important that we simply call it the bialternate product of A. From Proposition 5 we obtain its explicit form. We find

$$
\left(2 A \odot I_{n}\right)_{(i, j),(k, l)}= \begin{cases}-a_{i l} & \text { if } k=j, \tag{2.6}\\ a_{i k} & \text { if } k \neq i \text { and } l=j, \\ a_{i i}+a_{j j} & \text { if } k=i \text { and } l=j, \\ a_{j l} & \text { if } k=i \text { and } l \neq j, \\ -a_{j k} & \text { if } l=i, \\ 0 & \text { else. }\end{cases}
$$

One checks easily that $\left(2 A \odot I_{n}\right)^{\mathrm{T}}=\left(2 A^{\mathrm{T}} \odot I_{n}\right)$.

3. The Jordan structure of the bialternate product matrix

A remarkable property of the bialternate product matrix is that its eigenvalues and Jordan structure are completely determined by those of the original matrix. We shall indeed prove that if A and B are similar, then so are $2 A \odot I_{n}$ and $2 B \odot I_{n}$. To be precise, we have the following proposition.

Proposition 6. Let $A, B \in \mathbb{C}^{n \times n}$ be two similar matrices and P a nonsingular matrix such that $B=P A P^{-1}$. Then $P \odot P$ is nonsingular and

$$
(P \odot P)\left(2 A \odot I_{n}\right)(P \odot P)^{-1}=2 B \odot I_{n}
$$

Proof. By Proposition $3 P \odot P$ is nonsingular. So it is sufficient to prove that

$$
(P \odot P)\left(2 A \odot I_{n}\right)=\left(2 B \odot I_{n}\right)(P \odot P) .
$$

The left-hand side in this expression is the restriction to E_{a} of

$$
(P \otimes P)\left(A \otimes I_{n}+I_{n} \otimes A\right)=P A \otimes P+P \otimes P A
$$

The right-hand side is the restriction to E_{a} of

$$
\left(P A P^{-1} \otimes I_{n}+I_{n} \otimes P A P^{-1}\right)(P \otimes P)=P A \otimes P+P \otimes P A
$$

Since both sides are equal the result follows.
If $v, w \in \mathbb{C}^{n}$ then clearly $w \otimes v-v \otimes w \in E_{a}$. Furthermore, with respect to the basis $\left(\zeta_{i j}\right)_{n \geqslant i>j \geqslant 1}$ defined before Proposition 2 we have

$$
w \otimes v-v \otimes w=\sum_{n \geqslant i>j \geqslant 1}\left(v_{j} w_{i}-v_{i} w_{j}\right) \zeta_{i j} .
$$

We set $N_{b}=n(n-1) / 2$ and introduce the following definition.
Definition 1. Let $v, w \in \mathbb{C}^{n}$. The wedge product of v and w is the vector $v \wedge w \in$ $\mathbb{C}^{N_{b}}$ with components $(v \wedge w)_{i, j}=v_{j} w_{i}-v_{i} w_{j}(n \geqslant i>j \geqslant 1)$.

We can visualize the components of $v \wedge w$ as determinants of 2×2 blocks in the $n \times 2$ matrix with columns v, w. Formally, $v \wedge w$ is the representation of $w \otimes$ $v-v \otimes w$ with respect to the canonical base of E_{a}.

Obviously, the wedge product $v \wedge w$ is linear with respect to both v and w and vanishes if and only if v, w are linearly dependent. It is anti-symmetric $(v \wedge w+w \wedge v=0)$ and is determined up to a scalar multiple by the two-dimensional space that contains v, w. Conversely, if it is nonzero, then it defines this space completely.

Proposition 7. If $\left(v_{i}\right)_{i=1}^{k}, k \leqslant n$, are linearly independent vectors in \mathbb{C}^{n}, then $\left(v_{i} \wedge v_{j}\right)_{1 \leqslant j<i \leqslant k}$ are linearly independent in $\mathbb{C}^{N_{b}}$. In particular, if $k=n$ then they form a base of $\mathbb{C}^{N_{b}}$.

Proof. First assume that $k=n$ and let e_{i} denote the i th unit vector in \mathbb{C}^{n} $(1 \leqslant i \leqslant n)$. Since every e_{i} is in the span of the $\left(v_{i}\right)_{1 \leqslant i \leqslant n}$ it follows that each $e_{i} \wedge$ $e_{j}(1 \leqslant j<i \leqslant n)$ is in the span of the $v_{i} \wedge v_{j}$. Since the $e_{i} \wedge e_{j}$ obviously form a base for $\mathbb{C}^{N_{b}}$ the result follows.

The case $k<n$ then follows from the fact that a linearly independent set of vectors can be extended to a base.

We now prove the basic relation between bialternate product matrices and wedge products of vectors.

Proposition 8. Let $A, B \in \mathbb{C}^{n \times n}$ and $v, w \in \mathbb{C}^{n}$. Then

$$
\begin{equation*}
(A \odot B)(v \wedge w)=\frac{1}{2}(A v \wedge B w-A w \wedge B v) \tag{3.1}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\left(2 A \odot I_{n}\right)(v \wedge w)=A v \wedge w+v \wedge A w . \tag{3.2}
\end{equation*}
$$

Proof. We provide a proof in the canonical base of E_{a}; a coordinate-free proof can also be given easily. Let i, j be integers with $n \geqslant i>j \geqslant 1$. Then

$$
\begin{aligned}
{[(2 A \odot B)(v \wedge w)]_{i, j} } & =\sum_{n \geqslant k>l \geqslant 1}\left(a_{i k} b_{j l}-a_{i l} b_{j k}+a_{j l} b_{i k}-a_{j k} b_{i l}\right)\left(v_{l} w_{k}-v_{k} w_{l}\right) \\
& =\sum_{n \geqslant k, l \geqslant 1}\left(a_{i k} b_{j l}+a_{j l} b_{i k}\right)\left(v_{l} w_{k}-v_{k} w_{l}\right) \\
& =(B v)_{j}(A w)_{i}-(B w)_{j}(A v)_{i}+(B w)_{i}(A v)_{j}-(B v)_{i}(A w)_{j} \\
& =(A v \wedge B w)_{i, j}-(A w \wedge B v)_{i, j} .
\end{aligned}
$$

This implies the proposition.

We note that (3.1) completely defines $A \odot B$. The next result is well-known.
Proposition 9. Let $A \in \mathbb{C}^{n \times n}$ and let λ_{1}, λ_{2} be eigenvalues of A with corresponding eigenvectors v_{1}, v_{2}. If v_{1}, v_{2} are linearly independent then $v_{1} \wedge v_{2}$ is an eigenvector of $2 A \odot I_{n}$ for the eigenvalue $\lambda_{1}+\lambda_{2}$.

Proof. By Proposition 8 we have

$$
\begin{aligned}
\left(2 A \odot I_{n}\right)\left(v_{1} \wedge v_{2}\right) & =A v_{1} \wedge v_{2}-A v_{2} \wedge v_{1} \\
& =\lambda_{1} v_{1} \wedge v_{2}-\lambda_{2} v_{2} \wedge v_{1} \\
& =\left(\lambda_{1}+\lambda_{2}\right)\left(v_{1} \wedge v_{2}\right)
\end{aligned}
$$

We now consider the Jordan structures in more detail. We need the following definition.

Definition 2. For $1 \leqslant l \leqslant n_{1} \leqslant n_{2}$, we define $C\left(n_{1}, n_{2}, l\right)$ as the $l \times l$ matrix whose (i, j) th entry is the binomial coefficient

$$
\binom{n_{1}+n_{2}-2 l}{n_{1}-l+i-j}
$$

with the understanding that this entry vanishes if $n_{1}-l+i-j$ is not in the range $\left[0, n_{1}+n_{2}-2 l\right]$.

We note that with this definition the diagonal elements of $C\left(n_{1}, n_{2}, l\right)$ are never zero. We will need the following result.

Proposition 10. Every matrix of the form $C\left(n_{1}, n_{2}, l\right)\left(1 \leqslant l \leqslant n_{1}\right)$ as defined in Definition 2 is nonsingular.

For a proof we refer to [16], Section I.3, Example 4 where a more general result is obtained. In [6] the special case $n_{1}=n_{2}$ is proved by a direct argument.

Proposition 11. Let $A \in \mathbb{C}^{n \times n}$ and let λ_{1}, λ_{2} be two eigenvalues of A that belong to different Jordan blocks with dimensions n_{1} and n_{2}, respectively, with $1 \leqslant n_{1} \leqslant n_{2}$. Then the matrix $2 A \odot I_{n}$ has n_{1} Jordan blocks for the eigenvalue $\lambda_{1}+\lambda_{2}$, one each of size $1+n_{2}-n_{1}, 3+n_{2}-n_{1}, \ldots, 2 n_{1}-1+n_{2}-n_{1}$, corresponding to this eigenvalue pair (total algebraic multiplicity of $\lambda_{1}+\lambda_{2}$ for this eigenvalue pair: $n_{1} n_{2}$).

Proof. For simplicity of notation we prove this in the case $n_{1}=4, n_{2}=6$, the generalization being obvious. Let v_{1}, \ldots, v_{4} be the generalized eigenvectors associated with λ_{1}, i.e., $\left(A-\lambda_{1} I_{n}\right) v_{i}=v_{i-1}$ for $i=2,3,4$ and $\left(A-\lambda_{1} I_{n}\right) v_{1}=0$. Let w_{1}, \ldots, w_{6} be the generalized eigenvectors associated with λ_{2} in the same way. The generalized eigenspace of the eigenvalue $\lambda_{1}+\lambda_{2}$ has dimension $n_{1} n_{2}=$ 24 and is spanned by the vectors $V_{i j}=v_{i} \wedge w_{j}$, where $1 \leqslant i \leqslant 4,1 \leqslant j \leqslant 6$ (the linear independence of these vectors follows from Proposition 7). It is convenient to order them as follows:

The picture illustrates the action of $B=\left(2 A \odot I_{n}\right)-\left(\lambda_{1}+\lambda_{2}\right) I_{N_{b}}$ on the generalized eigenspace of $\lambda_{1}+\lambda_{2}$ since $V_{i j}$ is transformed into $V_{i-1, j}+V_{i, j-1}$ with the convention that such a vector vanishes if it is not in (3.3). If B acts p times on a vector in (3.3) then the resulting vector is a linear combination of vectors p rows down in (3.3); by induction we have

$$
\begin{equation*}
B^{p} V_{i j}=\sum_{r=0}^{p}\binom{p}{r} V_{i-p+r, j-r} . \tag{3.4}
\end{equation*}
$$

Now, denote

$$
E_{k}=\operatorname{Span}\left\{V_{i j} \mid i+j=k\right\}
$$

for $k=2,3, \ldots, 10$.
Clearly B has four linearly independent singular vectors, namely V_{11}, $V_{12}-V_{21}, V_{13}-V_{22}+V_{31}$ and $V_{14}-V_{23}+V_{32}-V_{41}$ in $E_{2}, E_{3}, E_{4}, E_{5}$, respectively.

Now $B^{12-2 k}$ is a linear map from E_{12-k} to E_{k} for $k=2,3,4,5$. The result follows if these maps are all onto. From (3.4) we can compute an explicit representation of $B^{12-2 k}$ in terms of the basis $V_{6-k, 6}, \ldots, V_{4,8-k}$ of E_{12-k} and the basis $V_{1, k-1}, \ldots, V_{k-1,1}$ of E_{k}. One finds

$$
B^{12-2 k} V_{5-k+j, 7-j}=\sum_{r=0}^{12-2 k}\binom{12-2 k}{r} V_{-7+k+j+r, 7-j-r}
$$

for $j=1, \ldots, k-1$. By requiring that $-7+k+j+r=i$, i.e. $r=7-k+i-j$, we find that $B^{12-2 k}$ is represented by a matrix whose (i, j) th entry is

$$
\binom{12-2 k}{7-k+i-j}=\binom{10-2 l}{4-l+j-i},
$$

where we have set $l=k-1$. So $B^{12-2 k}$ is represented by the square matrix $C(4,6, l)^{\mathrm{T}}$. Since this matrix is nonsingular by Proposition 10 , the proof is complete.

In Proposition 11 it does not matter if λ_{1}, λ_{2} are equal or not. If another pair of Jordan blocks leads to the same eigenvalue sum $\lambda_{1}+\lambda_{2}$ then this eigenvalue
of $2 A \odot I_{n}$ simply has the two collections of Jordan blocks; there is no interaction since the respective generalized eigenspaces have only the zero vector in common.

The case of eigenvalues within the same Jordan block must be considered separately.

Proposition 12. Let $A \in \mathbb{C}^{n \times n}$ and let λ be an eigenvalue of A in a Jordan block with dimension k. Let v_{1}, \ldots, v_{k} be a base of the generalized eigenspace that corresponds to λ, i.e., $(A-\lambda) v_{k}=v_{k-1}, \ldots,(A-\lambda) v_{1}=0$. Then:

1. If $k=2 l, l \geqslant 1$ then the matrix $2 A \odot I_{n}$ has l Jordan blocks for the eigenvalue 2 λ. The vectors

$$
v_{1} \wedge v_{2}, v_{1} \wedge v_{4}-v_{2} \wedge v_{3}, \ldots, v_{1} \wedge v_{2 l}-v_{2} \wedge v_{2 l-1}+\cdots+(-1)^{l+1} v_{l} \wedge v_{l+1}
$$

are linearly independent eigenvectors of $2 A \odot I_{n}$ and correspond to Jordan blocks with sizes $4 l-3,4 l-7, \ldots, 1$, respectively.
2. If $k=2 l+1, l \geqslant 1$ then the matrix $2 A \odot I_{n}$ has l Jordan blocks for the eigenvalue of $2 A \odot I_{n}$. The vectors

$$
v_{1} \wedge v_{2}, v_{1} \wedge v_{4}-v_{2} \wedge v_{3}, \ldots, v_{1} \wedge v_{2 l}-v_{2} \wedge v_{2 l-1}+\cdots+(-1)^{l+1} v_{l} \wedge v_{l+2}
$$

are linearly independent eigenvectors of $2 A \odot I_{n}$ and correspond to Jordan blocks with sizes $4 l-1,4 l-5, \ldots, 3$, respectively.

Proof. We will prove the first statement in the case $l=4$; the same argument applies for other values of l as well.

The generalized eigenspace corresponding to 2λ has dimension $\frac{1}{2}(7 \times 8)=$ 28 and is spanned by the vectors $V_{i j}=v_{i} \wedge v_{j}$ with $1 \leqslant i<j \leqslant 8$ (these vectors are linearly independent by Proposition 7). It is natural to order them in the following scheme:

The action of $B=2 A \odot I_{n}-2 \lambda I_{N_{b}}$ on the vectors $V_{i j}$ can be read from (3.5) since this matrix transforms $V_{i j}$ into $V_{i-1, j}+V_{i, j-1}$ with the convention that vectors not represented in (3.5) are zero.

Let us define

$$
E_{s}=\operatorname{Span}\left\{V_{i j} \mid i+j=s\right\}
$$

for $s=3, \ldots, 15$. It is clear that $V_{12} \in E_{3}, V_{14}-V_{23} \in E_{5}, V_{16}-V_{25}+V_{34} \in E_{7}$ and $V_{18}-V_{27}+V_{36}-V_{45} \in E_{9}$ are null vectors of B.

The result follows if we prove that B^{12} maps E_{15} onto E_{3}, B^{8} maps E_{13} onto E_{5}, B^{4} maps E_{11} onto E_{7} and $I_{N_{b}}$ maps E_{9} onto E_{9}. We will prove the result for the case of B^{8} acting on E_{13}, the other cases being similar.

For $i=1, \ldots, 4$, let c_{i} be the number of downward paths in (3.5) that connect V_{58} with $V_{i, 9-i}$, or, obviously equivalently, $V_{i, 9-i}$ with V_{14}. Similarly, let d_{i} be the number of downward paths in (3.5) that connect V_{67} with $V_{i, 9-i}$, or, obviously equivalently, $V_{i, 9-i}$ with V_{23}. With respect to the basis vectors in (3.5), B^{4} as a map from E_{13} to E_{9} is represented by the matrix

$$
M_{4}=\left(\begin{array}{ll}
c_{1} & d_{1} \\
c_{2} & d_{2} \\
c_{3} & d_{3} \\
c_{4} & d_{4}
\end{array}\right)
$$

We note that M_{4} has full rank 2 because B is one-to-one on E_{13}, E_{12}, E_{11} and E_{10}. Furthermore, with respect to the basis vectors in (3.5) B^{4} as a map from E_{9} to E_{5} is represented by the matrix M_{4}^{T}. Hence, with respect to the basis vectors in (3.5) B^{8} as a map from E_{13} to E_{5} is represented by the matrix $M_{4}^{\mathrm{T}} M_{4}$; since M_{4} has full rank, so has $M_{4}^{\mathrm{T}} M_{4}$ by elementary linear algebra.

The second statement can be proved similarly.

If there are two Jordan blocks with the same eigenvalue then Proposition 12 applies separately to each block. The eigenvalue 2λ of $2 A \odot I_{n}$ simply has the two collections of Jordan blocks. There is also an interaction between the blocks which is described by Proposition 11, leading to still more Jordan blocks for the eigenvalue 2λ. This obviously generalizes easily to any number of pairs of Jordan blocks with the same eigenvalue sum.

Since $\left(2 A \odot I_{n}\right)^{\mathrm{T}}=\left(2 A^{\mathrm{T}} \odot I_{n}\right)$ all results obtained in Propositions 11 and 12 concerning the right eigenspaces of $2 A \odot I_{n}$ carry over to the left eigenspaces, using left eigenvectors of A instead of right eigenvectors. A left eigenvector p of A for the eigenvalue λ is a nonzero vector such that $p^{\mathrm{H}} A=\lambda p^{\mathrm{H}}$ where p^{H} denotes the conjugate transposed vector, cf. [4], Section 7.1.1.

4. Hopf bifurcations and zero-sum eigenvalue pairs

In Hopf bifurcation problems, we are interested in the question whether a real matrix A has a conjugate pair of pure imaginary eigenvalues $\pm \mathrm{i} \omega, \omega>0$. From Proposition 11, we infer that in this case $2 A \odot I_{n}$ has an eigenvalue $\mathrm{i} \omega-\mathrm{i} \omega=0$, i.e., $2 A \odot I_{n}$ is a singular matrix. In fact, we have the following complete result.

Proposition 13. Let $A \in \mathbb{R}^{n \times n}$. Then $2 A \odot I_{n}$ has rank defect 1 if and only if one of the following three conditions is satisfied:

1. A has a conjugate pair of algebraically simple eigenvalues $\pm \mathrm{i} \omega, \omega>0$ and no other pair of zero-sum eigenvalues.
2. A has a pair of eigenvalues $\pm \lambda, \lambda>0$, both with geometric multiplicity one and at least one of them with algebraic multiplicity one; and no other pair of zerosum eigenvalues.
3. A has eigenvalue 0 with geometric multiplicity 1 and algebraic multiplicity 2 or 3; and no other pair of zero-sum eigenvalues.

Proof. By a careful inspection of Propositions 11 and 12 the result follows.
To express that $2 A \odot I_{n}$ is singular it is not necessary to compute the eigenvalues; e.g., the determinant of $2 A \odot I_{n}$ is purely an algebraic function of the coefficients of A.

In fact, as in the case of zero eigenvalues of A itself (see [5]) the determinant function is usually not a good choice. As in [5] a rank defect can be detected by a bordering technique; however, we have to border $2 A \odot I_{n}$ instead of A itself. For any choice of vectors $b, c \in \mathbb{R}^{N_{b}}$ and scalar $d \in \mathbb{R}$ such that the matrix

$$
M(A)=\left(\begin{array}{cc}
2 A \odot I_{n} & b \tag{4.1}\\
c^{\mathrm{T}} & d
\end{array}\right)
$$

is nonsingular, we define $q(A) \in \mathbb{R}^{N_{b}}, s(A) \in \mathbb{R}$ by

$$
\begin{equation*}
M(A)\binom{q(A)}{s(A)}=\binom{0_{N_{b}}}{1} . \tag{4.2}
\end{equation*}
$$

Now $s(A)=0$ defines (locally) the matrices A for which $2 A \odot I_{n}$ is singular (cf. [5], Propositions 4.1 and 4.2). It is useful to have also the derivatives of $s(A)$. Let z be any variable in A. By taking derivatives of (4.2) we find that

$$
\begin{equation*}
M\binom{q_{z}}{s_{z}}+\binom{\left(2 A_{z} \odot I_{n}\right) q}{0}=0 \tag{4.3}
\end{equation*}
$$

This allows to compute s_{z}. If several derivatives are desired, then it is useful to solve the system

$$
\left(w^{\mathrm{T}}(A) \quad s(A)\right) M=\left(\begin{array}{ll}
0_{N_{b}}^{\mathrm{T}} & 1 \tag{4.4}
\end{array}\right)
$$

which is a natural adjoint to (4.2). Multiplying (4.3) from the left with

$$
\left(w^{\mathrm{T}}(A) \quad s(A)\right)
$$

we obtain

$$
\begin{equation*}
s_{z}+w^{\mathrm{T}}\left(2 A_{z} \odot I_{n}\right) q=0 . \tag{4.5}
\end{equation*}
$$

5. Defining functions for double Hopf points

Suppose that $A \in \mathbb{R}^{n \times n}$ has eigenvalues $\pm \mathrm{i} \omega_{1}, \pm \mathrm{i} \omega_{2}$ where $\omega_{1}>0, \omega_{2}>0$, $\omega_{1} \neq \omega_{2}$. The last condition is usually expressed by saying that the two Hopf pairs are not $1: 1$ resonant. The distinction between the resonant and nonresonant cases is quite important in dynamical applications, see e.g., [10,13].

If there are no other zero-sum eigenvalue pairs, then by Proposition 11 the matrix $2 A \odot I_{n}$ has rank defect 2 . We choose $B, C \in \mathbb{R}^{N_{b} \times 2}, D \in \mathbb{R}^{2 \times 2}$ such that

$$
M(A)=\left(\begin{array}{cc}
2 A \odot I_{n} & B \tag{5.1}\\
C^{\mathrm{T}} & D
\end{array}\right)
$$

is nonsingular at the double Hopf point. Then we define the $N_{b} \times 2$ matrix $Q(A)$ and the 2×2 matrix $S(A)$ by

$$
\begin{equation*}
M(A)\binom{Q(A)}{S(A)}=\binom{0_{N_{b}, 2}}{I_{2,2}} \tag{5.2}
\end{equation*}
$$

By [5], Proposition 4.1 the four entries of $S(A)$ vanish together if and only if $2 A \odot I_{n}$ has rank defect 2 .

The derivatives of S can be obtained in the now familiar way. Define the $N_{b} \times 2$ matrix $W(A)$ by

$$
\left(\begin{array}{ll}
W^{\mathrm{T}}(A) & S(A)) M(A)=\left(\begin{array}{ll}
0_{2, N_{b}} & I_{2,2}
\end{array}\right) \tag{5.3}
\end{array}\right.
$$

Then S_{z} can be obtained from

$$
\begin{equation*}
S_{z}(A)+W^{\mathrm{T}}\left(2 A_{z}(A) \odot I_{n}\right) Q=0_{2,2} \tag{5.4}
\end{equation*}
$$

We note that $S(A)$ has four components while intuitively a double Hopf point is a codimension 2 phenomenon only (we will see that it is). So we can suspect that the four resulting equations are not independent. We will discuss this in a somewhat more general setting but first prove a lemma to elucidate the meaning of (5.4).

Lemma 1. Let $v_{1}, v_{2}, w_{1}, w_{2} \in \mathbb{C}^{n}$ and let $1 \leqslant i, j \leqslant n$. Then for any matrix $A \in$ $\mathbb{C}^{n \times n}$ we have

$$
\begin{align*}
\left(w_{1} \wedge w_{2}\right)^{\mathrm{T}}\left(2 A \odot I_{n}\right)\left(v_{1} \wedge v_{2}\right)= & \left(w_{1}^{\mathrm{T}} A v_{1}\right)\left(w_{2}^{\mathrm{T}} v_{2}\right)+\left(w_{2}^{\mathrm{T}} A v_{2}\right)\left(w_{1}^{\mathrm{T}} v_{1}\right) \\
& -\left(w_{1}^{\mathrm{T}} A v_{2}\right)\left(w_{2}^{\mathrm{T}} v_{1}\right)-\left(w_{2}^{\mathrm{T}} A v_{1}\right)\left(w_{1}^{\mathrm{T}} v_{2}\right) . \tag{5.5}
\end{align*}
$$

In particular,

$$
\begin{equation*}
\left(w_{1} \wedge w_{2}\right)^{\mathrm{T}}\left(v_{1} \wedge v_{2}\right)=\left(w_{1}^{\mathrm{T}} v_{1}\right)\left(w_{2}^{\mathrm{T}} v_{2}\right)-\left(w_{2}^{\mathrm{T}} v_{1}\right)\left(w_{1}^{\mathrm{T}} v_{2}\right) . \tag{5.6}
\end{equation*}
$$

If $1 \leqslant i, j \leqslant n$ and z denotes the (i, j) th entry of A, then

$$
\begin{align*}
\left(w_{1} \wedge w_{2}\right)^{\mathrm{T}}\left(2 A_{z} \odot I_{n}\right)\left(v_{1} \wedge v_{2}\right)= & w_{1 i} v_{1 j} w_{2}^{\mathrm{T}} v_{2}-w_{1 i} v_{2 j} w_{2}^{\mathrm{T}} v_{1} \\
& -w_{2 i} v_{1 j} w_{1}^{\mathrm{T}} v_{2}+w_{2 i} v_{2 j} w_{1}^{\mathrm{T}} v_{1} . \tag{5.7}
\end{align*}
$$

Proof. We prove (5.5); the other statements follow easily. We have

$$
\begin{aligned}
&\left(w_{1}\right.\left.\wedge w_{2}\right)^{\mathrm{T}}\left(2 A \odot I_{n}\right)\left(v_{1} \wedge v_{2}\right) \\
&= \sum_{1 \leqslant j<i \leqslant n}\left(w_{1} \wedge w_{2}\right)_{i, j}\left(A v_{1} \wedge v_{2}+v_{1} \wedge A v_{2}\right)_{i, j} \\
&= \sum_{1 \leqslant j<i \leqslant n}\left(w_{1 j} w_{2 i}-w_{2 j} w_{2 i}\right)\left(\left(A v_{1}\right)_{j} v_{2 i}-\left(A v_{1}\right)_{i} v_{2 j}+v_{1 j}\left(A v_{2}\right)_{i}-v_{1 i}\left(A v_{2}\right)_{j}\right) \\
& \quad \quad \quad \text { by Proposition 8) } \\
&= \frac{1}{2} \sum_{1 \leqslant i, j \leqslant n}\left(w_{1 j} w_{2 i}-w_{2 j} w_{2 i}\right)\left(\left(A v_{1}\right)_{j} v_{2 i}-\left(A v_{1}\right)_{i} v_{2 j}+v_{1 j}\left(A v_{2}\right)_{i}-v_{1 i}\left(A v_{2}\right)_{j}\right) \\
&=\left(w_{1}^{\mathrm{T}} A v_{1}\right)\left(w_{2}^{\mathrm{T}} v_{2}\right)+\left(w_{2}^{\mathrm{T}} A v_{2}\right)\left(w_{1}^{\mathrm{T}} v_{1}\right)-\left(w_{1}^{\mathrm{T}} A v_{2}\right)\left(w_{2}^{\mathrm{T}} v_{1}\right)-\left(w_{2}^{\mathrm{T}} A v_{1}\right)\left(w_{1}^{\mathrm{T}} v_{2}\right) .
\end{aligned}
$$

This implies the proposition.
Proposition 14. In the nonresonant double Hopf situation the four gradient vectors contained in (5.4) span a two-dimensional space.

Proof. Let $q_{1}^{j}+\mathrm{i} q_{2}^{j}$ denote the right eigenvector that corresponds to $\mathrm{i} \omega_{j}$ $(j=1,2)$ and $p_{1}^{j}+\mathrm{i} p_{2}^{j}(j=1,2)$ be the left eigenvector. Since ω_{1}, ω_{2} are positive and not equal we necessarily have

$$
\begin{equation*}
\left(p_{i}^{j}\right)^{\mathrm{T}} q_{k}^{l}=0 \quad(j \neq l) \tag{5.8}
\end{equation*}
$$

while by an appropriate choice of the vectors we may assume

$$
\begin{equation*}
\left(p_{i}^{j}\right)^{\mathrm{T}} q_{k}^{j}=\delta_{i k} \quad(j=1,2) \tag{5.9}
\end{equation*}
$$

By Proposition 11, $2 A \odot I_{n}$ has a two-dimensional right singular space spanned by the (complex) vectors $V_{1}=\left(q_{1}^{1}+\mathrm{i} q_{2}^{1}\right) \wedge\left(q_{1}^{1}-\mathrm{i} q_{2}^{1}\right) \quad$ and $V_{2}=\left(q_{1}^{2}+\mathrm{i} q_{2}^{2}\right) \wedge\left(q_{1}^{2}-\mathrm{i} q_{2}^{2}\right)$; its left singular space is spanned by the (complex) vectors $W_{1}=\left(p_{1}^{1}+\mathrm{i} p_{2}^{1}\right) \wedge\left(p_{1}^{1}-\mathrm{i} p_{2}^{1}\right)$ and $W_{2}=\left(p_{1}^{2}+\mathrm{i} p_{2}^{2}\right) \wedge\left(p_{1}^{2}-\mathrm{i} p_{2}^{2}\right)$.

Now consider the four gradient vectors defined in the space of all $n \times n$ matrices by (5.4). Obviously their span is the same as that of the four vectors $W_{i}^{\mathrm{T}}\left(2 A_{z} \odot I_{n}\right) V_{j}$ for $i, j=1,2$. But by Lemma 1 and (5.8) we have $W_{i}^{\mathrm{T}}\left(2 A_{z} \odot\right.$ $\left.I_{n}\right) V_{j}=0$ if $i \neq j$. So we are left with the two gradient vectors $W_{i}^{\mathrm{T}}\left(2 A_{z} \odot I_{n}\right) V_{i}$ for $i=1,2$.

From (5.9) it follows that $\left(p_{1}^{1}+\mathrm{i} p_{2}^{1}\right)^{\mathrm{T}}\left(q_{1}^{1}+\mathrm{i} q_{2}^{1}\right)=0,\left(p_{1}^{1}+\mathrm{i} p_{2}^{1}\right)^{\mathrm{T}}\left(q_{1}^{1}-\mathrm{i} q_{2}^{1}\right)=2$, $\left(p_{1}^{1}-\mathrm{i} p_{2}^{1}\right)^{\mathrm{T}}\left(q_{1}^{1}+\mathrm{i} q_{2}^{1}\right)=2$, $\left(p_{1}^{1}-\mathrm{i} p_{2}^{1}\right)^{\mathrm{T}}\left(q_{1}^{1}-\mathrm{i} q_{2}^{1}\right)=0$. By Lemma 1 we infer that

$$
\begin{aligned}
\left(W_{1}^{\mathrm{T}}\left(2 A_{i j} \odot I_{n}\right) V_{1}\right) & =-2\left(p_{1}^{1}+\mathrm{i} p_{2}^{1}\right)_{i}\left(q_{1}^{1}-\mathrm{i} q_{2}^{1}\right)_{j}-2\left(p_{1}^{1}-\mathrm{i} p_{2}^{1}\right)_{i}\left(q_{1}^{1}+\mathrm{i} q_{2}^{1}\right)_{j} \\
& =-4\left(p_{1}^{1}\right)_{i}\left(q_{1}^{1}\right)_{j}-4\left(p_{2}^{1}\right)_{i}\left(q_{2}^{1}\right)_{j} .
\end{aligned}
$$

A similar formula holds of course for the other gradient vector. To prove that the two are linearly independent, suppose that there exist α_{1}, α_{2} such that

$$
\begin{equation*}
\alpha_{1}\left(\left(p_{1}^{1}\right)_{i}\left(q_{1}^{1}\right)_{j}+\left(p_{2}^{1}\right)_{i}\left(q_{2}^{1}\right)_{j}\right)+\alpha_{2}\left(\left(p_{1}^{2}\right)_{i}\left(q_{1}^{2}\right)_{j}+\left(p_{2}^{2}\right)_{i}\left(q_{2}^{2}\right)_{j}\right)=0 \tag{5.10}
\end{equation*}
$$

for all i, j. Multiplying (5.10) with $\left(q_{1}^{1}\right)_{i}$ we find after summation over i that $\alpha_{1}\left(q_{1}^{1}\right)_{j}=0$ for all j. This implies $\alpha_{1}=0$. Similarly $\alpha_{2}=0$.

Proposition 15. For each nonresonant double Hopf matrix $A_{0} \in \mathbb{R}^{n \times n}$ there exists a neighborhood (in the space of all matrices $A \in \mathbb{R}^{n \times n}$) in which the double Hopf matrices form a manifold with codimension 2 and are characterized by the fact that $2 A \odot I_{n}$ has rank defect 2 .

Proof. Let $A_{0}=C J_{0} C^{-1}$ be the Jordan decomposition of A_{0}. Obviously, J_{0} has one-element Jordan blocks of the form $\mathrm{i} \omega_{1}, \mathrm{i} \omega_{2},-\mathrm{i} \omega_{1},-\mathrm{i} \omega_{2}$. By classical matrix perturbation theory (see e.g., [1]), there is a neighborhood of A_{0} in which every matrix has corresponding Jordan blocks of the form $\mathrm{i} \omega_{1}+\delta_{1}+\mathrm{i} \delta_{2}$, $\mathrm{i} \omega_{2}+\delta_{3}+\mathrm{i} \delta_{4},-\mathrm{i} \omega_{1}+\delta_{1}-\mathrm{i} \delta_{2},-\mathrm{i} \omega_{2}+\delta_{3}-\mathrm{i} \delta_{4}$, where $\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}$ are smooth functions of the matrix entries and vanish at A_{0}. Clearly, $2 A \odot I_{n}$ has rank defect 2 if and only if A is a double Hopf matrix if and only if $\delta_{1}=\delta_{3}=0$. So it is sufficient to show that δ_{1}, δ_{3} form a regular set of functions of the entries of A, i.e., that their $2 \times n^{2}$ Jacobian

$$
\begin{equation*}
\binom{\left(\delta_{1}\right)_{A}}{\left(\delta_{3}\right)_{A}} \tag{5.11}
\end{equation*}
$$

has full rank 2 at $A=A_{0}$. Now consider the real two-parameter unfolding $A\left(\alpha_{1}, \alpha_{2}\right)=C J\left(\alpha_{1}, \alpha_{2}\right) C^{-1}$ where $J\left(\alpha_{1}, \alpha_{2}\right)$ is obtained by replacing in $J_{0} \pm \mathrm{i} \omega_{1}$ by $\pm \mathrm{i} \omega_{1}+\alpha_{1}$ and $\pm \mathrm{i} \omega_{2}$ by $\pm \mathrm{i} \omega_{2}+\alpha_{2}$. Obviously, the mapping $\left(\alpha_{1}, \alpha_{2}\right)^{\mathrm{T}} \rightarrow$
$\left(\delta_{1}\left(A\left(\alpha_{1}, \alpha_{2}\right)\right), \delta_{3}\left(A\left(\alpha_{1}, \alpha_{2}\right)\right)\right)^{\mathrm{T}}$ is the identity mapping; by the chain rule for derivatives this implies that (5.11) must have full rank.

The above result naturally generalizes to three other cases.
Proposition 16. Let $A_{0} \in \mathbb{R}^{n \times n}$ be a matrix of one of the following four types.

1. A is nonresonant double Hopf (Type DH).
2. A has a pair of algebraically simple eigenvalues of the form $a+\mathrm{i} b$ and $-a-\mathrm{i} b$ with a, b both real and nonzero (Type RT).
3. A has four different nonzero real algebraically simple eigenvalues $-\lambda_{1},-\lambda_{2}$, λ_{1}, λ_{2} (Type DN).
4. A has algebraically simple eigenvalues $\pm \mathrm{i} \omega, \pm \lambda$ with $\omega, \lambda>0$ (Type $H N$).

Then there exists a neighborhood of A_{0} (in the space of all matrices $A \in \mathbb{R}^{n \times n}$) in which the matrices of the same type form a manifold with codimension 2 and are characterized by the fact that $2 A \odot I_{n}$ has rank defect 2 .

Proof. The first case is Proposition 15; the other cases can be proved similarly.

By Proposition 15, in the double Hopf case two of the four functions contained in the system

$$
\begin{equation*}
S(A)=0 \tag{5.12}
\end{equation*}
$$

where $S(A)$ is defined by (5.2) form a defining system for the two-dimensional manifold of double Hopf matrices near a given one. In fact, Proposition 14 provides sufficient information to make an a priori choice based on local information in the matrix under consideration. This remark applies equally in the three other cases described in Proposition 16.

6. Resonant double Hopf points

We now consider the $1: 1$ resonant case where A has double eigenvalues $\pm \mathrm{i} \omega$, $\omega>0$ with geometric multiplicity 1 . By Proposition 11, $2 A \odot I_{n}$ has eigenvalue zero with two Jordan blocks with sizes 1 and 3, respectively. Hence $\left(2 A \odot I_{n}\right)^{2}$ has rank defect 3 . We define the $N_{b} \times 2$ matrix $Q_{1}(A)$ and the 2×2 matrix $S_{1}(A)$ by solving

$$
\begin{equation*}
M(A)\binom{Q_{1}(A)}{S_{1}(A)}=\binom{Q(A)}{S(A)} \tag{6.1}
\end{equation*}
$$

where $M(A)$ is defined as in (5.1) and $Q(A), S(A)$ obtained from (5.2). Obviously, we also have

$$
\left(\begin{array}{cc}
\left(2 A \odot I_{n}\right)^{2}+B C^{\mathrm{T}} & B_{1} \tag{6.2}\\
C_{1}^{\mathrm{T}} & D_{1}
\end{array}\right)\binom{Q_{1}(A)}{S_{1}(A)}=\binom{0_{N_{b}, 2}}{I_{2,2}},
$$

where $B_{1}, C_{1} \in \mathbb{R}^{N_{b} \times 2}$ and $D_{1} \in \mathbb{R}^{2 \times 2}$. Since $B C^{\mathrm{T}}$ has rank at most two, it follows that $\left(2 A \odot I_{n}\right)^{2}+B C^{\mathrm{T}}$ has rank defect at least 1, so by [5], Proposition 3.2, S_{1} is singular. On the other hand, S_{1} cannot be zero since then (6.1) would imply that $2 A \odot I_{n}$ has Jordan blocks with sizes 2,2 instead of 1,3 . So it is natural to add the condition

$$
\begin{equation*}
\operatorname{det}\left(S_{1}(A)\right)=0 \tag{6.3}
\end{equation*}
$$

to the conditions for double Hopf to obtain conditions for 1:1 resonant double Hopf. Before dealing with the regularity of this system we note that the derivatives of S_{1} can be obtained in the now familiar way. Define the $N_{b} \times 2$ matrix $W_{1}(A)$ by

$$
\begin{equation*}
\left(W_{1}^{\mathrm{T}}(A) \quad S_{1}(A)\right) M(A)=\left(W^{\mathrm{T}}(A) \quad S(A)\right) \tag{6.4}
\end{equation*}
$$

Then $S_{1 z}$ can be obtained from

$$
\begin{equation*}
S_{1 z}(A)+W_{1}^{\mathrm{T}}\left(2 A_{z} \odot I_{n}\right) Q(A)+W^{\mathrm{T}}\left(2 A_{z} \odot I_{n}\right) Q_{1}(A)=0_{2,2} \tag{6.5}
\end{equation*}
$$

(see [6], Proposition 3.5).
It is convenient to deal with the regularity issue in a more general situation.

Proposition 17. Consider the following four types of matrices $A \in \mathbb{R}^{n \times n}$.

1. A is resonant double Hopf and the Hopf eigenvalues have geometric multiplicity 1 (Type RDH).
2. A has real eigenvalues $\pm \lambda, \lambda>0$, each with algebraic multiplicity 2 and geometric multiplicity 1 (Type RDN).
3. A has algebraically simple eigenvalues $\pm \lambda, \lambda>0$, and eigenvalue zero with algebraic multiplicity 2 and geometric multiplicity 1 (Type BTN).
4. A has algebraically simple eigenvalues $\pm \mathrm{i} \omega, \omega>0$, and eigenvalue zero with algebraic multiplicity 2 and geometric multiplicity 1 (Type BTH).
The matrices of each type form a manifold of codimension 3 in the space of all $\mathbb{R}^{n \times n}$ matrices. If A_{0} is in one of these classes then $2 A_{0} \odot I_{n}$ has rank defect 2. Furthermore, there exists a neighborhood of A_{0} (in the space of all matrices $A \in \mathbb{R}^{n \times n}$) in which the matrices for which $2 A \odot I_{n}$ has rank defect 2 form a manifold with codimension 2. In the case of RDH this neighborhood contains only matrices of the types RDH, DH and RT. For RDN it is RDN, RT and DN. For BTN it is BTN, DN and HN. For BTH it is BTH, HN and DH. In each case a regular set of defining functions for the manifold of codimension 2 is obtained by taking two of the functions contained in (5.12) for which the gradient system has full rank 2. In the cases RDN and RDH a regular set of defining functions for the
manifold of codimension 3 is obtained by adding the condition (6.3). In the cases BTN and BTH one obtains a regular set of defining equations by adding the condition $s_{f}(A)=0$ where $s_{f}(A)$ is obtained by solving

$$
\left(\begin{array}{cc}
A & b_{f} \tag{6.6}\\
c_{f}^{\mathrm{T}} & d_{f}
\end{array}\right)\binom{v_{f}}{s_{f}}=\binom{0_{n}}{1}
$$

with $v_{f} \in \mathbb{R}^{n} ; b_{f}, c_{f} \in \mathbb{R}^{n}$ and $d_{f} \in \mathbb{R}$ are fixed and chosen in such a way that the square matrix in (6.6) is nonsingular in the codimension three point.

Proof. We first consider the case RDN in some detail. There exist vectors $v_{1}, v_{2}, v_{3}, v_{4}$ and $w_{1}, w_{2}, w_{3}, w_{4}$, all in \mathbb{R}^{n}, such that $A v_{1}=\lambda v_{1}, A v_{2}=\lambda v_{2}+v_{1}$, $A v_{3}=-\lambda v_{3}, \quad A v_{4}=-\lambda v_{4}+v_{3}, \quad w_{1}^{\mathrm{T}} A=\lambda w_{1}^{\mathrm{T}}, \quad w_{2}^{\mathrm{T}} A=\lambda w_{2}^{\mathrm{T}}+w_{1}^{\mathrm{T}}, \quad w_{3}^{\mathrm{T}} A=-\lambda w_{3}^{\mathrm{T}}$, $w_{4}^{\mathrm{T}} A=-\lambda w_{4}+w_{3}^{\mathrm{T}}$. We have $w_{i}^{\mathrm{T}} v_{j}=0$ if $i \in\{1,2\}, j \in\{3,4\}$ or $i \in\{3,4\}$, $j \in\{1,2\}$ (different eigenvalues). Furthermore, we may assume that $w_{i}^{\mathrm{T}} v_{j}=0$ if $i=j$ and $w_{i}^{\mathrm{T}} v_{j}=1$ if $i \neq j$ and i, j correspond with the same eigenvalue.

By Proposition $112 A \odot I_{n}$ has the linearly independent right singular vectors $v_{1} \wedge v_{3}$ and $v_{1} \wedge v_{4}-v_{2} \wedge v_{3}$. Furthermore, $v_{1} \wedge v_{3}$ is in the range of $2 A \odot I_{n} ;$ in fact, $\left(2 A \odot I_{n}\right)\left(\left(v_{1} \wedge v_{4}+v_{2} \wedge v_{3}\right) / 2\right)=v_{1} \wedge v_{3}$. Similar relations hold for $\left(2 A \odot I_{n}\right)^{\mathrm{T}}$ if we replace every v_{i} by a w_{i}.

Let us first determine the dimensions of the relevant manifolds. In the Jordan form of A a diagonal block of the form

$$
\left(\begin{array}{cccc}
\lambda & 1 & 0 & 0 \tag{6.7}\\
0 & \lambda & 0 & 0 \\
0 & 0 & -\lambda & 1 \\
0 & 0 & 0 & -\lambda
\end{array}\right)
$$

appears with real universal unfolding

$$
\left(\begin{array}{cccc}
\lambda & 1 & 0 & 0 \tag{6.8}\\
\delta_{1} & \lambda+\delta_{2} & 0 & 0 \\
0 & 0 & -\lambda & 1 \\
0 & 0 & \delta_{3} & -\lambda+\delta_{4}
\end{array}\right)
$$

For versality theory we refer to [1]; universality is understood with respect to the group of similarity transformations. By the same argument as in Proposition 15 one proves that the system $\left(\delta_{i}(A)\right)_{1 \leqslant i \leqslant 4}$ has full rank 4. Furthermore, it is not hard to check that for matrices with a diagonal block (6.8) the matrix $2 A \odot I_{n}$ has rank defect 2 if and only if $\delta_{3}=-\delta_{1}, \delta_{4}=-\delta_{2}$. This proves the assertion concerning the manifold with codimension 2.

Next, a matrix of the form (6.8) for which $2 A \odot I_{n}$ has rank defect 2 is either of type RT (if $\delta_{2}^{2}+4 \delta_{1}<0$) or type DN (if $\delta_{2}^{2}+4 \delta_{1}>0$) or type RDN (if $\delta_{2}^{2}+4 \delta_{1}=0$).

Since the system of three conditions for $\operatorname{RDN}\left(\delta_{1}+\delta_{3}=0, \delta_{2}+\delta_{4}=0\right.$, $\delta_{2}^{2}+4 \delta_{1}=0$) has a Jacobian with full rank 3 at the origin, the assertion concerning the manifold with codimension 3 follows.

We now turn to the regularity of the systems obtained by the bordered matrix methods. First note that the columns of Q span the right singular space of $2 A \odot I_{n}$, i.e., the same space as $v_{1} \wedge v_{3}$ and $v_{1} \wedge v_{4}-v_{2} \wedge v_{3}$. Similarly, the columns of W span the same space as $w_{1} \wedge w_{3}$ and $w_{1} \wedge w_{4}-w_{2} \wedge w_{3}$.

By Lemma 1 and the relations between the vectors v, w we have for $1 \leqslant i, j \leqslant n$ that

$$
\begin{align*}
& \left(w_{1} \wedge w_{3}\right)^{\mathrm{T}}\left(2 A_{i, j} \odot I_{n}\right)\left(v_{1} \wedge v_{3}\right)=0 \tag{6.9}\\
& \left(w_{1} \wedge w_{3}\right)^{\mathrm{T}}\left(2 A_{i, j} \odot I_{n}\right)\left(v_{1} \wedge v_{4}-v_{2} \wedge v_{3}\right)=w_{1 i} v_{1 j}-w_{3 i} v_{3 j}, \tag{6.10}\\
& \left(w_{1} \wedge w_{4}-w_{2} \wedge w_{3}\right)^{\mathrm{T}}\left(2 A_{i, j} \odot I_{n}\right)\left(v_{1} \wedge v_{3}\right)=w_{1 i} v_{1 j}-w_{3 i} v_{3 j}, \tag{6.11}\\
& \left(w_{1} \wedge w_{4}-w_{2} \wedge w_{3}\right)^{\mathrm{T}}\left(2 A_{i, j} \odot I_{n}\right)\left(v_{1} \wedge v_{4}-v_{2} \wedge v_{3}\right) \\
& \quad=-w_{1 i} v_{2 j}-w_{4 i} v_{3 j}-w_{2 i} v_{1 j}-w_{3 i} v_{4 j} . \tag{6.12}
\end{align*}
$$

Obviously these four gradient vectors span at most a two-dimensional space. Multiplying (6.10) with $v_{2 i}$ and summing over i we obtain $-\left(w_{1}^{\mathrm{T}} v_{2}\right) v_{1 j}$ for all j; this implies that the gradient vector in (6.10) is nonzero. On the other hand, multiplying it with $v_{1 i}$ and summing over i we find zero; multiplying (6.12) also with $v_{1 i}$ and summing over i we obtain $-w_{2}^{\mathrm{T}} v_{1} v_{1 j}$ for all j; hence the two gradient vectors in (6.10) and (6.12) are linearly independent and span a two-dimensional space. So the equations corresponding to the second and fourth gradient vectors determine the two-dimensional manifold of matrices that we are considering.

Now let us look at the resonance condition $\operatorname{det}\left(S_{1}\right)=0$. We know already that S_{1} has rank 1 at the resonant point. Set

$$
S_{1}=\left(\begin{array}{ll}
s_{11} & s_{12} \\
s_{21} & s_{22}
\end{array}\right)
$$

We first consider the special case that $s_{12}=s_{21}=s_{22}=0$. Then necessarily $s_{11} \neq 0$ and $\operatorname{det}_{z}\left(S_{1}\right)=s_{11}\left(s_{22}\right)_{z}$. Also,

$$
\begin{equation*}
\left(s_{22}\right)_{z}=-W_{1}^{2 \mathrm{~T}}\left(2 A_{z} \odot I_{n}\right) Q^{2}-W^{2 \mathrm{~T}}\left(2 A_{z} \odot I_{n}\right) Q_{1}^{2}, \tag{6.13}
\end{equation*}
$$

where the upper index 2 in each case indicates that we take the second column out of a matrix with 2 columns. By the assumptions on S_{1} we must necessarily have that

$$
Q_{1}^{2}=\alpha_{r} v_{1} \wedge v_{3}+\beta_{r}\left(v_{1} \wedge v_{4}\right)+\gamma_{r}\left(v_{2} \wedge v_{3}\right)
$$

with $\beta_{r}+\gamma_{r} \neq 0$ and

$$
\begin{aligned}
& Q^{2}=\left(2 A \odot I_{n}\right) Q_{1}^{2}=\left(\beta_{r}+\gamma_{r}\right)\left(v_{1} \wedge v_{3}\right) \\
& W_{1}^{2}=\alpha_{l} w_{1} \wedge w_{3}+\beta_{l}\left(w_{1} \wedge w_{4}\right)+\gamma_{l}\left(w_{2} \wedge w_{3}\right)
\end{aligned}
$$

with $\beta_{l}+\gamma_{l} \neq 0$ and

$$
W^{2}=\left(2 A \odot I_{n}\right)^{\mathrm{T}} W_{1}^{2}=\left(\beta_{l}+\gamma_{l}\right)\left(w_{1} \wedge w_{3}\right) .
$$

Comparing (6.13) with (6.9)-(6.12) we note that it is natural to rewrite Q_{1}^{2} and W_{1}^{2} as

$$
\begin{aligned}
& Q_{1}^{2}=\alpha_{r} v_{1} \wedge v_{3}+\beta_{r}\left(v_{1} \wedge v_{4}-v_{2} \wedge v_{3}\right)+\left(\beta_{r}+\gamma_{r}\right)\left(v_{2} \wedge v_{3}\right) \\
& W_{1}^{2}=\alpha_{l} w_{1} \wedge w_{3}+\beta_{l}\left(w_{1} \wedge w_{4}-w_{2} \wedge w_{3}\right)+\left(\beta_{l}+\gamma_{l}\right)\left(w_{2} \wedge w_{3}\right)
\end{aligned}
$$

Inserting these expressions into (6.13) we obviously find a linear combination of the expressions in (6.10) and (6.11) plus an additional nonzero multiple of

$$
\begin{align*}
& \left(w_{2} \wedge w_{3}\right)^{\mathrm{T}}\left(2 A_{i, j} \odot I_{n}\right)\left(v_{1} \wedge v_{3}\right)+\left(w_{1} \wedge w_{3}\right)^{\mathrm{T}}\left(2 A_{i, j} \odot I_{n}\right)\left(v_{2} \wedge v_{3}\right) \\
& \quad=2 w_{3 i} v_{3 j} . \tag{6.14}
\end{align*}
$$

By multiplying (6.10), (6.12) and (6.14) with $v_{1 i}$ and $v_{2 i}$ and summing over i it follows easily that these gradient vectors are linearly independent, so the result follows under the assumptions we made concerning S_{1}.

In the general case there exists by the Jordan decomposition theorem a 2×2 nonsingular matrix X such that $S_{1 J}=X^{-1} S_{1} X$ has at resonance a nonzero element in the upper left entry and zeroes everywhere else.

Now define $B_{J}=B X, C_{J}=C X^{-\mathrm{T}}, D_{J}=X^{-1} D X$. Then the matrix

$$
M_{J}=\left(\begin{array}{cc}
2 A \odot I_{n} & B_{J} \\
C_{J}^{\mathrm{T}} & D_{J}
\end{array}\right)
$$

is obviously nonsingular and by trivial computations we find that

$$
\left(M_{J}\right)^{2}\binom{Q_{1} X}{X^{-1} S_{1} X}=\binom{0}{I_{2,2}}
$$

in a neighborhood of the resonant matrix.
In this neighborhood we have $S_{1 J}(A)=X S_{J}(A) X^{-1}$ and hence $\operatorname{det}\left(S_{1}(A)\right)=\operatorname{det}\left(S_{1 J}(A)\right)$. So the result follows from the special case that we considered first.

This proves the case RDN. The case RDH is similar. Now consider the case BTN. There exist a $\lambda>0$ and vectors $v_{1}, v_{2}, v_{3}, v_{4}$ and $w_{1}, w_{2}, w_{3}, w_{4}$ in \mathbb{R}^{n} such that $A v_{1}=0, A v_{2}=v_{1}, A v_{3}=\lambda v_{3}, A v_{4}=-\lambda v_{4}, w_{1}^{\mathrm{T}} A=0, w_{2}^{\mathrm{T}} A=w_{1}^{\mathrm{T}}, w_{3}^{\mathrm{T}} A=\lambda w_{3}^{\mathrm{T}}$,
$w_{4}^{\mathrm{T}} A=-\lambda w_{4}^{\mathrm{T}}$. We may assume that $w_{i}^{\mathrm{T}} v_{j}=0$ for $i, j=1,2,3,4$ except for the cases $w_{1}^{\mathrm{T}} v_{2}=w_{2}^{\mathrm{T}} v_{1}=w_{3}^{\mathrm{T}} v_{3}=w_{4}^{\mathrm{T}} v_{4}=1$. The left singular vectors of $2 A \odot I_{n}$ are the vectors $w_{1} \wedge w_{2}$ and $w_{3} \wedge w_{4}$. The right singular vectors are $v_{1} \wedge v_{2}$ and $v_{3} \wedge v_{4}$.

The universal unfolding of the Jordan form now has the form

$$
\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \tag{6.15}\\
\delta_{1} & \delta_{2} & 0 & 0 \\
0 & 0 & \lambda+\delta_{3} & 0 \\
0 & 0 & 0 & -\lambda+\delta_{4}
\end{array}\right)
$$

For a matrix with a diagonal block (6.15) the bialternate product matrix has rank defect 2 if and only if $\delta_{2}=\delta_{3}+\delta_{4}=0$; this proves the claim concerning the codimension two manifold. Furthermore, it is a BTN matrix if and only if $\delta_{1}=\delta_{2}=\delta_{3}+\delta_{4}=0$. This proves the claim concerning the codimension three manifold.

Now we consider the regularity of the defining systems. By Lemma 1 and the relations between the vectors v, w we have for $1 \leqslant i, j \leqslant n$ that

$$
\begin{align*}
& \left(w_{1} \wedge w_{2}\right)^{\mathrm{T}}\left(2 A_{i, j} \odot I_{n}\right)\left(v_{1} \wedge v_{2}\right)=-w_{2 i} v_{1 j}-w_{1 i} v_{2 j}, \tag{6.16}\\
& \left(w_{3} \wedge w_{4}\right)^{\mathrm{T}}\left(2 A_{i, j} \odot I_{n}\right)\left(v_{3} \wedge v_{4}\right)=w_{3 i} v_{3 j}+w_{4 i} v_{4 j} . \tag{6.17}
\end{align*}
$$

The two other candidates for a gradient vector are zero. Furthermore, the gradient that corresponds to the condition $s_{f}(A)=0$ is given by

$$
\begin{equation*}
-w_{1}^{\mathrm{T}} A_{i j} v_{1}=-w_{1 i} v_{1 j} \tag{6.18}
\end{equation*}
$$

It is easy to prove that the three gradient vectors with components given by (6.16)-(6.18) are linearly independent (multiply successively with $w_{1 j}, w_{2 j}$ and $w_{3 j}$ and sum over j).

Finally, the case BTH is similar to BTN.
Fig. 1 presents the eight types of matrices described in Propositions 16 and 17 and their possible interactions. As a typical application, one might compute a curve of points in a three parameter problem, expressing the requirement that $2 A \odot I_{n}$ has rank defect 2 . Then in the scheme of Fig. 1 we expect to move from each type to one of the two adjacent types, the types at the corners generically being isolated points on the computed curve. The numbers between brackets indicate the sizes of the Jordan blocks of $2 A \odot I_{n}$ for the zero eigenvalue.

We note that there are other matrices A for which the bialternate product has rank defect 2 . However, they have to lie on certain manifolds with codimension higher than 3 and the systems that we obtained may not be regular in such points. For example, consider the case where A has the eigenvalue 1 with algebraic multiplicity 2 and geometric multiplicity 1 and the eigenvalue -1 with

Fig. 1. Eight types of matrices A where $2 A \odot I_{n}$ has rank defect 2 .
algebraic multiplicity 3 and geometric multiplicity 1. Then by Proposition 11 $2 A \odot I_{n}$ has rank defect 2 and its square has rank defect 4 . In the setting of the preceding methods we have $S=S_{1}=0$. So the gradient vector of $\operatorname{det}\left(S_{1}\right)$ vanishes.

Acknowledgements

We thank J. Van der Jeugt (Gent, B.) for bringing [16] to our attention. A direct proof of Proposition 10 does not seem easy to find, except in some special cases, cf. [6]. We further thank Kurt Lust (Cornell University) for several interesting suggestions. Among other things, these have led to substantial improvements in the formulation and proofs of Propositions 11 and 17.

References

[1] V.I. Arnold, On matrices depending on parameters, Russian Math. Surv. 26 (1971) 29-43.
[2] J.W. Demmel, A. Edelman, The dimension of matrices (matrix pencils) with given Jordan (Kronecker) canonical form, Linear Algebra Appl. 230 (1995) 61-87.
[3] A.T. Fuller, Conditions for a matrix to have only characteristic roots with negative real parts, J. Math. Anal. Appl. 23 (1968) 71-98.
[4] G.H. Golub, C.F. Van Loan, Matrix Computations, John Hopkins University Press, Baltimore, 1996.
[5] W. Govaerts, Defining functions for manifolds of matrices, Linear Algebra Appl. 266 (1997) 49-68.
[6] W. Govaerts, J. Guckenheimer, A. Khibnik, Defining functions for multiple Hopf bifurcations, SIAM J. Numer. Anal. 34 (1997) 1269-1288.
[7] W. Govaerts, Yu.A. Kuznetsov, B. Sijnave, Continuation of codimension 2 equilibrium bifurcations in CONTENT, in: Proceedings of the IMA Workshop Numerical Methods for Bifurcation Problems, IMA, Minneapolis, USA, 15-19 September 1997, to appear.
[8] A. Griewank, G.W. Reddien, Characterization and computation of generalized turning points, SIAM J. Numer. Anal. 21 (1984) 176-185.
[9] A. Griewank, G.W. Reddien, Computation of cusp singularities for operator equations and their discretizations, J. Comp. Appl. Math. 26 (1989) 133-153.
[10] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Applied Mathematical Sciences, vol. 42, Springer, Berlin, 1983.
[11] J. Guckenheimer, M. Myers, B. Sturmfels, Computing Hopf bifurcations I, SIAM J. Numer. Anal. 34 (1997) 1-21.
[12] J. Guckenheimer, M. Myers, Computing Hopf bifurcations II: Three examples from neurophysiology, SIAM J. Sci. and Stat. Computing 17 (1996) 1275-1301.
[13] Yu.A. Kuznetsov, Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, vol. 112, Springer, Berlin, 1995, 1998.
[14] Yu.A. Kuznetsov, V.V. Levitin, Content: A Multiplatform Environment for Analyzing Dynamical Systems, Dynamical Systems Laboratory, CWI, Amsterdam, 1996 (software under development).
[15] P. Lancaster, Theory of Matrices, Academic Press, New York, 1969.
[16] I.G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, 1995.
[17] C. Stéphanos, Sur une extension du calcul des substitutions linéaires, Journal de Mathématiques pures et appliquées 6 (1900) 73-128.
[18] W.C. Waterhouse, The codimension of singular matrix pairs, Linear Algebra Appl. 57 (1984) 227-245.

[^0]: ${ }^{*}$ Corresponding author. E-mail: willy.govaerts@rug.ac.be
 ${ }^{1}$ Fund for Scientific Research F.W.O.

