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The present paper is a self-contained treatment of subspaces of the space GF(q) '~ 
of all semi-infinite strings over GF(q). Some necessary and sufficient conditions 
which characterize those subspaces of  GF(q) '° are derived which are convolutional 
codes, and the classes of  subspaces defined by one or more of them are 
investigated. Moreover structural parameters of  convolutional codes such as block 
length, rate, delay, and constraint length are considered as parameters of subspaces 
rather than parameters of  an encoding device. As a conclusion it is obtained that 
for error-control purposes none of  the investigated superclasses of  the class of  
convolutional codes is better suited than the class of convolutional codes itself. 

1. INTRODUCTION 

Structural properties of convolutional codes have been investigated in 
different directions, on the one hand in an algebraic manner using the 
description of convolutional encoders by the D-transform matrix (of. Massey, 
1963; Forney, 1970) or on the other hand using the tree or trellis structure of 
these codes (cf. Viterbi, 1971; Forney, 1974). In general, it has been 
common to regard convolutional codes as spaces of semi-infinite vectors 
(i.e., subsets of GF(q) ~') (cf. Blahut, 1983). But then, in contrast to the case 
of block codes, where the spaces the codes are taken from are finite, in the 
case of the space of semi-infinite vectors there is a great variety of subsets, 
and it is difficult to select among this variety those subspaces of GF(q) '° 
useful for coding theory. 

To this end one wishes to introduce into subspaces an internal structure. 
This can be done from an algebraic point of view (cf. Piret, 1978), from a 
topological point of view (cf. Trachtenbrot and Barzdin, 1973, and Lindner 
and Staiger, 1977) and from the point of view of the theory of formal 
languages, where several classes of co-languages (sets of semi-infinite strings) 
have been investigated, as regular (i.e., definable by finite automata) (cf. 
Trachtenbrot and Barzdin, 1973; Lindner and Staiger, 1977; Wagner, !979), 
context-free (Linna, 1976), and recursive co-languages (Wagner and Staiger, 
1977). 
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This latter point of view seems not to be very appropriate, since classes of 
~-languages are usually defined by accepting devices rather than encoding 
circuits. Taking into account, however, the a priori knowledge that all sets of 
semi-infinite strings encodable by a sequential circuit are closed in the 
natural topology of GF(q) '° (cf. Lindner and Staiger, 1977), we propose 
another approach to put convolutional codes in the context of language and 
automata theory. 

We introduce the notion of a state of a subset of GF(q) ~' derived by a 
finite string over GF(q) and investigate the interconnections between the 
structure of a subset of GF(q) °' and the structure of the set of all its states 
(cf. also Staiger, 1983b). This seems not only to provide a deeper insight into 
the structure of linear codes, but also a tool for structurizing nonlinear codes 
as, for instance, nonlinear tree and trellis codes, and sliding block codes. A 
first attempt in this direction has been made by this author (Staiger, 1979). 

We present here the state approach together with topological 
considerations in order to get an insight into the defining properties of 
convolutional codes. In particular, we are interested which superclasses of 
convolutional codes are defined by these properties taken each one alone. In 
order not to stress the matter too much, we have confined ourselves to the 
consideration of linear codes. 

In the second section we introduce the necessary notation and some 
topological and algebraic apparatus. Then, in the third section, we analyze 
convolutional codes. Here we derive properties of convolutional codes which 
will be recognized in Section 6 as their defining properties. The fourth 
chapter deals with general properties of subspaces. Here the apparatus of 
states and a comparison method of sets of semi-infinite sequences based on 
finite part comparisons are introduced. Moreover, we obtain a first 
classification of subspaces according to the behavior (periodicity) of their 
family of zerostates. We show that the class of subspaces having a periodic 
family of zerostates is closely related to a class of subspaces defined by one 
of the properties of convolutional codes derived in the preceding section. 
This latter class of S-spaces is thoroughly investigated in Section 5. For this 
class such parameters of convolutional codes as clock length, rate, and delay 
are considered. 

Then, in the sixth part we introduce two further properties of subspaces. It 
turns out that either of them defines convolutional codes among 2J-spaces. 
Further we deal with the relations of convolutional codes to the class of 
finite-state subspaces, this latter class being defined by one of the newly 
introduced properties. We conclude this part by investigating two parameters 
of subspaces which are related to the constraint length of codes. For the sake 
of completeness, Section 7 gives some results on remergable subspaces, the 
subspaces being defined by the second property introduced in the preceding 
section. Finally, in the eighth section we summarize the connections between 
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the properties (classes) of subspaces obtained in the earlier sections and give 
some independence results. 

2. PRELIMINARIES 

Throughout this paper let Y be a finite Abelian group (Y, +, 0) with zero 
element 0. The elements of Y will be also regarded as letters, and a usual 
Y*(Y~') denotes the set of finite words (infinite sequences) on the alphabet Y. 
If w E Y* U Y~', then w.  b is the concatenation of w and b. This in an 
obvious way defines a product W. B of sets W c y* and B c y* U Y~'. 

The n-fold (n EN----{0, 1,2,...}) concatenation of a word wE Y* is 
denoted by w n, and w °~ is the sequence in y,o formed by concatenating the 
word w infinitely many times, provided w is not the empty word. For 
convenience we shall write w • B and W. b instead of {w} • B and W. {b}, 
respectively. 

For any word w E Y* let I w l be its length, and, as sequences fl E yo~ may 
be viewed as functions mapping e) = (1, 2, 3,..} into Y, the nth letter of]? is 
denoted by fl(n). 

Finally, let A(b)=dr {W: W E Y* and b = w.  b' for some b'} be the set of 
all initial words of b E Y* ~ yo,, and let A(B)=dr UbenA(b). 

Since Y is a group, the sets Y" =dr{w: wE Y* and Iw I --n} and yo, will 
be considered also as groups where addition (also denoted by +) is defined 
componentwise. Their respective zero elements are OnE yn and 0 ~ E  y,o. 
Additionally, the set y,o may be provided with a topological structure 
introducing the following metric p. 

p(fl, ~) =ef 0, if fl = ~, 

I 1 I =dfmax n : f l ( n )  4 =~(n) , if flg=~. 

(1) 

It is a well-known fact, that this metric space (yo), p) is homeomorphic to 
Cantor's discontinuum (of. Trachtenbrot and Barzdin, 1973), and hence is a 
complete and compact metric space. Moreover, p satisfies the ultrametric ine- 
quality 

p(fl, ~) ~< max{p(fl, r/), p(~, r/)} (2) 

for arbitrary fl, ~, r/E Y~'. Thus, as (y~o, p) is an ultrametric space, every 
open ball K~(fl) =dr {~: ~ E y,o and p(fl, ~) < e} is also closed (cf. Dieudonn~, 
1960). From the defining equation (1) of the metric p one easily obtains that 

1 1 Kc(w.~)=w.Y~° for ~ > e ~ > ~ a n d a r b i t r a r y ~ E Y ~ ° .  (3) 
Iwi  t W L t l  
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Consequently, the open sets in (yo,,p), as unions of open balls, are easily 
characterized as the sets of form W. y~o, where W ~  Y*. This yields the 
following characterization of the closure C(F) of a set F___ Y~', i.e., of the 
smallest closed subset of yo~ containing the set F. 

LEMMA 1.1. (a) C(F)= An°°_ 0 (A(F)(3 Y") .  yoo, 

(b) C ( F ) =  {fl:A(fl)~A(F)}.  

Proof (a) Since Y~' is a metric space, we have C ( F ) =  
r)e>oU~3~FK~(t~). In virtue of Eq. (3), for 1/n>e>~ 1/ (n+  1) the union 
U s~e K~(fl) may be rewritten as {w: w ~ A (F) and ]wl = n} • y~o. This proves 
our assertion. 

(b) It suffices to show the equality {fi: A(fl) ~_ A(F)} = 
n ,  =0 (A (F) (3 Y").  y~o. Let A (fl) c a (r). Then clearly, fl C (A (V) n Y").  y~o 
for every n C N .  Now, if t iC n~=0 (A(F)N Y"). yo, then for every n ~ N  
the initial word of length n of fl belongs to A (F). Hence, A (fl) _~ A (F). I 

According to Lemma 1.1 a subset F y~o is closed if and only if 
A ( f l )  _~ A (F) implies fl E F. Next, we connect the group theoretical with the 
topological properties of Y% It is readily seen that the metric p is invariant 
under additive shift, i.e., p(fi + rl, ~ + t/) = p(fl, ~). Therefore, we introduce the 
norm I]fltl of a sequence fl ~ yo, as 

II/ 11 : fpq , 0% 

Thus, p(fl, 4) = lift -- 411, and from the ultrametric inequality (2) it follows 

II/~ + 411 ~< max{ll/~ll, I1411 }. (4) 

This yields the following necessary and sufficient condition for the 
convergence of an infinite sum in Y% 

PROPOSITION 1.2. The infinite sum Y'~=ofl,' converges iff  fli tends to 0 °~ 
as i approaches infinity. 

Proof Let Y~7=o fli-%~oo Y~-o fli. Then necessarily 

i=0 i=0 

n f l _ _  m NOW let fli~i_~oo 0% and consider ~n.m = ~i=0 i 2 i=Of l i  (m < n). Then 
)]tin,roll = ]]]~m+l - ~ m + 2  Jr- " '" ~-/~nJl ~ max{jJfl,,+~]l ..... ]lfl,]]} according to (4). 
Consequently I]q,.m][--* . . . .  co 0, and ~7=ofli converges to some fl E yo~, for 
Y~' is a complete space. I 
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If Y is a Galois field GF(q) then y,o may be considered not only as a 
topological group but also as a normed space. Having this important case in 
mind, we will refer to y~o as a (normed linear) space and to closed subgroups 
L ~ yo, as subspaces. It should be mentioned that the set f of subspaces of 
y,o is closed under+ and ~ .  Finally, for a countably infinite family (L i ) ie  N 
of subspaces we will write ~2~0Li  to denote the subspace spanned by all 
spaces L i. 

3. ANALYSIS OF CONVOLUTIONAL CODES 

In this section let Y be some Galois field GF(q). We shall consider a 
convolutional code as a subspace of GF(q) '° as it is now usually done (cf. 
Blahut, 1983) in coding theory, and we derive conditions necessary for a 
subspace to be a convolutional code. Later on in Section 6 we shall show 
that these same conditions are also sufficient. A convolutional code is 
defined (cf. Costello, 1969) as the row space of its semi-infinite generator 
matrix (5 of the following form 

= 

-G O G 1 G2 ..- Gv_ 1 Gv 

Go G1 G2 "" Gv_l G. 
, , o  

, , ,  

Go G1 G2 ... Gv_ 1 Gv 

where each G i is a k X n matrix over GF(q), and the blank portions of the 
matrix (fi are assumed to be filled with k × n zeromatrices. Consequently, the 
convolutional code L generated by (5 is 

L =  {r/® {~: r/E Y~}, (6) 

where r /® (5 denotes the product of the sequence r /~  y~o, regarded as a 
semi-infinite row vector, with the matrix ~5. 

THEOREM 3.1 (Staiger, 1980b). Let  L G y~o be a convolutional code. 

Then 

(a) L is a linear and closed subset o f  Y% 

(b) L ~_ O n . L for  some n > O, 

(c) f o r  every w ~ A ( L )  there is a v E  Y* such that w .  v .  O'° E L .  
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Proof Linearity follows easily from the defining equation (6). From the 
structure of the matrix 15 follows, that if p(0,¢)~< 1/(i. k) then 
P(O ® 15, ~ ® 15) ~ 1/(i • n). Thus, F: 0 ~ 0 ® 15 is a continuous mapping 
from yo~ to Y% Since yo, is compact, the image F(Y °~) = {0 ® 15: r/C y~o} is 
closed. 

The property (b) is easily obtained from 

(o k.  0 ) ®  15 = 0  n • ( 0 ®  15). 

Finally, let w CA(L). Without loss of generality we may assume I wl = • n 
for some i>~0. Then there is an 0 C  y,o such that w C A ( o ®  15). From the 
structure of 15 follows that w depends only on the first i .  k positions of 0- 
Let u be the initial word of length i .  k of r/. Then w is an initial word of 
(u.  0 °~) ® 15, and (u • 0 °~) ® 15 has only finitely many nonzero entries. III 

We conclude this section with some remarks on the parameters of a 
convolutional code. The matrix 15 in Eq. (5) is designed from a k input, n 
output, feedback-free linear sequential circuit used as an (n, k)-encoder for 
the code L of Eq. (6). This encoder shifts out every time unit a block of n 
encoded symbols. Therefore, we will call n the block-length of the 
convolutional code. As one can design the encoder also as a i • k input, i • n 
output, circuit the block-length is not an invariant of a convolutional code. A 
sufficiently large block-length may be chosen in order to obtain a 
convolutional encoder in unit memory form (Lee, 1976). This will be 
illustrated by the following example. 

EXAMPLE 3.1. Let L 1 be the binary convolutional code generated by 
G o = (11), G 1= (01), and G 2 = (11) ( v =  2). Figure 1 shows an encoding 
circuit for L 1 constructed according to (G 0, G1, G2). The same code Lj may 
be generated by the matrices G6 = ( ~  0]) an G~ = (~J~ 0o) where v = 1. The 
corresponding circuit is a unit-memory encoder (see Fig. 2). 

A still open problem is to find the minimum block-length of a 
convolutional code (Conan, 1981). A solution, which however requires some 
refinement in order to be effectively applicable to generator matrices, to this 
problem is obtained in the next two sections. 

FIG. 1. A (2, 1)-minimum-block-length encoder for L 1 . 
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FIG. 2. A (4, 2)-unit-memory encoder for L~. 

The information rate of  a convolutional code L is only kin if the matrices 
G 0, G x ..... G~ satisfy an independence condition (cf. Forney, 1970), but can 
be calculated as Shannon's  (1948)channel  capacity 

lim log sL(n ) 
n--* cx~ n 

where SL(n ) is the cardinality of  A ( L ) ~  yn, or otherwise following the idea 
of  Massey and Sain (1968) as k'/n, where k '  is the limit of  the difference of  
the ranks of  the order ( i . k ) × ( i . n )  and ((i + l)  - k) × ((i + l )  . n) left 
upper corner submatrices of  the generator matrix 15. These differences are 
also concerned with the delay of  the code as it was pointed out in Massey 
and Sain (1968). We will return to these problems in the fifth section. Here 
we only add a simple example. 

EXAMPLE 3.2. We regard the convolutional code L 2 = Y. 0 • Y~' which 
can be obtained setting k = n = 2, v = 1, G O - (~0) and G 1 = (00). Figure 3 
displays the corresponding (2, 2)-encoder. Comparing the codes L,  and L 2 
with respect to the condition (b) of  Theorem 3.1 we easily verify that L ,  
satisfies the even stronger condition 0 n • L 1 = L , ~  0 n • yo,, whereas L 2 does 
not, for 0 n • L 2 4:L2 ~ O n • yo, = O n . yo, (n = 2, 4, 6,..). 

Finally, what concerns the constraint length, there are different definitions 
of  this term in use. We will point out in Section 6 which properties of  the 
code (not the encoder) influence two of the possible values of  constraint 
length. 

FIG. 3. A (2, 2) encoder for L 2. 
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4. PERIODIC SUBSPACES 

In this section we deal with two main tools for comparing and classifying 
subspaces of yo~ (not required Y =  GF(q)). For comparing we introduce the 
structure function of a subspace in a similar manner as it was done for 
languages (cf. Kuich, 1970). We provide subsets of yo~ with an internal 
structure via the concept of states (cf. Lindner and Staiger, 1977; Staiger, 
1983b). This enables one to obtain in an easy way a tree or a trellis 
describing a particular subspace of yo,, and thus may be a helpful tool in the 
theory of tree and trellis codes. Finally we classify the subspaces of y~o 
according to their behaviour (in terms of their state space) along the all zero 
sequence 0 w. 

In order to obtain the announced comparison method, we associate with 
each subset W__ Y* its structure function s w in the following way (cf. 
Kuich, 1970). 

Sw(n ) =df card W O  yn. 

For F c y~o the structure function s F is defined a s  SA(F). Structure functions 
of subsets of yo, have the following property: If  E___ F and sE(n ) > Sr(n), 
then there is a sequence fl C E \ F  whose initial word of length n does not 
belong to A ( F ) ~  yn. Consequently, A(E)(~  yi ~ A(F)(~  yi, and hence 
st(i) > sv(i) for every i ) n. 

Conversely, if E ~ F and sE(n ) <, se(n ) for infinitely many n C N then for 
every i E N the equality A (E) ~ yi = A (F) (3 yi holds true. This in view of 
Lemma 1.1 (a) implies C(E) = C(F). Thus we have established the following 
comparison method. 

LEMMA 4. i. I f  F c y~o is closed, E ~ F and se(n ) <~ sF(n ) for  infinitely 
many n, then E = F. 

A further useful tool in the study of subsets is the concept of states. As 
demonstrated in Lindner and Staiger (1977) this gives a possibility to 
describe the internal structure of closed subsets of yo,. 

Let w E Y* and F _~ yo,. The set F/w =dr {fl: w • fl E F} is called the state 
of F derived by the word w E Y*. The following properties of states are 
readily seen. 

w . (F/w)=rc  w . 

(E w r ) / w  = E / w  u r / w  

(E ~ F) /w = E/w (3 F/w 

E/w ~ F/w if E ~ F 

(7) 

(8) 

(9) 

(10) 
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(F/w)/v = F/w . v (11) 

C(F)/w = C(F/w). (12) 

As a consequence of (12), a state of a closed subset of yo~ is itself closed. 

(F 4- E)/w = ~) (F/u + ELY). (13) 
t t + o - - w  

The states of a subspace L have the following properties. 

PROPOSITION 4.2. Let L c_ y,o be a subspace and let v, w E A (L ). Then 

(a) every zerostate L/O k is also a subspace of  y,o. 

(b) L /w  is a coset of  L/O twl, i.e., there is a fl , ,E yo, such that 
L /w  = L/O I wl + fl.~. 

(c) L / w =  L/O Iwl iff O °" ~ L/w. 

(d) I f  L /w  ~ L /v  then L/O I'l ~_ L/Ot~,l. 

Proof. (a) Trivially, L/O k is a subgroup, and as a state of a closed set 
L/O k is itself closed. 

(b) Let w • flw be an arbitrary sequence in L starting with the word w. 
Then 0 I w l . ~ L  iff (0 I ~ t . ~ + w . f l . , ) = w . ( { + f l . , ) C L .  Therefore, 
~ ¢ L/O Iwt iff ~ + flw C L/w. 

(c) and (d) are immediate consequences of (b). II 

As a further consequence of (b) we get 

COROLLARY 4.3. Let L be a subspace andlet  w, v C A ( L ) ~  Y", n E N .  
Then L /w  + L/v  = L/ (w + v). 

By Proposition 4.2 it is made apparent that in subspaces properties of the 
states L/w do depend heavily on the properties of their corresponding 
zerostates L/O twl. Therefore, in the remaining part of this section we deal 
with the sequence (L/OJ)j~N of the zerostates of a particular space L. First, 
we derive some easily established properties. 

PROPOSITION 4.4. 

(a) 
(b) 
(c) 
(d) 
(e) 

Let L be a subspace of  yo,, and let n, k > O. 

I l L  ~ L / O  n then L c_L/O~" for every m CN.  

I l L  ~ L/O n then L @ L/O nm for every m ~ N. 

I f  L/O k c_ L ~ L/O ~ then L = L/O k = L/O n. 

I f  L c L/O n, L/O k ~ L/O n, and n <. k then L/O k = L/O n. 

I l L  ~ L/O n, L/O k ~_ L/O n, and n ~ k then L/O k =L/O n. 
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Proof. (a) and (b) are immediate consequences of (11) and (10). 
(c) From (a) and (b) one obtains L/O k'" c L/O k c L/O" ~ L/O"k.  

(d) Consider L ' =~f L/O". Then L/O k = L '/O k-" ~ L ' c_ L '/O", and 
the assertion follows with(c). 

(e) is the dual case of (d). II 

This proposition throws some light on the behaviour of the sequence 
(L/OJ)]~N of zerostates, namely, once we have L / O m ~ L / O  m+" (or 
L/O m D_L/O "+") then it is impossible to have a z e r o s t a t e  L/O/ (j~/m) with 
L/O/ c L / O  m (L/O / ~ L/O m, respectively). Thus the sequence (L/@)j~N 

(1) consists of pairwise incomparable (with respect to set inclusion) 
subspaces, or there are m, n E N, n > 0 such that for every j ~> m one of the 
inclusions, 

(2) L/O/~L/O/+",  or 

(3) L / O / ~  L/O/+~, respectively, holds true. 

Now, our aim is to show that in the latter cases inclusion can be replaced 
by equality, for a larger value of m possibly. To this end we use the structure 
function for comparing the zerostates. First we derive some properties. Let 
F c y,o and/~ ¢ yo,, then 

S F + { ~  } ~"  S F .  (14) 

This is trivial, for an additive shift does not change the number of initial 
words. One also has 

s .An + I wL) = san). (is) 

Now let L be a subspace of YL Then from (14) and Proposition 4.2(b) it 
follows that 

SL/~=S(L/OrWp) if w ¢ A ( L ) .  (16) 

PROPOSITION 4.5. I l L  is a subspaee of  yo~ ; i , j  ~ N, then 

sL(i +j) = sL(i). 

Proof. If we decompose A (L) ~ yi+j with respect to the initial words of 
length i, we obtain 

A(L)  Y'+J= U w. (A(L/w)r  Y). 
w ~ A ( L ) f ' ~ Y i  

Since sL/w = s~L/o~) for all w C A(L)  ~ yi, counting the number of words in 
the right-hand side of the equality yields sL(i + j )  = sL(i ) • ~(J) | o (L/O i) • 
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Now we can prove a theorem from which the above assertion immediately 
folows. 

THEOREM 4.6. I f  L c_ yo, is a subspace satisfying L~_L/O" (or 
L~_L/O")  for  some n > O  then there is an m>/O such that L/Om'n= 
L/Om.,+, 

Proof We prove the case L ~ L/O", the proof of the other case being 
nearly the same. For the sake of brevity let sj denote the structure function of 
L/O i"". We have L ~ L/O" ~ L/O 2" ~ ..., and, consequently, so(n ) ~ sl(n ) 
s2(n) ~ ... ~ card Y". Hence, there is an m C N such that sin(n) = Sk(n) for 
all k>/m. Applying Proposition 4.5 repeatedly, yields sk( j .  n) = 
~[~S~ Sm+i(n), showing that Sk(j" n) is independent of k, for eachj  ~> 1. Now 
the spaces L/O m'" and L/O (r"+l)'" satisfy the hypotheses of Lemma4.1. 
Therefore, L/O m'" = L/O ~'"+". | 

Thus we have shown that, whenever the sequence (L/OJ)i~u contains two 
comparable (with respect to c_) states, it is ultimately periodic. Hence 

DEFINITION. A subspace L c yo, is called periodic provided there are 
natural numbers k, n (k 4: n) such that L/O k = L/O". The class of all periodic 
subspaces of y,o will be denoted by -~per" 

DEFINITION, If L ~ f~per then 

per L =af rain{n: n > 0 and L/O J = L/O J+" for somej ~ N} 

is called the period of the subspace L. 

The following lemma gives further insight into the structure of periodic 
spaces. 

LEMMA 4.7. A subspace L ~ y,o is periodic iff there are w, v CA(L),  
I w[ 4= Iv[ such that L /w  ~ L/v. And, whenever L / w  ~ L /v  then per L divides 
Iwl-Ivl. 

Proof By definition, the condition is necessary. Now let L/w  ~ L/v,  
I wl = j ,  I vl = k, and without loss of generality le t j  > k. By Proposition 4.2(d) 
we obtain L/O i ~ L / O  k. Then Theorem 4.6 proves L/O m = L/O "+ti-k) for 
some m ~ N. Hence, L is periodic. 

Suppose j -  k not to be a multiple of per L. Then there is an i E N such 
that 0 < ( j -  k) - i .  per L < per L. This yields L/O n+i'perL = L/O "+U-k) for 
some n @ N, contradicting the definition of per L. II 
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Since L/O i = L/O k implies L/O m+j =L/O m+k, we obtain for L E Spe r the 
following formula 

per L = per L/O m 

for all m E N. This yields another tool for the calculation of the period. 

PROPOSITION 4.8. Let L/O m = L ' / O L  Then L E ~per implies L '  E £#per 
and, moreover per L = per L ' .  

Next we give some examples of periodic and aperiodic spaces. 

EXAMPLE 4.1 (Lindner and Staiger, 1977). Consider the class Snn of all 
finite subspaces. For every B ESr i  n there is an m E N  such that 
B ~ 0 r n .  Y'°={0'°}, i.e., B/O m is the null-space {0~'}. Consequently, 
p e r B =  1. 

EXAMPLE 4.2. If L ~ yo, is a convolutional code, then L E ~per, as the 
condition (b) of Theorem 3.1 is equivalent to L/O n ~_ L for some n > 0. 

EXAMPLE 4.3 (Staiger, 1982). Define 

L3 =dr {fl: fl(P) 4= 0 only ifp is a prime number}. 

One easily establishes that L 3 is indeed a subspace, and from the distribution 
of primes it follows that L3/O i = L3/O k can never hold unless j = k. Thus L 3 
is an aperiodic subspace. 

Example 4.3 can be modified in several ways to obtain further aperiodic 
subspaces. One is given in the following. 

EXAMPLE 4.4. L4 =dr {fl:fl(P)=fl(pm) for all m > 0 and p prime, and 
fl(k) = 0 otherwise} is also an aperiodic subspace of yo,. 

Next we investigate the influence of an additional finite subspace on the 
ultimate behavior of the sequence (L/Oi)j~s. 

LEMMA 4.9. Let B C fr,  n and let L be an arbitrary subspace of  Y% 
Then there is an m E N such that (L + B)/O m = L/O m. 

Proof Since B is finite and L is closed, e=orinf{]lf l-~I}l:f lEB, ~IEL 
and 1 3 ~ L } > 0 .  Let e >  I/m, and let r / E L  and f l E B  satisfy 
fl + 1/E 0 " .  Y' .  Hence lift + 1711 = lift-- (-r/)ll ~< 1/m < e, and, therefore, 
(-r/)  E L implies fl E L. Consequently, (L + B) ~ 0 m • y,o ~ L which proves 
our assertion. II 

LEMMA 4.10. Let L, L '  be subspaees of  Y% Then L/O m = L ' /O  m for 

643/59/I-3-11 
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some m E N i f  and only i f  there are finite subspaces B and B '  such that 
( L r b L ' )  + B = L  and ( L ~ L ' )  + B ' = L ' .  

Proof  Sufficiency is proved by the application of the preceding lemma 
separately to the pairs L ~ L ' ,  B and L ~ L ' ,  B ' .  This yields numbers 
j, k E N satisfying L/O J = (L ~ L ' ) /0  i and L '/O k = (L ~ L ' ) /O k, respectively. 
Now set m =dr max{j, k}, and clearly L/O m = (L ~ L ' ) /0  m = L '/O"L 

In order to prove necessity, define L " =arOm " (L/Om) = L N O m . yo~ = 
L'  ~ 0 m • yo, c L ~ L '  and consider the cosets of L"  in L. If r/, ~ E L have 
the same initial word w E A ( L ) C q Y  m then r l - ~ E L ~ O m . Y ~ = L  ". 
Hence, there are c a r d A ( L ) ~  ym cosets of L "  in L. If we choose in every 
such coset one element then the space B spanned by these elements is finite, 
and by construction L -~ L"  + B = (L (3 L ' )  + B. In the same way we obtain 
a finite spaceB '  w i t h L ' = L " + B ' = ( L C 3 L ' ) + B ' .  II 

We conclude this section giving another characterizing property of ~e~" 
To this end we introduce the following class of subspaces. 

DEFINITION. A subspace L c_ yo, is called a Z-space provided L ~ L/O" 
for some n > 0. 

The class of all 2;-subspaces of y~o will be denoted by ~ .  Theorem 4.6 
proves that S-spaces are periodic. Also, as Example 4.2 shows, all 
convolutional codes are S-spaces, though, as we shall prove in the following 
sections, not every S-space is also a convolutional code. Among the finite 
spaces there is only one S-space, the null-space {0 ~° }. 

PROPOSITION 4.1 1. S z is closed under ~ and +. 

Proo f  Let L/O" ~_ L and L ' /O  m @ L '  for some m, n > 0. Equations (9) 
and (13) yield L ~ L '  c_ L/O nm ~ L, /O m" = (L ~ L ' ) / 0  ~'~, and L + L '  _c 
L/O + L'/O (L + L')/O "m. ! 

Z-spaces will be dealt with extensively in the next section. Here we only 
derive a result showing that Z-spaces are in some sense the cores of periodic 
spaces. 

THEOREM 4.12. A subspace L c yo, is periodic i f f  there are a S-space L ' 
and a f inite space B such that L = L ' + B. 

Proo f  Sufficiency is readily seen by Lemma 4.9 and Proposition 4.8. 
Now let L E Soe r, i.e., there are m, n ~ N, n > 0 such that L/O ~ = L/O m+" 
Therefore 0 " .  (L/O m) % L / O  ~. Without loss of generality we may assume 
m ~ n .  Set L ' = d f 0  m . ( L / 0 ~ ) = L ~ 0  ~ • Y'L Since L ' /Om=O m - n . ( L / O  m) 
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~_ 0 m . ( L / O m ) = L  ', L '  is a S-space. Moreover L '  ~_L and L' /O m = L / O  m. 

Hence, by Lemma 4.10, L = L '  + B  for some finite spaceB. II 

COROLLARY 4.13. Every periodic subspace L c_ yo~ contains a maximum 

S-space Lo. 

Proof Consider the X-space L ' c _ L  constructed in the proof of 
Theorem4.12. L '  has only finitely many cosets in L. Thus there is a 
maximum S-space L o satisfying L'  MLo~_L.  If there were any other 2;- 
space L " ~ _ L  not contained in L 0, then according to Proposition4.11, 
L 0 + L"  ~ L  0 would be also a S-space in L containing L ' ,  which contradicts 
the maximality of L0. It 

For completeness we add 

PROPOSITION 4.14. 2P~e ~ is closed under n and +. 

Proof Closure under N is proved similar to Proposition4.11, and 
closure under + is an immediate consequence of Theorem4.12 and 
Proposition 4.11. II 

5. X-SPACES 

As announced in the previous section, now we deal with the subclass S x 
of L/pe r . For X-spaces we shall investigate parameters as block-length, delay, 
and rate which are important features of convolutional codes and, in general, 
of periodic and S-spaces. We conclude this section estimating the cardinality 
of 5~ and ~ e r  via a topological density result. 

First we derive a theorem which makes the term X-space more apparent. 
We could have called X-spaces likewise constant (time-invariant) spaces due 
to the similarity of their defining property L ~ L/O n to the constancy (time- 
invariance) of linear sequential circuits (Forney, 1970), but we prefer the 
above term to emphasize that a S-space is the infinite sum of shifted copies 
of a finite space. 

According to property (b) in Theorem 3.1 and the discussion following 
this theorem we introduce the block-length of a X-space. 

DEFINITION. Let L be a X-space. Any n > 0 satisfying L ~ L/O n will be 
called a block-length of the space L. 

Since L ~_ L/O n is equivalent to 0 n. L ~ L ,  every X-space L of block- 
length n containing a subspace B also contains 0 n • B, 0 2n • B ..... This yields 
the following result. 
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PROPOSITION 5.1. Let B be an arbitrary subspace of yoq Then 

L = ~  O~'".B 
i - O  

is' the smallest S-space of block-length n containing B. 

Next, we carry out the main step in proving the announced result--the so- 
called B-construction. 

LEMMA 5.2 (B-construction). Let L be a N-space of block-legth n, and 
let k ~ N be such that L/O k+n -=L/O k, then every subspace B c L having 
sB(k + n) ) sL(k + n) satisfies 

L = ~  oi'n'B. 
i = 0  

Proof. First we observe that sB(k + n) >/sL(k + n) and B c L imply 
A ( B ) N Y k + " = A ( L ) ~ Y  k+" and hence s~(k)=sL(k) and s~B/o~(n)= 
s~L/o~(n). 

Let L '  be the smallest S-space of block-length n containing space B. 
Clearly, L' ~ L and, moreover, B/O h c L,/O k c L'/O k+j'n for all j ~ N. By 
Proposition 4.5 we get 

sL,. (k + i.  n) >/sB(k ) • (s(8/ok)(n)) i 

for arbitrary i ~ N. On the other hand, since L/O k+" = L/O", sB(k ) = sL(k), 
and s(L/ok)(n ) = s(e/ok~(n), again Proposition 4.5 yields 

sL(k + i .  n )= s~(k). (s~./ok~(n)) i 

for arbitrary i ~ N. Now, the assertion follows from Lemma 4.1. II 

In particular, we can choose in the above B-construction any suitable 
finite subspace B __c L to span L in the described manner. Thus Lemma 5.2 
and Proposition 5.1 yield the announced theorem. 

THEOREM 5.3. A subset L q Y~" is a S-space of block-length n if and 
only if there is a finite subspace B of yo~ such that  

L =  ~ 0 i'" .B. 
i=0  

Though we are not dealing extensively with the generation of subspaces L 
of y,o by arbitrary subsets F c yo,, we derive a corollary to Theorem 5.3 
which generalizes Theorem 2.5 in Piret (1978). To this end we observe that if 
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L is the smallest subspace containing a set F c yo,, then for every k ¢ N the 
space A(L) C3 yk is spanned by A(F) ~ yk. Hence for every k ¢ N there is a 
finite subset E ___ F such that the space B spanned by E satisfies A(B)r~ yk = 
A(L) (3 yk. This proves the following corollary. 

COROLLARY 5.4. Let F be an arbitrary subset of y,o. Then for every 
n > 0 there is a finite subset F n c F such that the S-spaces of block-length n 
spanned by F, and F, respectively, coincide. 

S-spaces are a special kind of periodic space. Thus, following Lemma 4.7, 
the period per L of a 2;-space L divides all its block-lengths, though as we 
see below the period itself need not be a block-length. 

EXAMPLE 5.1. Consider the space L 2 = Y- 0 • yo~ of Example 3.2. We 
have Ls/O = 0 • yo~ ~ L2 and L2/O" = yo, for all n >~ 2. Hence every n >~ 2 is 
a block-length of L z, but pe rL  z = 1 is not a block-length of L 2. 

In order to obtain the minimum block-length of a S-space (or a 
convolutional code as mentioned in Section 3), we consider the subfamily 
(L/Oi'P~rt')i~N of the family of all zerostates of L and find the minimum 
value j such that L ~_ L/O j'perL. This can be done effectively (cf. Lindner and 
Staiger, 1977) whenever L is specified in a constructive way (e.g., by a finite 
state diagram, a generator matrix in the form of Eq. (5), a finite-state 
encoder) which is apparently the case for convolutional codes. 

Next, we derive some further properties of the family (L/Oi'perL)i~x. 
Observe that L/O m =L/O m+perL for any periodic space L if m is sufficiently 
large. Consequently, for any S-space L and any of its block-lengths n we 
have 

r c_ L/O k'" = L/O*" n ÷ p e r L  (17) 

for any sufficiently large k. This shows that the family (L/Oi'PerL)i~u 
terminates with some state £ satisfying £ = i /O perL. The following lemma 
proves that this terminal state is the unique state appearing more than once 
in the family (L/Oi'perL)i~N. 

LEMMA 5.5. Let L '  be a subspace of Y% It holds L '  =L'/On for some 
n > 0 i f fL '  is a S-space satisfying L '  = L ' / 0  perL'. 

Proof Let L'  =L ' /Oh  Clearly, L '  is a S-space of block-length n. 
Applying L '  = L ' / 0 "  to Eq. (17) yields L '  = L ' / 0  per L. The reverse direction 
is trivial. II 

Moreover, it follows from Eq. (17) that the terminal state £ contains every 
state L/O i'perL (i ~ N), and, once chosen, the block-length n of the S-space 
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L, the family (L/O i'")i~N has a certain delay in achieving the full capacity of 
£. This leads to the following definition. 

DEFINmON. For a Z-space L __ yo~ of block-length n we will refer to 

~. =dr rain{j: L/O~'" = L/O °+ 1)..} 

as the delay of L relative to the block-length n. The number 

fiL =dr rain{j: L/O/" verL = L/O(i+ 1). perz } 

will be called the total delay of the space L. 

Lemma 5.5 proves that these definitions are correct, i.e., the numbers ft, 
and / z are uniquely specified. In both cases, the spaces L/O ~"'" and 
L/O '~L'perL coincide with the terminal state/2, and moreover, 

f ,  = rain{j: L/O~'" = £}  

and 

fiL = rain{j: L/O~" perL =/2} 
hold. Now, from the above studied behavior of the family (L/Oi'pe~L)i~ v and 
its subfamilies (L/Oi'")i~u, n being a block-length of L, one easily derives 
that the value ft, is uniquely determined by the inequality 

i L • perL ~< fi~ • 

Consequently, t~ m ~ t~ n ~ (~L' i f  m >~ 
i z 4: 0, the delay ft, of a S-space L 
and can range between its maximum 
and its minimum value 1 iff n/> ilL" 

n < t L • pe rL  + n. 

n, and OL=0 i f f 6 , = 0  i f f L = / 2 .  If 
depends on the chosen block-length n, 
values 6 L (which need not be achieved) 
per L. 

EXAMPLE 5.1 (Continued). We have p e r L 2 =  1 and Lz /O"~_L2  iff 
n >~ 2. This yields 6 L = 2, but 6, = 1 for every block-length n of L. 

Next, we will show that our definition of delay coincides with the 
definition given by Massey and Sain (1968), where the delay is proved to be 
the smallest number 6 such that the differences of the ranks of the order 
(i • k) × (i.  n) and ((i + 1) • k) × ((i + 1) • n) left upper corner submatrices 
of the generator matrix 15 in Eq. (5) remain constant for i >~ 6. In terms of 
our approach this difference remains constant iff the difference 
sL((i + 1) • n) - sz ( i .  n) of the cardinalities of the corresponding row spaces 
remains constant for i >/~. 

In virtue of Proposition 4.5 we have 

sL((i + 1 ) .  n) - sL(i .  n) = s(L/o,..)(n). 
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For convenience we will temporarily abbreviate s~L/o~., ) as s t. . .  Our assertion 
is then proved by 

LEMMA 5.6. Let L be a Z-space. 

(a) For every block-length n of  L the delay 6~ is the smallest number 
such that 

sk. ,(n)=s~k+l). ,(n ) fora l l  k ~ & , .  

(b) The total delay &L is the smallest number such that 

sk.pe ~ L(per L)  = S~k + 1). p~ L(per L)  for all k ~ ~i,. 

Proof. (a) The equation L / O  m'n = L/O ~m + 1)., implies s k..(n) = 
s~k+l).,(n ) for all k>/m. Hence it remains to show that sk.,(n ) = s~k+~).,(n ) 
for k ~ m  implies L/O m'" = L / 0  Cm+l)'". But this is just a repetition of the 
last part of the proof of Theorem 4.6. 

(b) Since in the proof of part (a) we have nowhere used L ~_ L/O", the 
proof works as well for n = per L. | 

We have seen that c5 r = 0 iff 6, = 0. Therefore, we will refer to a Z-space 
L with 6 L = 0  as a delay-free X-space. According to Lemma5.5 this 
condition is equivalent to L = L/O" for some n > 0. 

Here the following natural question arises: Is every Z-space L contained 
in a unique minimum delay-free X-space? To answer this question, we first 
observe that from Lemma 4.7 it follows that for every Z-space L and every 
j G N the set {L/0;+i: 0 ~< i < perL} consists of mutually incomparable 
subspaces, and at most one of them contains L. 

The behaviour of the family (t/oi'perL)i6N s t u d i e d  above shows that there 
is one state £ = L/O k'" such that L ~ £ = £ /0  perL, whenever L c L/O". By 
Lemma 5.5, this state £ = L/O k'~ is a delay-free Z-space containing L. Now 
consider any space L ' ~ _ L  with L ' = L ' / O  m for some m > 0 .  Then 
L/O k'n'm c_L'/O k'"'m = L ' .  Since L c L/O", L/O ~'~ cLIO k'n'm c_L'. Thus 
we have proved 

LEMMA 5.7. For every Z-space L there is a unique minimum delay free 
Z-space £ containing L. 

In what follows £ will be called the delay-free closure of L. The above 
considerations have shown that £ is the maximum zerostate of L containing 
L itself. By Proposition4.8, per L ---- per £,  and moreover, Lemma4.10 
shows that L has only fintely many cosets in £. Next, we regard some 
connections between the states of a Z-space L and the states of its delay-free 
closure £.  
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LEMMA 5.8. (a) Let L ~ L/O" and flw C L/w. Then 

L/O/'" • w=-L/O/"'+lwl +fl,~ f o r e v e r y j C N .  

(b) Suppose £ -~ L/O k, w ~ A(L), and I wl ) k. Then L / w  ~ I£/w. 

Proof. (a) We have L ~ L/O/'" and, therefore, L/w  ~_ L/O/'" • w. Now 
the assertion follows from Proposition 4.2(b). 

(b) From L c /2  = L/O k it follows that k is a block-length of L and 
hence of/£. If L / w  = L/O I wl + fl~ then by (a) L/O k • w = L/O k+ iwl + flw, i.e., 
£ / w  = £ / 0  I';I +fl~. Now Iw] ~>k implies/2/0 I~l = L / 0  i~l, which proves the 
assertion. II 

The second part of Lemma 5.8 shows that every state L / w  of a S-space L 
is already a state of the delay-free closure/2 of L provided [w I is not smaller 
than the smallest k satisfying £ = L/O k. Therefore, the set of states of L 
consists of the set { £ / w : w ~ A ( £ ) }  plus an additional finite set 
{L/w: Iwl < k}. This explains that replacing L, if possible, by its delay-free 
closure £ simplifies the structure of S-space. 

The last part of this section is concerned with the proof that there are 
uncountably many S-subspaces of Y~'. To this end it is convenient to 
introduce a further parameter of subspaces, the rate. Here we follow the line, 
in which Shannon (1948) defined the channel capacity to be the quantity 

log s(t) 
lira - - ,  
t~(x3 t 

where s(t) is the number of allowed messages transmitted by a discrete 
channel during a time interval of length t. 

DEFINITION. W e  call 

Hv =dr lim sup 
n~oo n 

log sv(n) 

the rate (or entropy) of a subset F c  yo,. (The base of the logarithm is 
always assumed to be the cardinality of the alphabet Y.) 

We add some simple properties of H v. 

HF~ e = maxlH~., He}. 

This is easily derived by the inequality 

(18) 

max{sv(n), se(n) } ~< svu~(n) ~< 2.  max{se(n), sE(n)}. 

H~ = 0 if F 4: O is finite. (19) 
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It has been shown (Lindner and Staiger, 1977) that for a restricted class of 
subspaces the rate H L has a dimension-like behaviour. Here we mention only 
that if E and F are nonempty 

H ~  F <~ He+ F <~ H e + H F. (20) 

The first inequality follows easily from Eqs. (14) and (18), and the second 
inequality is proved by overbounding SE+F(n ) via sE(n ) • sF(n ) using the 
equality A ( E  + F ) N  Y " =  (A(E)(~ Y " ) +  ( A ( F ) ~  Y"). If L is a subspace 
and w E A(L) ,  then Eq. (16) and Proposition 4.5 yield 

t4L/w= HL. (21) 

As a consequence of Eq. (21) we obtain H L = Hi: for every 2~-space L c yo~. 
The following formula evaluates the rate of a periodic subspace. Let L be 

a periodic subspace such that L/O k = L/O k+" for some k, n ~ N, n > 0. Then 

H t = lira logs t ( j )  logs~t/0k)(n ) (22) 
j-,oo j /I 

This formula follows immediately from 

s t (k  + i .  n + m) = sL(k ) • (SL/o,)(n)) i • s~L/ok)(m ) 

which is in turn a consequence of Proposition 4.5. 
Equation (22) provides a method of calculating the rate of a periodic 

space. Here we shall give some examples. 

EXAMPLE 5.2. According to (19) every finite subspace B has rate 
H B = 0. Now consider a periodic space L having rate H L = 0. Equation (22) 
shows that for every k such that L / O k = L / O  k+" for some n > 0 we have 
A ( L / O k ) ~  Y n =  {0"}. Hence L / O k =  {0~}, and the space L is finite. 
Together with Example 4.1 we get the following characterization: L E ~ i ,  if 
and only if L E fper and H L = 0. 

EXAMPLE 5.3. Now consider the space L 3 of Example 4.3. One easily 
checks log sL3(n ) -- card{p:p ~< n and p is a prime}. Hence log sL3(n) ~ n/ln n 
according to the well-known result on the density of primes among natural 
numbers. Consequently, HL3 ---- 0. This is just another proof that L 3 is not a 
periodic space. 

EXAMPLE 5.4. One easily verifies that the structure functions of L 3 and 
L 4 (the space introduced in Example 4.4) are identical. Thus HL, = 0, and as 
an infinite space L 4 cannot be periodic. 

Next, we mention a connection between rate and delay of Z-spaces. 
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PROPOSITION 5.9. A Z-space L is delay-free i f f  L c L / O  n implies 

log sL(n ) = n • H L. 

Proo f  If L is delay-free, then L ~_ L/O" implies L = L/O n, and Eq. (22) 
then proves log SL(n ) = n • H L . Now let L c L/O n and log sL(n ) = n .  H L. 
Then L = L / O  n, and H L = H  L. Since L is delay-free, we have 

log s i (n)  = n . H L, and in 

A ( L ) ( 3  Y" ~ A ( L / O " ) ~  Y" ~ ... c A ( L ) ~  Y" 

equality holds. By Lemma 5.6(a) L is delay-free. II 

The following result gives a connection between the rate (entropy) and 
topological density of S-spaces. Similar and more general results linking 
together entropy and topological density can be found, e.g., in Lindner and 
Staiger (1977) or Staiger (1983a), respectively. As usual a set F ~  y,o is 
called nowhere dense iff its closure C(F) does not contain any nonempty 
open subset. 

LEMr~A 5.10. Le t  L c y,o be a S-space. Then the following conditions 

are equivalent. 

(a) L is nowhere dense. 

(b) H L < I .  

(c) L ~ Y  ~'. 

Proof  (b) ~ (a). If  L is not nowhere dense then, since L is closed, L 
contains a nonempty open subset, i.e., w.  Y °~c _ L for some w E Y*. Now, 
Hw. r~ = 1 is easily verified. This proves H L = 1. 

(a) ~ (c) If  L = yo, then there is a j  E N such that 0 j .  y,o c L, and L 
is not nowhere dense. 

( c ) ~  (b) Let H L = i, then H L = 1 and L /0  i'p~r/~ = L  Consequently, 
from Eq. (22) it follows log sL(i • per L)  = i • per L. Thus 

A ( L ) ~  yi.per L = yi.oerL, 

and, hence, A(L) = Y*. Since L is closed, we obtain L = yo~. II 

In Theorem 4.12 we have shown that every periodic space L is the sum of 
a Z-space L '  and a finite space B. Thus, L is a finite union of cosets of the 
S-space L ' .  Since a finite union of nowhere dense subsets is nowhere dense 
(cf. Kuratowski, 1966) we obtain 
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COROLLARY 5.1 1. Let L c_ yo, be a periodic space. Then L is nowhere 

dense iff  H L < 1. 

The following lemma gives an upper bound on the entropy of a Z-space. 

LEMMA 5.12. Let L = Y'~=o Oi'" • B. Then H L ~ (log cardB)/n. 

Proof Since 0 J'" is the only initial word of length j .  n of sequences 
fl C Y~i~j 0i'n " B, every word in A(L)  n yg.n is an initial word of a sequence 
in L"  = ~_-o  ~ 0 i'n • B. This verifies the inequality 

SL(j" n) <~ card L"  ~ (card B) J, 

which in turn implies 

H L ~< lim j "  log card B _ log card B | 
J -~  j .  n n 

In particular Lemma5.12 yields the upper bound on the rate of a 
convolutional code discussed in Section 3. 

EXAMPLE 5.5. Consider the convolutional code (Z-space) L generated 
by the matrix 15 of Eq. (5) according to Eq. (6). Let B be the finite space 
spanned by the first k rows of the matrix 15. Then log card B ~< k, 

oo 

L = ~ 0 i ' n  " B, 
i = 0  

and Lemma 5.12 yields H z ~ kin. | 

We conclude this part by counting the number of X-subspaces of Y% Let 
L~ be the finite space spanned by the sequence fl ~ yo~. Then L B has at most 
as many elements as Y has, and following Lemma 5.12, 

1 
Ln(fl) =dr ~ 0i'~ " LB has entropy HL,(~ ) ~< - - .  

i = 0  /'/ 

By Lemma 5.10 for n ) 2  the family (L,(fl))¢~,,o is a family of nowhere 
dense X-spaces covering the entire space y,o. Since y,o is not nowhere dense 
this family cannot be countable (cf. Kuratowski, 1966). Thus we have 
proved 

THEOREM 5.13. There are uneountably many X-subspaees of  y,o. 
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6. CONVOLUTIONAL CODES AS SUBSPACES 

Hitherto we have considered two classes of subspaces which have some 
properties with convolutional codes in common. The following investigations 
are devoted to the defining properties of convolutional codes among the 
classes of X-spaces. To this end we introduce two classes of subspaces of 
y,o: remergable subspaces and finite-state subspaces. And we show that each 
one of these properties defines the class of convolutional codes among S- 
spaces, as well as that they define the class of delay-free convolutional codes 
among delay-free S-spaces. Though we are now dealing with convolutional 
codes, we will not suppose Y to be a Galois field unless explicitly stated 
otherwise. Finally, we introduce and compare two parameters of subspaces 
which resemble the constraint length of convolutional codes whichever 
reasonable definition of this length one would have chosen. 

We start with the following definitions. 

DEFINITION. A subset F c y,o is called resynchronizable (or ultimately 
connected) iff for every w ~ A (F) there is a v ~ Y* such that F ~ F/w • v. 

In the case of subspaces this property can be easily split, as we shall see 
later, into two mutually independent conditions. To this end we introduce the 
following notion, termed due to an effect which Forney (1974) calls 
remerging to the all-zero path. 

DEFINITION. A subspace L % yo, is referred to as a remergable space 
provided that for every w C A(L)  there is a v E Y* such that w • v • 0 '° C L. 

LEMMA 6.1 (Staiger 1980b). A subspace L ~ yo~ is resynchronizable iff 
L is a remergable X-space. 

Proof Let L be resynchronizable. Then for every w ~ A ( L )  there is a 
v C Y* such that L % L / w  • v. Since 0 °~ ~ L ,  we have w • v • 0 °~ ~ L. Now 
regard the word 0 E Y. It holds 0 ~ A(L). Consequently, there is a v 0 such 
that L c_L/O, v o. Then O~'EL/O • v o, and Proposition4.2(c) yields 
L ~ L / O  • v o = L / O  j+l~°l. 

Conversely, let L c L/O n for some n > 0, and without loss of generality let 
for every w E A ( L )  exist a v C Y* such that w • v • 0 °' ~ L  and I w • v [ = i .  n 
for a suitable i ~  N. Then 0~°E L / w .  v. Hence again Proposition 4.2(c) 
shows that L / w .  v = L / O  IW'~r. Since Iw" v[ = i .  n, we obtain L ~ L / O ~ ' n =  
L/w. I 

We regard still another property of subsets of yo~. 

DEFINITION. A subset F c y~' is finite-state provided the number of 
different nonempty states F/w (w ~ A (F)) of F is finite. 
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Trachtenbrot (1962) was the first one who had investigated finite-state 
subsets of yo~. He put them into a connection with subsets of y,o definable 
by finite automata (cf. Trachtenbrot and Barzdin, 1973). In particular (see 
also Lindner and Staiger, 1977), he has shown that a closed subset F _c yo~ is 
finite-state iff F is definable by a finite automaton. We quote here some 
properties of closed finite-state subsets of yo~ needed in the sequel. 

PROPOSITION 6.2. Let F ~_ yo~ be finite-state and closed, w ~ Y*. Then 
F/w is also finite-state and closed, and if  F/w 4= 0, then F/w contains an 
ultimately periodic sequence, i.e., there are u, v E Y* such that v • u °' E F/w. 

Proof Equation (12) shows that F/w is also closed and, clearly, the 
number of states of F/w does not exceed the number of states of F. Now, let 
f lCF/w .  Then there are words v,u such that v , v .  u ~ A ( f l ) a n d  
0 4 : F / w . v = F / w . v . u .  Thus, F / w . v = F / w . v . u  i for every j E N .  
Therefore, we have v .  u j CA(F/w)  for all j E N .  Since F/w is closed, 
v.uO~eF/w. II 

A finite-state space cannot have infinitely many zerostates. This yields 

PROPOSITION 6.3. Every finite-state subspaee of y,o is a periodic 
subspace. 

Now we are able to prove the main theorem of this section. This theorem 
gives the announced defining properties of convolutional codes, and shows 
that the conditions of Theorem 3.1 are also sufficient to specify 
convolutional codes among subspaces of yo~. 

THEOREM 6.4 (Staiger 1980b; 1982). Let L be a subspace of Y ' .  Then 
the following three conditions are equivalent: 

(a) L is ultimately eonneeted (i.e., resynchronizable). 

(b) There are a finite subspace B c y * .  0 '° and an n > 0 such that 
L = Y '~0  0i'~ .B. 

(c) L is a finite-state Z-space. 

Proof (a)-~ (b). Since L is resynchronizable, L is a S-space. Hence 
there are k E N  and n > 0 such that L ~ L / O "  and L/Ok+"=L/O k. 
According to Lemma6.1 we choose for every w ~ A ( L ) ~ Y  ~*~ a v ~  Y* 
such that w • v • 0 °~ E L. Letting B be the finite space spanned by all these 
sequences, B ___ Y* • 0% By construction sB(k + n) >~ sL(k + n), thus the B- 
construction (Lemma 5.2) proves that (b) is satisfied. 

(b) -~ (c) Since B is a finite subspace of Y* • 0 °', there is an m C N 
such that B _~ ym.  0,o. As mentioned in the proof of Lemma 5.12 every 
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w E A ( L )  with [wl ~ j "  n already belongs to A(Y'~2_~ 0 i '" • B). Conequently, 
there is a v ~ Y* with I vl~<m such that w.  v .  0 ° ' E L ,  where the latter 
condition is equivalent to L / w  = L / 0  Iwl + v • 0 °'. Thus {L/w: w CA(L)} c 
{(L/0 J) + v • 0~°:j E N and v E ym}. The assertion now follows from the fact 
that, since L is a Z-space,  the number of distinct L i l y  is finite. 

(c) ~ (a) Let L c L/O n. Since L is a finite-state subspace, in virtue of 
Proposition 6.2 for every w E A ( L )  there are u, v C  Y* such that 
fl = w • v • u ~ E L. Without loss of generality we may assume l ul to be a 
multiple of n greater than Iw I. Then ~ = 0  lul- w .  v .  u °~EL ,  too. Hence, 
f l - ~ = ( w . v . u - O  I ~ l . w . v ) . O ' ° E L  and w E A ( f l - - ~ ) .  Now the 
assertion follows from Lemma 6.1. I 

Theorem 6.4 yields several consequences. First, it gives three equivalent 
defining properties for subspaces of GF(q) '° to be a convolutional code. 
Second, if we compare the first and the third condition utilizing Lemma 6.1, 
we obtain 

COROLLARY 6.5. Let  L be a Z-space, then L is finite-state if f  L is 
remergable. 

Moreover, as the (b) -~ (c)-part of the proof of Theorem 6.4 shows, in the 
case of a finite-state 2'-space L there is a universal bound on the length of 
the shortest word v w satisfying w .  v w • O'° E L when w E A(L) .  Thus we call 

mL =of max min{Ivl: w- v • 0 ̀ ° E L }  (23) 
weA (L) 

the remerging length of a subspace L c y,o. The reader will immediately 
observe that this definition is a slight modification of Massey's (1963) 
constraint length n A. From Corollary 6.5, then, the natural question arises 
whether there is a connection between the remerging length and the number 
of states of a X-space L. Before proceeding to an answer to this question we 
shall regard a third consequence of Theorem 6.4 which considers delay-free 
subspaces. To this end we introduce the following notion. 

DEFINITION. A subset F _c yo~ is called strongly connected, provided for 
every w E A (F) there is a v E Y* such that F/w • v = F. 

Strongly connected subsets of y,o have been investigated before (Staiger 
1980a) in parallel with ultimately connected (resynchronizable) subsets 
of y,o. 

We shall prove next a strengthened version of Theorem 9.91 in Lindner 
and Staiger (1977) and a statement claimed there in connection with the 
theorem. First, we can restate Lemma 6.1 in the case of strongly connected 
subspaces. 
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LEMMA 6.6. (a) A subspaee L ~_ y,o is strongly connected iff L is 
remergable and L = L/O n for  some n > O. 

(b) A subspaee L c_ yo~ is strongly connected iff L is ultimately 
connected and L -- L/O n for some n > O. 

The proof of statement (a) is easily done by changing in the proof of 
Lemma 6.1 all inclusions _ to equality, and (b) is an immediate consequence 
of (a) and Lemma 6.1. 

THEOREM 6.7. Let L be a subspace of  Y% Then the following three 
conditions are equivalent. 

(a) L is strongly connected. 

(b) There are a finite subspace B ~_ Y * .  0 °) and n > 0 such that 
L = ~ o  Oi'n "B and log sB(n ) =  n • H L. 

(c) L is a finite-state delay-free S-space. 

Proof Since our theorem is merely an extended version of Theorem 6.4, 
we confine ourselves to the proof of the additional parts. 

(a) ~ (b). Let L = L/O n and L = ~.~:00i'n " B for some finite 
B _  Y* • 0% Then A ( B ) N  Y" = A ( L ) N  Y", and Eq. (22) implies n • H L =  
log st(n ) = log s~(n). 

( b ) ~ (c ) .  From (b) it follows L c L / O "  and n . H  L=IogsB(n)<~ 
log sL(n ). The proof is then completed by Proposition 5.9. 

( c ) ~  (a). This is a consequence of Lemma 6.6(b). | 

One easily verifies that for delay-free convolutional codes the condition 
(b) of Theorem 3.1 can be strengthened to L---L/O" or, equivalently, 
L ~ 0 ~ . Y" = 0" • L. Thus, the code L 1 of Example 3.1 is delay-free whereas 
the code L z of Example 3.2 is not. 

Next, we deal with the relations between finite-state spaces and finite-state 
S-spaces. We have seen that finite-state spaces are periodic spaces. Thus, our 
aim is to prove an analogue to Theorem 4.12 the latter relating together 
periodic spaces and S-spaces. Before we proceed to this goal, we need some 
further properties of finite-state subsets (el. Lindner and Staiger, 1977; and 
Staiger 1983b). 

PROPOSITION 6.8. Let  E, F be finite-state subsets of  Y% Then E U F, 
E ~ F, and E + F are also finite-state. 

Proof In virtue of Eqs. (8) and (9), E U F and E n F cannot have more 
than cardI(E/v,F/u): v, u ~ Y*} states, and in virtue of Eq. (13), F + E  
cannot have more than 2 Cardl(E/v'F/u):uw~Y*l states. II 
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PROPOSITION 6.9. A finite subset E ~ yo, is finite-state iff it consists of  
only ultimately periodic sequences. 

Proof Clearly {u • v °'} is finite-state. So the condition is sufficient. Let 
r / E E .  Since E is finite, there is a w E  Y* such that w.  (E /w)=  
E ~ w .  y ,o= {r/}. Then, by Proposit ion 6.2, E/w contains an ultimately 
periodic sequence u • v °~. Consequently,  t / =  w .  u .  v °'. II 

THEOREM 6.10. A subspaee L ~ y,o is finite-state iff there are a finite- 
state Z-space L ' and a finite finite-state space B such that L = L ' + B. 

Proof In virtue of Proposit ion 6.8 the condition is sufficient. As in the 
proof  of  Theorem4.12  we construct L '  as L ~ 0  m. y,o, where m E N is 
sufficiently large. Then L '  is a Z-space and by Proposit ion 6.8 also finite- 
state. Now from every coset L ~ w • yo~ of  L '  in L choose an ultimately 
periodic sequence. Then the finite space B spanned by these sequences 
consists only of  ultimately periodic sequences and is, hence, finite-state. 
Clearly, L = L '  + B .  II 

Proposit ion 6.9 shows that there are only countably many  finite finite- 
state subsets of Y~'. Thus Theorem 6.10 together with Theorem 6.4 yields 

COROLLARY 6.11. There are countably many finite-state subspaees of 
yto. 

Now, we investigate the connection between the remerging length m L 
defined in Eq. (23) and the number  of  states of  a finite-state Z-space  L. First, 
we give a relation between the remerging lengths m L of  the space and m L of 
its delay-free closure: 

m z ~< m L ~ mz + max{6 z • p e r L - -  1,0}. (24) 

Proof. According to (23), mL,= maxL,/w,e min{]vl: O~ E (L' /w)/v} for 
an arbitrary subspace L '  of y,o. Now, the first inequality follows from 
{L/w: w E A ( L ) }  _~ {L/w: w EA(L)} .  Since L =L/O k for k =  ci L • pe rL ,  
Lemma 5.8(b) shows that L / u = l £ / u  whenever l ul>/k. Thus w E A ( L )  
implies either L /w  = L or there is a u, ]u I < c5 L • per L such that w • u E A (L) 
and L /w  • u = L /w  • u. This proves the second inequality. II 

We add an example showing that the bounds in Eq. (24) are tight. 

EXAMPLE 6.1. (a) Let L be a delay-free space and consider 
L =at  Ok " L. Clearly, 6L = k and m L = mL. 
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(b) Let Y=df GF(2), and define the convolutional code L via Eq. (6) 
through the generator matrix 15: set in (5), 

( ) ( 0 0 )  ( 0 0 1  ( 0 1 )  10 , G I =  , G2 . . . . .  Gv_ 1 = and G~= 
Go= 00 1 0  00 ' 00 " 

Then L/O 2~+2 =L  = yo~ and 10 ̀o E L/O 2~+1. Hence per L = 1, dL= 2v + 2; 
moreover, m z = 1 and rn L = 2v + 1 for 1 • 02" • 1 • 0 °~ E L, but 1 • v • 0 '° E L 
for any v with [vl~< 2v. 

The next lemma gives further insight into the remerging length and 
simplifies its evaluation. 

LEMMA 6.12. Let L be a delay-free X-space. Then 

mL = max min{Ivl: w.  v • 0 °' EL} ,  
w E M  

where M=dr {W: W EA(L)andO < [w] ~< n}. 

Proof Let rn denote the right-hand side of the equation. Then, clearly, 
m L/> rn. We show by induction on the word length [w[, that for every 
w E A ( L )  there is a ~w@ ym.o  ~° s'~,zch that w . ~ w E L .  Let this latter 
property be proved for all w E A(L) with I w] ~< i .  n. Now let w . y  E A(L) 
such that Iwl = i -  n and l Y[ ~< n. Then there is a /3~ E ym. 0~o such that 
w . f l w E L .  Let / ? w = x ' ~ ,  where Ix I= [y l .  Then w . x E A ( L )  and also 
( w . y -  w • x) EA(L).  Since L/O i'n = L ,  we obtain ( y - x )  EA(L),  where 
[(y -- x)[ ~< n. Thus ( y - x ) . / ~ y _ x E L  for some fly_xEYm.0°~. This 
yields 0 LwL. (y -x ) . f l y_x  + W.Bw= O l ~ l ' ( y - x ) ' p y - ~  + w . x . ~  = 
w. y • ~ y - x  + ~) E L. It is now easy to see that/~y-x + ~ Gym . 0o~. ] 

The last part of this section is concerned with two parameters of 
convolutional codes (considered as subspaces of GF(q) ~°) related to the 
constraint length of the code (whichever reasonable definition one would 
choose). The first is the remerging length, and the second is the state space 
dimension, and hence closely related to Forney's (1970) definition of the 
constraint length which is the dimension of the state space of a reduced 
encoder for the code. 

In what follows we confine ourselves to delay-free Z-spaces for two 
reasons. First, the state set of a delayed X-space L consists, as was pointed 
out in the previous section, of the state set of its delay-free closure L plus an 
additional finite set of preliminary states and is therefore more difficult to 
treat and provides no more insight into the ultimate state structure of the 
subspace L. 

Second, Forney's reduction of encoders includes the elimination of delay. 
Since we are dealing with convolutional codes, in further investigations we 

643/59/1-3 12 
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will assume Y =  GF(q) and, moreover, all subspaces L _  GF(q) ~° to be 
linear spaces over GF(q). 

In the sequel let L be a delay-free X-space with period per L = n. We 
define 

and 

z; =dr {L /w: w ~ A (L ) r~ r ~' " } 

oo 

ZL =df U Z i .  
i -o 

We will refer to Z L as the state space of L. 

PROPOSITION 6.13. (a) Z i ~ Z t +  1, 

(b) Z t = Z  L i f f Z i ~ - - Z i +  1 . 

Proof (a) Follows from L = L/O n. 

(b) If Z; = ZL, then Z i = Z i+ 1. Now let Z i = Z i+ 1. It suffices to show 
that then Z~+I=Z~+ 2. Let L / w . v E Z ~ +  2, where I w l = ( i + 1 ) . n  and 
I v l=n .  Since z t + l = z  t, we have L / w = L / u  for some u ~  y i . , .  Conse- 
quently, L / w  • v E Zi+ 1. | 

PROPOSITION 6.14. (a) For every i ~ N ,  Z i is a linear space over 
GF(q). 

(b) Z L is a linear space over GF(q). 

Proof (a) We show only that Z i is closed under addition; 
multiplication by scalar is proved in a similar way. Let w, v C A ( L ) ~  Yi 'L  
Then by linearity w + v ~ A ( L ) ~ Y ~ ' L  From Corollary4.3, it follows 
L / ( w  + v) = L / w  + L/v .  Thus L / w  + L /v  E Z t if L/w,  L / v  C Z i. 

(b) follows from (a), Proposition 6.13(a), and the definition of Zz. II 

Next, we give some relations between the dimensions of the spaces Z; and 
Z L and the remerging length of the code L. 

LEMMA 6.15. (a) I f  i >~ dim Z L then Zi = Z L. 

(b) I f  i < dim ZL/(HL • per L)  then Z~ 4: ZL. 

Proof In both cases we prove the assertion by contraposition. 

(a) Let Z i ~ Z L. According to Proposition 6.13(b) or every j ~<i the 
proper inclusion Zj c Zj+ 1 holds true. Consequently, dim Zj+ 1/> dim Zj + 1, 
and hence dim Z L/7 dim Z i + 1 > i. 

(b) Since L = L/O i'n, Eq. (22) implies card(A(L) A yi . , )  = 
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ca rdYi 'n 'nL ,  whence d imZ~ <~ i . n . H  L. Now,  if Z i = Z L 

dim ZL = dim Zi <~ i . n . H L. | 
then 

LEMMA 6.16. (a) I f  Z i = Z L then m L < (i + 1) • per L. 

(b) [ f  Z i -~  Z L then m L > i .  p e r L .  

Proof. (a) In virtue of  Lemma 6.12 it suffices to show that  for every 
w~A(Z), Iwp~n there is a v E Y *  such that  Ivl<n.(i+l) and 
w . v . O ° ~ L .  Let w E A ( L )  and Iwl<<.n. Then there is a v such that  
w • v ~ A ( L ) ( 3  y(i+l).n. Now, since Zi~---Zi+l, w e  have a u ~ A ( L ) ~  yi.n 
such that  L / w  . v = L/u .  Then L / ( w  . v - 0 n . u) = L follows from L = L/O n, 

and hence (w • v - 0 n • u) • 0 '° = w • (v - 0 n-  i wj . u) • 0 '° E L,  where 

I(v - 0 • u)l < ( i  + 1 ) .  n .  

(b) F r o m  mL ~ i .  n we obtain that  for every w E A ( L )  ~ yn there is a 
Vw ~ yi.n such that  L / w  • v w = L.  

Now consider  L / u ' E Z  i+1, l u ' l = - ( i + l ) ' n .  Then there are 
w E A ( L ) ~  yn and u E yi .n  such that  w .  u = u ' .  Consequently,  L / w .  u = 

L / w . u - L / w . v  w = L / O  n . ( u - v w ) .  Since L / O n = L ,  we have L / w . u =  

L / ( u - V w ) E Z  r This proves Z i + l = Z i  and, by Propos i t ion6 .13(b) ,  we 
obtain Z i = Z L. II 

N o w  we can prove our theorem stating a general connection between Z L 

and m L . 

THEOREM 6.17. I f  L is a delay-free convolutional code. Then 

dim Z r 
per L < m L < per L • (1 + dim ZL). 

Proof. First ,  we prove the second inequali ty using the (a)-parts  of the 
L e m m a s 6 . 1 5  and 6.16 If  i = d i m Z L ,  then Z i = Z  L and we obtain 
m L < ( i +  1) • p e r L .  

The proof  of  the other inequali ty uses likewise the (b)-parts  of  the just-  
mentioned lemmas.  Let j be the largest integer smaller  than 
d i m Z L / ( H L . p e r L  ). Then Z j 4 ~ Z  L and hence m L > j . p e r L .  By the 
definition of  the integer j ,  we h a v e j  > /d im ZL/ (H  L • per L )  - 1, which proves 
the inequality.  II 

We conclude this section by showing that  the bounds of  Theorem 6.17 are 
tight. 

EXAMPLE 6.2. We use the def ini t ion of  L via Eq. (6) through the 
generator  matr ix  I~. 
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(a) Let G o =  (01), G a . . . . .  G~_ 1 = (00), G ~ =  (I0).  One easily 
verifies that per L = 2, H L = ~, and that Z L is spanned by the v states 

L / O I O E U = L + O  2(~-u-a). 10 '° (0 ~/~ < v). 

Thus dim Z L = v, and m L = 2v - 1 satisfies 

dim Z L 
rn L =  HL p e r L + l .  

(b) I f  we exchange in (a) Go and G v, we obtain a space L '  having the 
same parameters  except rn L, = 2v + 1, thus verifying 

mL, = p e r L '  • (1 + dim Z L ) -  1. 

7. REMERGABLE SUBSPACES 

In Section 6 we have characterized convolutional codes as Z-spaces 
having the remerging property. This property is important  from a practical 
point of  view: Linear codes not having the remerging property are suscep- 
tible to an unavoidable (not due to a bad choice of  an encoder) infinite error 
propagation,  i.e., decoding errors in a finite initial part  of  the received 
sequence can cause the decoder to make necessarily further on an infinite 
number of  decoding errors. This effect can only be avoided if the code space 
is remergable. In the present section we will consider the class of  all 
remergable subspaces (not only S-spaces).  

Notation. By ~Ym we denote the class of all remergable subspaces of yo,. 

The first important  feature of  remergable subspaces is the following. 

LEMMA 7.1. Let L be an arbitrary subspace of  yo~. Then 
C(L (-7 Y* • 0 "°) is the greatest remergable subspace contained in L. 

Proof Clearly, C ( L N Y * .  0 °~) is a subspace of yo,. We have 
A ( C ( L ~  Y* • 0°~)) = A ( L  ~ Y* • 0 ' ° ) =  {w: w .  v • 0 °~ E L  for some v C r * }  
which implies that C(L (-7 Y * .  0 ~) is remergable. Moreover,  if L '  is any 
rernergable subspace contained in L then A ( L ' ) ~ _ A ( L ~  Y * .  0~), and by 
Lernma 1.1 we get L '  c_ C(L (7 Y* • 0'°), | 

The following reformulation of the definition is an immediate consequence 
of the preceding lemma. 

COROLLARY 7.2. L E S m iff  C(L (7 Y* • 0 °~) = L. 

We obtain a closure property of  S m. 



SUBSPACES AND CONVOLUTIONAL CODES 179 

LEMMA 7.3. Let (Li)iE N be a family of remergable subspaces. Then 
~=o Li is also a remergable subspaee. 

The proof of the lemma is readily verified by the inequality 

This yields an estimate of the cardinality of S m . 

COROLLARY 7.4. There are uneountably many remergable subspaces 
o f y  o~. 

Proof Clearly, 0 i • Y. 0 °~ ~ S m for every i E N. Hence 

~ '  0 i .  Y . 0  ' ° ~ S  m for e v e r y M c N .  II 
i~M 

The class t , ,  is, unlike the other classes of subspaces hitherto considered, 
not closed under intersection. We give an example. 

EXAMPLE 7.1. We start from the space L 4 of Example 4.4 and consider 

L4,even ----dr {fl: fl(pi) = fl(pi+ 1) for i > 0 even, p prime, and 

fl(k) = 0, otherwise} 

and L4,odd, being defined similarly. By definition L4,even and L4,od d are 

remergable, but t 4 = L4,even N t4 ,od  d satisfies C(L 4 N Y* • 0 °') = {0 °~ }, thus 
L4 ~-%. 

We get only a weaker property. 

PROPOSITION 7.5. Let L be a remergable subspace of Y% Then 
L N 0 k • yo~ is remergable for arbitrary k C N. 

The following example, however, shows that the space O k. yo~ in 
Proposition 7.5 cannot be changed to an arbitrary remergable S-space. 

EXAMPLE 7.2. Let Y =  GF(2). Consider L = {00, 11 }o, and L '  = Y. L. 
Both spaces are remergable and even finite-state. Moreover, L is a S-space. 
But L A L '  = {0 '°, 1 °~} is neither in f m  nor in S~. 

In Theorem 6.4 we have seen that the property to be a S-space forces a 
remergable space to be finite-state. Next we shall prove that this is already 
valid for periodic remergable spaces. 
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THEOREM 7.6. Let  L be a periodic remergable subspace o f  Y% Then L 
is finite-state. 

Proof. Let L E ~e~ N fro" According to the proof of Theorem 4.12 there 
is an m ~ N such that L '  =ar L ~ O  m. y,o is a 2:-space. As L ' =  
L ~ 0 '~ • y~o is also a remergable space, Theorem 6.4 proves that L '  is finite- 
state. 

Now consider the finitely many cosets L ~ w . yo, (I wl = m, w E A ( L  )) of 
L '  in L. Since L is remergable, every such coset contains a sequence 
f i e  Y* • 0% Hence L is the sum L '  + E  of a finite-state space L '  and a 
finite set E _~ Y* • 0% Following Proposition 6.9 this latter set E is finite- 
state, and finally Proposition 6.8 proves that L = L '  + E is finite-state. II 

We conclude with a remark on the closure properties of the class 
~ ~ f m "  Both of the classes ~e~ and Lzm are closed under +, hence 
~e~ ~ fm is also closed under +. Example 7.2 shows that ~¢~ ~ f t ,  is not 
even closed under intersection with remergable X-spaces. 

8. INTERCONNECTIONS BETWEEN THE CLASSES OF SUBSPACES 

This last part of our paper summarizes the inclusion relations of the 
classes of subspaces hitherto mentioned. Moreover, we prove that except the 
inclusions and equalities presented in Fig. 4, no other inclusion result holds. 
First we introduce another abbreviation. 

Notation. 
~ .  

The class of all finite-state subspaces of yo~ will be denoted by 

FIG. 4. Inclusion relations between the classes of subspaces. 
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We have to consider the classes S (of all subspaces), L/pe r, S z , t f s ,  fro, 
and their intersections. According to Theorem 4.12 and Proposition 6.3 we 
have 

Thus, there remain the following intersection classes 

~ C~Ym = ~  n ~ s  (25) 

(of. Theorem 6.4), and according to Theorem 7.6, 

G e r f ~  .~m .~- ~ f  s (-') .~fm • (26) 

We have estimated the following cardinalities (Theorem 5.13, 
Corollary 7.4, and Corollary 6.11): 

PROPOSITION 8.1. (a) The classes S ,  L,°pe~, S z ,  and fm  are uncoun- 
table. 

(b) L~r s and its subclasses 5e~pe~ • Ym, and L#~ (3 f m are countable sets. 

Moreover, except f , ,  and Soe r ~ fm, all classes are closed under inter- 
section. Hence 

This implies via (25) and (26), 

(27) 

and 

Together with 

Sm Got" (28) 

which holds for cardinality reasons, we have established the lower part of the 
diagram in Fig. 4. 

Finally, we consider the class 

~er (~ ,,~m-~-df {L + L ' : L  C Ype~ and L'  Cfm}, 

being the smallest class of subspaces closed under + and encompassing all 
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the spaces that we have investigated in this paper. From (27) and (28) we 
obtain 

It is interesting to note that 

 or®fmCS. 

This is explained by the fact that Spe r ® f m  is not closed under intersection. 
To prove our assertion we consider the space L4 of Example 7.1. 

EXAMPLE 8.1. The space L 4 is the intersection of the two remergable 
spaces L4,even and L4,odd and has {0 °'} as its greatest remergable subspace. 
Thus L 4 E Spe r @ S m would imply L 4 E ~per" But according to Example 5.4, 
L 4 is not periodic. 

9. CONCLUSIONS 

In this paper we have investigated several classes of subspaces of GF(q) °~ 
in connection with the class of convolutional codes. Naturally, then the 
question arises whether there do exist subspaces having better error 
correction properties than convolutional codes. Since every periodic (finite- 
state) subspace is the sum of a Z-space (finite-state Z-space) and a finite 
space (Theorems 4.12 and 6.10), there is no use in utilizing periodic spaces 
or finite-state spaces instead of Z-spaces or finite-state Z-spaces, respectively. 
Neither do they achieve higher transmission rates, nor better distance 
properties than the maximum Z-space contained in them. 

Concerning the distance properties, it is really possible to construct S- 
spaces with drree = oo. Those spaces as well as all other infinite-state 
N-spaces cannot possess the remerging property. 

These properties imply the following disadvantages: An infinite-state 
subspace cannot be encoded by a finite-state encoding device, since any 
finite-state machine can produce as output sets only finite-state subsets of y~o 
(cf. Lindner and Staiger, 1977). The second disadvantage consists in the lack 
of the remerging property mentioned in Section 7. 

Thus, if one looks for codes with good decoding properties, one should 
always look for codes having the remerging property. This implies--in the 
case of linear codes--that one has to choose either finite-state or, otherwise, 
aperiodic subspaces. In the former case as pointed out, one is confined to 
ordinary convolutional codes, whereas in the latter case one has codes with a 
time-varying structure (cf. Forney, 1974; Zigangirov, 1974). This effect 
complicates the encoding circuit as well as the synchronization recovery and, 
therefore, makes such codes not useful for practical purposes. 

RECEIVED: November 17, 1982; ACCEPTED: March 5, 1984 
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