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a b s t r a c t

In this paper, we describe the uplift principle for ordered trees which lets us solve a variety
of combinatorial problems in two simple steps. The first step is to find the appropriate
generating function at the root of the tree, the second is to lift the result to an arbitrary
vertex by multiplying by the leaf generating function. This paper, though self contained,
is a companion piece to Cheon and Shapiro (2008) [2] though with many more possible
applications. It also may be viewed as an invitation, via the symbolic method, to the
authoritative 800 page book of Flajolet and Sedgewick (2009) [8]. Our examples, with one
exception, are different from those in this excellent reference.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

By a tree, we will mean an ordered tree and we will use an × to mark the root. They will be drawn going up. The number
of trees with n edges is Cn =

1
n+1


2n
n


, the nth Catalan number. The generating function for these is:

C = C(z) =


n≥0

Cnzn = 1 + z + 2z2 + 5z3 + · · · =
1 −

√
1 − 4z
2z

.

For much more information about the various number sequences that occur here refer to [1]. We list the A numbers of
the various sequences that occur to facilitate using that reference. For instance, the Catalan numbers are sequence A000108
in [1].

If we consider trees with one of its n + 1 vertices marked, we have

(n + 1)
1

n + 1


2n
n


=


2n
n


possible trees. The generating function for such trees with a marked vertex, which we call amutator, is

B = B(z) =


n≥0


2n
n


zn = 1 + 2z + 6z2 + 20z3 + · · · =

1
√
1 − 4z

. [A000984]

For classes of treeswith uniform conditions on updegrees e.g., ordered trees, even trees, 0·1·2 orMotzkin trees, complete
or incomplete binary trees, complete or incomplete ternary trees, hex trees, we get the basic equation

V = LT (1)
where V , L and T are generating functions for trees with the mutator m, for trees with a marked leaf vertex and for the
number of trees respectively, see [2]. The hex trees arise from putting benzene molecules together with no three meeting
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Fig. 1. Ordered trees with the mutator marked with a square.

at point. As trees these are trees with every vertex having outdegree 0,1, or 2 but the 1 case can be left, vertical, or right but
if two they must be left and right edges, see [3].

Here is the idea of the proof for (1). Consider a tree with a mutator marked m. Snip the tree in two parts at the mutator.
Then we can easily get V = LT since the mutator just became a leaf and the top tree has the same updegree conditions.

For the class of all ordered trees, V = B and T = C so that

L =
B
C

= 1 + z + 3z2 + 10z3 + 35z4 · · · . [A088218]

We consider trees with a marked vertex and we either have the trivial tree consisting of just the root or there is a left
most edge, e, at the root. The subtree above e will be denoted Ue and the tree to the right of e will be denoted Re. Since
the marked vertex can be in either Ue or in Re, we see that B = 1 + 2CB. If we classify the marked vertex by height, we
get

B = C + zC3
+ z2C5

+ · · · =

∞
k=0

zkC2k+1
=

C
1 − zC2

.

Here the term zkC2k+1 counts vertices at height kwith zk accounting for the k edges on the path from the root to the marked
vertex. Then there are k + 1 vertices along this path and subtrees can grow on either the left or right side of the path giving
C2k possibilities. There can also be one more subtree on top of the marked vertex contributing the last factor C .

The other identity used in this paper is easily shown:

B
C

=
B + 1
2

.

Also recall that

[zn]C s
=

s
2n + s


2n + s

n


and [zn]BC s

=


2n + s

n


,

where [zn] is the coefficient extraction operator defined by [zn]A = an for A =


n≥0 anz
n.

Let B̃(z) = B(z2) and let C̃(z) = C(z2). If we have paths using n down steps and n + s up steps with U = (1, 1) and
D = (1, −1) then the number of paths is


2n+s
n


and the appropriate generating function is B̃(zC̃)s with B̃ counting paths

up to the last visit to the x-axis, B̃(zC̃) counting paths until the last visit to the line y = 1, B̃(zC̃)2 counting paths until the
last visit to the line y = 2, and so on. This gives the result for BC s and the other result about C s is the ballot number problem
somewhat disguised and can be proved via Andre’s reflection principle. See [4–7].

2. The uplift principle

Wewill look at ordered trees again and with L = B/C in hand, we can examine some question at the root and then uplift
to an arbitrary vertex. The uplift idea has two steps.
The uplift principle First, find the generating function for whatever is being counted at the root. Then uplift the result at the
root to an arbitrary vertex by multiplying by the leaf generating function L.

We will examine some examples to illustrate the uplift principle. It leads to several integer sequences and seems to give
new combinatorial interpretations for these numbers.

Example 2.1 (Mutator). Let us consider trees with a mutator. For instance, see Fig. 1. Suppose all the points above the
mutator including the mutator are infected. How many infected points are there? We could say these infected points are
new type or superior type or polluted or unpolluted points depending on the context.

Step 1. There are B =


n≥0


2n
n


zn =

1
√
1−4z

vertices counting the root and all the vertices above the root.
Step 2. Pick a point anywhere in the tree to be the mutator and multiply by L = B/C . By the uplift principle the generating

function is

B
C

· B =
B2

C
= 1 + 3z + 11z2 + 42z3 + · · · . [A032443] (2)
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Since B
C =

B+1
2 , we can write this as

B ·
B + 1
2

=
B2

+ B
2

=
1
2


n≥0


4n

+


2n
n


zn.

Hence the expected number of infected points is

[zn](B2
+ B)/2

[zn]B
=

1/2

4n

+


2n
n




2n
n

 .

Stirling’s formula gives us 4n
∼

√
πn


2n
n


so that as n increases, the expected number of points approaches 1

2 (
√

πn + 1)

∼

√
πn
2 .

What if we require that the mutator has to be on the rightmost path from the root?
The leaf generating function when the mutator is on the rightmost path is just C since any ordered tree has a unique leaf

on the rightmost path. The number of trees with this right mutator condition is C2 and the expected number of infected
points is

[zn]BC
[zn]C2

=


2n+1

n


2

2n+2


2n+2

n

 =
n + 2
2

.

This seems unintuitive as n+2
2 becomes much larger than

√
πn
2 . If every mutator is on a path, why is the rightmost path

special? The answer is that the rightmost path is short on average andmutators near the root generatemore infected points.
What if we reverse the conditions so that any vertex can be themutator but only those points on the rightmost path from

the mutator are infected?
Assume that the mutator is the root and the rightmost path has 2 edges; then there are 3 infected points. The number of

trees with a rightmost path of length 3 has the generating function z2C2. Summing over all possible lengths of the rightmost
path gives us

1 + 2zC + 3(zC)2 + · · · =
1

(1 − zC)2
= C2.

If the rightmost path starts at the origin and we are counting vertices, the average length is the same as the number of
infected vertices and is

[zn]C2

[zn]C
=

2
2n+2


2n+2

n


1

2n+1


2n+1

n

 =
(4n + 2)
(n + 2)

−→ 4.

Next we can ‘‘uplift’’ from the origin to an arbitrary vertex by multiplying by B/C to get the generating function

BC =


n≥0


2n + 1

n


zn = 1 + 3z + 10z2 + 35z3 · · · . [A088218]

Thus the expected number of right path infected points is

[zn]BC
[zn]B

=


2n+1

n




2n
n

 =
2n + 1
n + 1

−→ 2.

The ratio of the limits is of course 2 : 1. We mentioned earlier that the uplift idea applied to any class of ordered trees
with the uniform updegree requirement. Here is a table comprising these right path results for a variety of such classes. The
proofs are omitted but are of a similar nature.

Class Root mutator Arbitrary mutator Ratio
Ordered trees 4 2 2 : 1
0 · 1 · 2 Motzkin trees 6 3 2 : 1
Incomplete binary trees 3 2 3 : 2
Even trees 3 3/2 2 : 1
Oldest child syndrome trees 2 +

√
2 2

3


2 +

√
2


3 : 2

Path n n/2 2 : 1

Even trees have all vertices with even updegree, and that oldest child trees have the oldest child of each vertex as either
spoiled or not, (or either red or green).
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Example 2.2 (Vertices by Updegree). Let us consider all ordered trees with n edges. What is the generating function counting
all vertices of updegree k ?

If k = 0, clearly it is the leaf function L = B/C . Let k ≥ 1. Since the generating function is (zC)k when k is updegree at
the root, by the uplift principle, the generating function for all vertices with updegree k is

B
C

· (zC)k = zkBCk−1.

Then we have

[zn]zkBCk−1
= [zn−k

]BCk−1
=


2(n − k) + k − 1

n − k


=


2n − k − 1

n − 1


.

Example 2.3 (Twigs).We define a twig to be a vertex with 2 children and no grandchildren. What is the generating function
counting all twigs in all ordered trees with n edges?

For step 1, we figure out the generating function at the root. The only possibility is a twig with generating function z2.
We uplift to the general case by multiplying by the leaf function L =

B
C . Thus by the uplift principle, the generating function

is

z2
B
C

= z2
B + 1
2

= z2 + z3 + 3z4 + 10z5 + 35z6 + · · · . [A088218]

If tn is the number of twigs from all trees with n edges, then tn =
1
2


2(n−2)
n−2


for n ≥ 2. We note that the average number of

twigs is

tn
Cn

=

1
2


2n−4
n−2


1

n+1


2n
n

 =
n + 1
2

·
n(n − 1)n(n − 1)

(2n)(2n − 1)(2n − 2)(2n − 3)

=
(n + 1)n(n − 1)

8(2n − 1)(2n − 3)
−→

n
32

.

Informally, when n is large, 32 new edges get you about one more twig.

Example 2.4 (Children vs. Grandchildren). Does the average vertex in the average ordered tree have more children or more
grandchildren?

A child at the root produces the generating function zC3 with the z for the edge connecting the root to the child, and the
three possible subtrees are to the left of this edge, to the right of this edge, and on top of this edge. Then the uplift principle
gives

B
C

· zC3
= zBC2

=


n≥0

n
n + 1


2n
n


= z + 4z2 + 15z3 + 56z4 · · · . [A001791]

Since [zn]zC3
=

3n
n+2Cn, the average number of children of the root is 3n

n+2 → 3 as n → ∞. The result which also gives
the average number of returns to the x-axis for Dyck paths is well known and one recent reference is [8, pages 174 and 632].
But the average number of children is n

n+1


2n
n


/


2n
n


=

n
n+1 → 1 as n → ∞.

An alternate approach is to note that a tree with n edges has n+ 1 vertices and all but the root are someone’s child. Thus
there are n

n+1 children per vertex on average.
Similarly, counting grandchildren at the root leads to the generating function z2C5. Since

[zn]z2C5
=

5n(n − 1)
(n + 2)(n + 3)


2n
n


,

the average number of grandchildren of the root is 5n(n−1)
(n+2)(n+3) → 5 as n → ∞.

Thus the root definitely has more grandchildren than children on average. The situation changes after the uplift to an
arbitrary vertex. The uplift gives us the generating function

B
C

· z2C5
= z2BC4

=


n≥2


2n

n − 2


zn = z2 + 6z3 + 28z4 + 120z5 + · · · . [A002694]

Since

[zn]z2BC4
=


2n

n − 2


=

n(n − 1)
(n + 1)(n + 2)


2n
n


,

the average number of grandchildren is n
n+1 ·

n−1
n+2 → 1 as n → ∞.

There are three possibly surprising conclusions here. One is that there are fewer grandchildren than children. Also that
both limits tend to one. Third is that all these limits are integers.
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3. Riordan group elements

In several combinatorial counting problems, we have seen the appearance of an element in the Riordan group, for
example see [2,9].

This, briefly, is a group of infinite lower triangular matrices defined by two generating functions:

g(z) = g = 1 + g1z + g2z2 + · · · and
f (z) = f = f1z + f2z2 + · · · with f1 ≠ 0.

Then ℓn,k = [zn](gf k) and L = [ℓn,k]n,k≥0 is a Riordanmatrixwhich is denoted by (g, f ). Multiplying (g, f ) by a column vector
(h0, h1, . . .)

T with the generating function h(z), we obtain the generating function g(z)h(f (z)) for the resulting column
vector. Simply we write (g, f )h = gh(f ) and we call this the fundamental property for the Riordan matrix. This property leads
to the group operation for the Riordan group which is just a matrix multiplication and is expressed as

(g(z), f (z))(G(z), F(z)) = (g(z)G(f (z)), F(f (z))).

As observed in Example 2.1, the generating function for the total number of infected points above the mutator including
the mutator is B2

C , see (2). This same sequence occurs as the main diagonal in the 2n enhanced version of Pascal’s rectangle
([A032443]) :

1 1 1 1 1
2 3 4 5 6
4 7 11 16 22 · · ·

8 15 26 42 64
16 31 57 99 163

· · ·

 .

After some rearranging, we have the Riordan matrix given by


B2

C
, zC


=


1 0 0 0 0
3 1 0 0 0
11 4 1 0 0
42 16 5 1 0
163 64 22 6 1

· · ·

 .

If we want to carry more information, we can classify vertices by height above the root. To have a mutator at height k,
we replace L by


zC2

k. This gives us another Riordan matrix

V =

vn,k


n,k≥0 =


C, zC2

=


1 0 0 0 0
1 1 0 0 0
2 3 1 0 0
5 9 5 1 0
14 28 20 7 1

· · ·


where vn,k is the number of vertices at height k among all trees with n edges. Similarly, if we classify leafs by height we
obtain the Riordan matrix

L =

ln,k


n,k≥0 =


1, zC2

=


1 0 0 0 0
0 1 0 0 0
0 2 1 0 0
0 5 4 1 0
0 14 14 6 1

· · ·


where ln,k is the number of leaves at height k among all trees with n edges. The matrix version of V = TL is

1 0 0 0 0
1 1 0 0 0
2 3 1 0 0
5 9 5 1 0
14 28 20 7 1

· · ·

 =


1 0 0 0 0
1 1 0 0 0
2 1 1 0 0
5 2 1 1 0
14 5 2 1 1

· · ·



1 0 0 0 0
0 1 0 0 0
0 2 1 0 0
0 5 4 1 0
0 14 14 6 1

· · ·

 .
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Example 2.2 also provides an interesting Riordan matrix with combinatorial implications. We have


B
C

, zC


=


1 0 0 0 0
1 1 0 0 0
3 2 1 0 0
10 6 3 1 0
35 20 10 4 1

· · ·


where (n, k)-entry is the number of vertices of ordered trees with n edges and updegree k (also see [A100100]).

We can use this matrix to compute many other statistics concerning ordered trees. If, for instance, we wanted to know
how many vertices have at least 2 children, we could start with

B
C

, zC


(0, 0, 1, 1, . . .)T .

Applying the fundamental property yields
B
C

, zC


z2

1 − z
=

B
C

(zC)2

1 − zC
= z2B

C
1 − zC

= z2BC2

= z2 + 4z3 + 15z4 + · · · =


n≥2


2n − 2
n − 2


zn.

The probability that a randomly chosen vertex from a randomly chosen ordered tree with n edges has updegree at least
2 is 

2n−2
n−2




2n
n

 =
n − 1

2(2n − 1)
→

1
4

as n → ∞.
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