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We present results of a large number of 2D numerical simulations in which we investigated various
aspects in the deep penetration of rigid short projectiles into semi-infinite targets, as well as their perfo-
ration through thin metallic plates. In particular, we analyze the effect of the entrance phase on the pen-
etration characteristics of short ogive and spherical nosed projectiles. The second issue which we
investigate here concerns the perforation of metallic plates by sharp nosed projectiles. Our simulation
results show that a simple model, which is based on energy conservation, accounts for the residual veloc-
ities when the target is penetrated by the ductile hole enlargement process. In addition, we define a new
concept, the effective resisting stress which the plate exerts on the projectile during perforation. We
show that it has some valuable insights for the process of perforation and we perform a parametric study
to understand its dependence on various parameters. This effective stress, which determines the ballistic
limit velocity of the projectile, depends on the strength of the plate, as well as on its thickness, as we
show here.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction This is a clear indication for the effect of the entrance phase on
In a recent paper (Rosenberg and Dekel, 2009) we analyzed the
penetration process of rigid long rods, into semi-infinite targets,
using 2D numerical simulations with the AUTODYN code. In partic-
ular, we followed the decelerations of rods with different nose
shapes, as they penetrated various targets (aluminum, steel) with
different yield strengths. One of the main conclusions of that work
is that for each rod/target combination there exists a threshold im-
pact velocity ðVcÞ below which the deceleration of the rod is con-
stant throughout the whole penetration process. Moreover, this
deceleration does not depend on impact velocity, as long as it is be-
low V c. From these constant declarations we obtained values for the
resisting stress (RtÞ, which the target exerts on the rod, for several
rod/target combinations, in terms of target strength and the nose
shape of the rod. For impact velocities above Vc the deceleration
of the rigid rod is velocity dependent and a dynamic term (target
inertia) has to be added to Rt. In addition, we were able to construct
simple formulas for the penetration depths of rigid rods at impact
velocities below and above Vc. The predictions from these equa-
tions were found to agree with experimental data from the works
of Forrestal and his colleagues (see Forrestal et al., 1991; Piekutow-
ski et al., 1999 for example), for rigid steel rods penetrating various
aluminum targets. One of the interesting observations, from those
simulations, was that the constant deceleration which acts on the
rod is reached at penetration depths of about 4–6 rod diameters.
ll rights reserved.
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the penetration process. In fact, the influence of the entrance phase
was already manifested in the classical work of Bishop et al. (1945)
who measured the force needed to push a conical-nosed steel rod
into a thick copper plate. This force reached a constant value only
after the rod penetrated a depth of about 4–5 rod diameters. These
observations, of a constant resisting force at deep penetrations, are
in contrast with the dynamic cavity expansion analysis of Goodier
(1965) and we discuss this discrepancy here.

The numerical simulations described here are focused on two
issues; the first is the penetration of rigid short projectiles into
semi-infinite metallic targets, at impact velocities of 0–1.5 km/s
(the so-called ordnance range). At these velocities the entrance
phase plays a major role in the penetration process of short projec-
tiles (with length to diameter ratios of L/D = 3–5). The second sub-
ject of the present work concerns the perforation of finite targets
by sharp rigid projectiles (either short or long). The perforation
process of relatively thin metallic plates is even more complex be-
cause of the back surface effects which reduce the resisting stresses
on the projectile, in addition to the effects of the front face. Our
simulations, for conical-nosed tungsten projectiles, follow the
experimental results of Forrestal et al. (1990), in order to highlight
several issues regarding perforation experiments, in terms of resid-
ual velocities and ballistic limit velocities.
2. Numerical simulations

The simulations were performed with the AUTODYN 2D code
using the Lagrange processor for the rigid projectiles and the Euler
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processor for the targets. As in (Rosenberg and Dekel, 2009), the
diameter of the projectiles is 6 mm and their strength 50 GPa
(von-Mises yield criterion). This high strength ensures that the
projectiles stay rigid at all impact velocities investigated here.
The fact that projectiles can stay rigid even when they impact cer-
tain targets at velocities of 1.5 km/s is not surprising when one
considers the data of Forrestal and his colleagues (see Piekutowski
et al. (1999) for example). We can see there post-mortem pictures
of ogive-nosed steel rods impacting 6061-T651 aluminum targets,
at velocities up to about 1.8 km/s, without any apparent deforma-
tion. In order to ensure convergence of the computations we have
11 cells on the projectile radius and a similar cell size (0.3 mm)
along the target around its symmetry axis, up to a distance of about
three projectile radii from the axis. The size of the cells at larger
distances, towards the lateral surface of the target, is increasing
geometrically as is customarily done in order to reduce computing
times. We should note here that the use of Lagrange processor for
the projectiles and Euler processor for the targets prevents cell
mixing during the whole process and ensures a clear border be-
tween projectile and target. Moreover, the cells in the target do
not deform because of the Eulerian meshing and those in the pro-
jectiles do not deform because of the high strength which we as-
sign to them. Thus, the many difficulties which workers
encounter with such simulations are avoided by this setup.

The constitutive relation which we use. for the target materials
is the von-Mises yield criterion with no hardening or strain rate ef-
fects, in order to simplify the analysis. This criterion is adequate to
describe the behavior of many steel and aluminum alloys whose
stress–strain curves are very nearly elasto-pefectly-plastic, with a
well defined flow stress. Moreover, these alloys are usually not
very sensitive to strain rates, which mean that a dynamic test with
a compression Kolsky bar is adequate to characterize their behav-
ior, under most conditions encountered in terminal ballistics. An
excellent example for these materials is the 6061T651 aluminum
alloy which has been used by many workers (see Forrestal et al.
(1991); Piekutowski et al. (1999) for example). As shown in (Forr-
estal et al., 1991) the static stress–strain curve for this material has
a yield point at 0.276 GPa followed by a relatively short hardening
behavior which reaches a roughly constant flow stress of 0.35 GPa.
Dynamic stress–strain curves, using a Kolsky bar, result in a some-
what higher flow stress of about 0.4 GPa for this material. Thus,
whenever we simulate this aluminum alloy we use a simple von
Mises yield criterion with Y = 0.4 GPa for its strength. The dynamic
compression tests, in a Kolsky bar system, are characterized by
strain rates of (103–104 S�1, which are the typical strain rates in
a penetration process. Thus, one should use results from compres-
sion Kolsky bar tests as the input to the constitutive equations in
the code, in order to match the strain rates and even the tempera-
ture increase, which the material experiences during a dynamic
loading processes. The strain rates and the temperatures, as well
as the strains which are achieved in these tests are very close to
what the relevant target material, in the vicinity of the projectile,
experiences. We do not specify any failure criteria for our targets
because we focus on the penetration and perforation of ductile tar-
gets by sharp nosed projectiles through the ductile hole growth
mechanism. The penetration in these cases is achieved by the pro-
jectile pushing the target material to the side and there is no need
to introduce any fracture or failure process here. This is certainly
not the case when blunt projectiles perforate very strong materials,
like high strength steels, which can exhibit adiabatic shear or back
surface spall failures. Thus, all the failure modes which may take
place by fracture, shear-banding or other processes, are side-
stepped here by considering only the ductile hole enlargement in
our simulations. This, of course, limits the applicability of our re-
sults to cases where conical or ogive nosed projectiles perforate
ductile metallic plates. We used the shock equation of state data
in the AUTODN library, with a linear relation between the shock
and particle velocities, for the materials involved in our simula-
tions: aluminum, steel and tungsten with densities of 2.78, 7.9
and 18.5 g/cc, respectively. The sound velocities (C0Þ and the slopes
(S) of these linear shock relations are: C0 ¼ 5:33;4:57
and 4:03 km=s and S = 1.34, 1.49 and 1.23 for Al, Fe and W, respec-
tively. There are other options to use different equation of state,
like the Gruneisen or the linear pressure-volume equations, but
the shock equation seems to cover a larger pressure range in a
more accurate way, so we always use it in our simulations.
3. The deep penetration of rigid short projectiles

As stated above, our first goal was to characterize the resisting
stresses which a semi-infinite target exerts on a short rigid projec-
tile. The best way to achieve this is to follow the time variation of
the average deceleration, which the projectile experiences during
deep penetration. We focus our attention on the ogive and spher-
ical nosed projectiles, which represent the sharp and the blunt
nosed projectiles, respectively.
3.1. Ogive-nosed projectiles

These short (L/D = 3) steel projectiles, with an ogive-nose (of
3CRH), can be considered as representing a typical AP projectile,
which has L/D values of 3–5. We chose a low L/D value in order
to enhance the effect of the entrance phase on these projectiles
as we shall see below. Their diameter (6 mm) and their weight of
3.21 g result in an effective length of Leff ¼ 14:4 mm. The first set
of simulations was performed with impact velocities of 0.5, 1.0
and 1.5 km/s at an aluminum target with strength of 0.4 GPa. From
the results of (Rosenberg and Dekel, 2009) we know that these im-
pact velocities are well below the critical velocity (V c ¼ 2:1 km=s)
for this combination of target and projectile’s nose shape. Thus,
we expect these projectiles to be decelerated by a constant stress,
Rt ¼ 1:87 GPa (see (Rosenberg and Dekel, 2009)), when they pene-
trate deep enough, beyond the influence of the entrance phase.
With the relation we derived in (Rosenberg and Dekel, 2009):

Rt ¼ qp � Leff � a ð1Þ

we obtain a value of about a = 1.65 � 10�2) mm/(ls)2 for the ex-
pected deceleration of these short steel projectiles, at deep
penetration.

Fig. 1 shows the penetration and deceleration histories in these
simulations from which several points are worth noting. First, it is
clearly seen that at the low impact velocity (0.5 km/s) the projec-
tile is stopped well before reaching a steady deceleration. This is a
reasonable result considering the fact that it penetrates only
17 mm, which is much less than the value of 4–6D (24–36 mm),
during which the effect of the entrance phases is expected to be
dominant. The fact that the two penetration curves for the lower
impact velocities show a decreasing trend after a certain time is
due to the fact that we actually draw here the position of the pro-
jectile’s nose. Since the target has a ‘‘spring-back effect” on the
projectile we actually find it, in the simulations, in a somewhat
backward position. However, the penetration depth is taken at
the maxima in these curves. The penetration depths for the
1.5 km/s impact is high enough (78.5 mm), and Fig. 1b shows that
the corresponding deceleration reaches the expected value de-
rived above from Eq. (1). Moreover, the deceleration of this short
projectile, beyond the entrance phase, is independent on its veloc-
ity. This is the same behavior we found in Rosenberg and Dekel
(2009) for rigid long rods impacting semi-infinite targets at veloc-
ities below Vc.
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Fig. 1. (a) Penetration-time history and (b) deceleration time history for ogive
nosed projectiles impacting the 0.4 GPa aluminum target at different velocities.
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Examining the deceleration of the 1.5 km/s simulation, we see
that the constant value is reached at about 25 ls after impact.
From the penetration-time history, this time corresponds to a pen-
etration depth of about 36 mm, exactly the 6D value. Moreover,
one can observe a very fast increase of the deceleration, for the first
5 ls, followed by a more gradual increase for the next 20 ls. The
short early part is due to the immersion process of the ogive nose
in the target. The resisting force on the rod increases appreciably
until its nose is fully embedded. The much longer, and more grad-
ual increase in the deceleration, can be attributed to the diminish-
ing effect of the impact face on the projectile, as it penetrates
deeper into the target. This complexity of these deceleration histo-
ries means that any attempt to account for the resisting stresses on
the projectiles, by using simplified analytical models, should be
examined very carefully.

On the other hand, one can define an average (effective) stress,
which the target exerts on the projectile, through an effective con-
stant deceleration which it experiences during penetration. This
effective deceleration (aeffÞ of the projectile is obtained by the sim-
ple relation between its impact velocity (V0Þ and penetration depth
(P), for a motion at constant deceleration:

aeff ¼ V2
0=2P ð2Þ

Using Eq. (2) with the values for the penetration depths, in the three
simulations described above, we get the following effective deceler-
ations: aeff ¼ 0:714, 1.2 and 1.43 � 10�2 mm/(ls)2, for the impact
velocities of: V0 ¼ 0:5;1:0 and 1:5 km=s, respectively. These values
are lower than the asymptotic value we predicted from Eq. (1) for
the deceleration at deep penetration, a = 1.65 � 10�2 mm/(ls)2,
but they are approaching it with increasing impact velocity. One
can insert these effective decelerations (aeff Þ in Eq. (1) to obtain
the corresponding effective (average) stresses which the target ex-
erts on the projectile at these velocities: rr=0.81, 1.36 and 1.63 GPa,
for the impact velocities of 0.5, 1.0 and 1.5 km/s, respectively. These
values increase asymptotically towards the expected value of Rt

(1.87 GPa) for an ogive nosed projectile at deep penetration in this
aluminum target. It is important to note that this increase in the
effective resisting stress, with impact velocity is due to the effect
of the free impact face, which exerts a low resisting force on the
projectile. This increase is not the result of any velocity dependent
term in the resisting stress, as we demonstrated in (Rosenberg and
Dekel, 2009). It would be very difficult to find a quadratic relation
between these effective stresses and the projectile velocity (V), of
the form:

rr ¼ Rt þ BV2 ð3Þ

which is the basic equation in all the analytical models relying on
the dynamic cavity expansion analysis since Goodier’s work (Goo-
dier, 1965).

At this point we bring an example from the experimental re-
sults of Dikshit and Sundararajan (1992), for short (L/D = 2.5) ogive
nosed steel projectiles, impacting 80 mm thick steel plates at
velocities of up to 800 m/s. The yield strength of their steel targets
was about 0.8 GPa. As the maximum penetration depth in this ser-
ies of shots, was less than half the target thickness, one can treat
these plates as semi-infinite. The measured depths of penetration
were: 12.7, 21 and 29 mm, for impact velocities of 300, 500 and
700 m/s, respectively. Using Eq. (2) for the effective decelerations
in these shots we obtain: aeff ¼ 3:54, 5.95 and 8.45 � 10�3 mm/
(ls)2. These values are related to the corresponding impact veloc-
ities by an almost linear manner, which means that they are still
far from their asymptotic value. From our results in Rosenberg
and Dekel (2009), for such ogive nosed projectiles penetrating
0.8 GPa steel targets, we get a value of a = 12 � 10�3 mm/(ls)2

for the asymptotic deceleration, which these projectiles should
experience at deep penetration. This value is higher by more than
40% than the maximum effective deceleration we calculated above
(at impact velocity of 700 m/s). Thus, it is clear that the entrance
phase dominates all the results in Dikshit and Sundararajan (1992).

In order to further highlight the role of the entrance phase we
performed another set of simulations, in which we introduced a
cylindrical hole from the impact face to a depth of 50 mm in the
target. The diameter of this cavity was 6.1 mm, slightly larger than
that of the projectile, so that the projectiles in these simulations do
not ‘‘see” the free face of the target. The idea here is that the im-
pact, at a depth of 50 mm, prevents the target surfaces from mov-
ing, because of the presence of the projectile inside the hole. Thus,
we expect the penetration depths to be smaller than the corre-
sponding depths with the flat faced targets. We also expect their
deceleration histories to be much less influenced by the entrance
phase, reaching their asymptotic values, at much earlier times.
We obtained penetration depths of 14, 37.8 and 74.6 mm for the
0.5, 1.0 and 1.5 km/s impacts, respectively which are smaller by
about 23%, 10% and 5% than the corresponding penetrations into
flat faced targets. Fig. 2 shows the deceleration time histories in
these simulations, together with those for the flat faced targets.
It is quite clear that with higher impact velocities the differences
between the deceleration histories diminish. The large difference
for the 0.5 km/s impact, in both the shape and the amplitude of
these deceleration histories, means that the entrance phase is
dominant here, as discussed above.
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Fig. 2. Deceleration-time histories for the ogive nosed projectiles impacting flat
faced targets and targets with a hole at different velocities.
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3.2. Spherical-nosed projectiles

A similar series of simulations was performed with spherical
nosed L/D = 3 steel rods, impacting 0.4 GPa aluminum targets, both
flat-faced and with the 50 mm deep hole, at velocities of 0.5, 1.0
and 1.5 km/s. The effective length of this projectile is
Leff ¼ 17 mm. Using the value we found in (Rosenberg and Dekel,
2009) of Rt ¼ 2:244 GPa, for spherical-nosed rods impacting the
0.4 GPa aluminum target, we get from Eq.(1) a value of
a ¼ 0:0167 mm=ðlsÞ2 for the asymptotic deceleration of these
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short projectiles at deep penetration. Fig. 3 shows simulation re-
sults for the penetration depth histories in the two targets. Pene-
tration depths in the target with the hole are smaller, as
expected, and the differences between the two sets also diminish
with impact velocities. These differences are somewhat smaller
than those for the ogive projectile: 21%, 8.4% and 3.3% for impact
velocities of 0.5, 1.0 and 1.5 km/s, respectively. This may be due
to the fact that the spherical nose is shorter than the ogive nose
and it is fully immersed in the target at shorter times. Still, most
of the difference between the penetration into a flat target and
one with a hole is due to the effect of the entrance phase, after
the nose is fully embedded in the target.

Fig. 4 shows the deceleration histories of these projectiles at the
three impact velocities into the two targets. As expected, the pro-
jectile experiences a higher deceleration with the hole in the target
and the difference in decelerations is diminishing with increasing
impact velocities. The simulation for the 0.5 km/s impact shows
that the deceleration does not reach a constant value during the
short penetration time, as in the case of the ogive nosed projectile.
With the 1.0 km/s impact the entrance phase lasts for more than
20 ls, which is a third of the total penetration phase. Thus, as for
the ogive nose, the forces on these short projectiles are varying
considerably during the entrance phase, which is most significant
for impact velocities in the 0–1.0 km/s range. A close examination
of the early parts in the deceleration histories shows that the steep
initial part lasts for a few microseconds which correspond to the
embedment of the spherical nose in the target. The following, more
gradual change in deceleration, lasts until the projectile has pene-
trated about six rod diameters, as in the case of ogive nosed
projectiles.

3.3. A few words about the constant deceleration of rigid projectiles

The previous simulations showed that at deep penetrations a
short projectile experiences a constant resisting stress, in agree-
ment with our previous findings in (Rosenberg and Dekel, 2009)
for rigid long rods. This conclusion contradicts the common
assumption that rigid projectiles are decelerated by forces which
depend on both target strength and inertia, as given by Eq. (3).
The addition of target inertia to the resisting force, through the dy-
namic cavity expansion analysis, was first suggested by Goodier
(1965) who analyzed penetration data for various spheres into
semi-infinite targets made of steel, aluminum etc. Analytical mod-
els, for the penetration process of rigid long rods, follow the same
lines by assuming that the resisting force on these rods are depen-
dent on both target strength and inertia (see Forrestal et al. (1991);
Piekutowski et al. (1999), for example). In this section we wish to
highlight some facts in order to understand the source of the dis-
crepancy between our approach, with the constant deceleration,
and the approach which is based on the dynamic cavity expansion
and includes target inertia..

A close examination of the data which Goodier (1965) used for
his model (see the survey in (Hermann and Jones, 1961)), shows
that it includes spheres made of copper, aluminum, steel and lead
at impact velocities of up to 1.5 km/s. These spheres penetrated
much less than Goodier predicted by a constant resisting stress,
which depends on target strength only. Thus, he added the inertia
term to the target resistance, in order to account for these low pen-
etration depths, treating the spheres as rigid in his model. Clearly,
the spheres used in (Hermann and Jones, 1961) did not stay rigid
during these experiments, and their low penetration depths were
due to their strong deformation rather than the inertia of the tar-
get. Thus, the main reason for the addition of target inertia to the
resisting force on these projectiles is based on a flawed assumption
on Goodier’s part, namely, that the spheres in these experiments
were rigid. The data of Weimann (from EMI laboratories), as it ap-
pears in (Dehn, 1986), clearly shows the difference between soft
and hardened steel spheres impacting aluminum targets. The hard
steel spheres penetrate much more than the soft ones, as expected.
Thus, we may conclude that the addition of a velocity dependent
term (inertia), to the resisting force on rigid projectiles, cannot
be justified by the experimental results of Hermann and Jones
(1961).
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The direct experimental determination of a projectile’s deceler-
ation is very complex and there were very few attempts to achieve
such measurements in the past. One of them is the study by
Forrestal et al. (2003) where the deceleration of rigid rods, as they
penetrate concrete targets, was measured with special gauges
embedded in the rods. There are several measurements of these
decelerations in (Forrestal et al., 2003), for two types of concrete,
but none of them really matches their model predictions, as far
as the shape of the signals is concerned. The authors of Forrestal
et al. (2003) claim that they do not see evidence for target inertia
playing any role in these measurements. They state that ‘‘the iner-
tial term will, however, become much more important for larger
striking velocities” as for the data in (Piekutowski et al., 1999).
However, a close examination of the data in (Piekutowski et al.,
1999), for ogive nosed steel rods impacting 6061-T651 targets,
reveals a different picture. Using Eq. (2) for the effective decelera-
tion for each test in (Piekutowski et al., 1999) we find that, except
for the very lowest impact velocities, these decelerations are
practically constant with values of: aeff ¼ ð3:58� 0:38Þ�
10�3 mm=ðlsÞ2. The corresponding impact velocities, between
679 and 1786 m/s, span a large range but we do not see any
evidence for a velocity dependent deceleration in these results. In
fact, even for the lowest impact velocity (570 m/s) the effective
deceleration is only slightly less – 2.95 � 10�3 mm/(ls)2, due to
the enhanced influence of the entrance phase in this shot. Thus,
the data of Piekutowski et al. (1999) does not justify the addition
of the inertial term to the target’s resistance to penetration. In fact,
we showed in (Rosenberg and Dekel, 2009) that a similar conclu-
sion can be reached by analyzing the data for concrete targets
penetrated by rigid rods.
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4. Plate perforation and residual velocities

A vast amount of empirical data has been gathered over the past
50 years on the perforation of finite thickness plates by various
projectiles and long rods. Different projectile nose shapes, as well
as target properties and thicknesses, result in different perforation
mechanisms which include: ductile hole enlargement, perforation
by shearing and plugging, back surface spall, petalling etc. Depend-
ing on whether thin or thick plates are used, their properties (duc-
tile or brittle) and projectile nose shape (blunt or sharp), one can
get a different mechanism at work, as discussed by Recht and Ipson
(1963). In this study we focus our attention on rigid, sharp nosed
projectiles (ogive and conical), which perforate ductile targets by
the process of ductile hole enlargement.

Two recent papers, by Chen et al. (2008) and by Forrestal and
Warren (2009), present analytical models to account for a large
number of experimental results for the perforation of metallic tar-
gets by rigid projectiles and rods. The analysis in both works is
based on the dynamic cavity expansion, according to which the
resisting stresses on these projectiles are velocity dependent. The
expressions and values of these stresses are taken from the earlier
works of Forrestal and his colleagues on the deep penetration of ri-
gid long rods into semi-infinite targets. In the previous sections we
discussed the significant effect which the entrance phase has on
the penetration process of short projectiles. For thin plate perfora-
tion we expect the back surface of the target to play an additional
role, by further reducing the resisting stresses on the projectile.
Thus, a simple picture, where a constant resisting stress is acting
on the projectile as it perforates a finite thickness target, must be
very naive. In order to highlight this issue we performed several
simulations of the perforation experiments which have been dis-
cussed in (Chen et al., 2008; Forrestal and Warren, 2009). The re-
sults from these simulations will be described in view of the
simple model suggested by Recht and Ipson (1963).
4.1. Perforation by conical-nosed projectiles-simulation results

We start this section by presenting our simulation results for
conical-nosed tungsten projectiles, with D = 8.3 mm and
Leff ¼ 25:6 mm, impacting aluminum plates. The thicknesses of
the plates, H = 12.7, 50.8 and 76.2 mm, as well as the shape of
the conical projectile and its density (18.5 g/cc), are the same as
those in the experiments of Forrestal et al. (1990). The yield
strength of their aluminum 5083-H131 targets was 0.276 GPa
and the flow stress about 0.4 GPa, as shown in (Forrestal et al.,
1990). Thus, as we explained above, we chose the value of
0.4 GPa for the strength of the targets in our simulations, using a
von-Mises yield criterion. Moreover, the compressive stress–strain
curve for this alloy extends to a strain of about 1.0, with no sign for
material failure (see Forrestal et al. (1990)). We performed several
simulations with a failure strain of 1.0 and compared them to the
simulations with no failure strain. The difference between the
residual velocities of the two sets was only about 2–3%. Thus, we
performed our study without specifying a failure strain to the tar-
gets. As the projectiles in (Forrestal et al., 1990) did not deform in
all the experiments, we assigned them a high strength (50 GPa), in
order to ensure their rigidity.

The first set of simulations was performed for an impact veloc-
ity of 800 m/s, and the resulting residual velocities were:
V r ¼ 769;603; and 422 m=s for the 12.7, 50.8, and 76.2 mm plates,
respectively. These values are very close to the experimental re-
sults in (Forrestal et al., 1990): V r ¼ 761;591 and 421 m=s, for
these plates. This agreement means that the value we chose for
the target strength in our simulations (0.4 GPa) is close to the flow
stress of the aluminum plates used in (Forrestal et al., 1990). Fig. 5
shows the resulting decelerations which the projectile experiences
during its penetration through these targets. The effect of the tar-
get’s free faces is very clear, as expected. We can even identify the
time when the conical-nose is embedded in the target, as shown in
the figure by the arrow. The most important conclusion which we
draw from these results, is that the decelerations and the resisting
stresses, which these targets exert on the projectile, are very differ-
ent from each other, both in their shape and magnitude. This
means that a simple analytical model, which is based on these
stresses, must be very difficult to construct.

The next set of simulations was performed with other impact
velocities on the same targets, adding two more plates
(H = 8.3 mm and 100 mm), in order to cover a larger range of target
thicknesses. Table 1 summarizes the results of these simulations in



Table 1
Simulation results for V r of the conical-nosed tungsten projectiles perforating
aluminum plates of different thicknesses.

H (mm) V0 (m/s) V r (m/s)

8.3 200 106.1
300 249

12.7 300 207
500 449
800 769

50.8 600 284.4
800 602.6

1000 842
76.2 800 422

1000 723.6
1200 975

100 800 116.6
1200 874.6
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Fig. 6. The deceleration-time histories for the conical-nosed tungsten projectile
impacting a semi-infinite and a 100 mm thick aluminum targets (with strength of
0.4 GPa), at 800 m/s.
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terms of the residual velocity (V rÞ as function of impact velocity
(V0Þ and plate thickness (H):

Our next step is to use the values in Table 1 as a validation
means for the simple analytical model of Recht and Ipson (1963).
Their analysis of the perforation process by sharp nosed projectiles
is based on energy conservation, resulting in the following relation
betweenV0;V r and the ballistic limit velocity (VblÞ:

V2
r ¼ V2

0 � V2
bl ð4Þ

The basic assumption of Recht and Ipson (1963) is that the work
needed to perforate a given ductile plate, by a sharp projectile, is
constant. They write that ‘‘while the assumption of constant perfo-
ration work is not justified, this equation (Eq. (4)) seems to repre-
sent the data to velocities exceeding Vbl by at least 50%”. Our
simulations can be used as a verification test for this assumption
for a larger range of impact velocities. We start this validity check
through the values we infer for Vbl at different impact velocities.
Using the tabulated values of V0 and V r for the five plates in Table
1, we get from Eq. (4) the inferred Vbl values which are given in
Table 2 below.

One can clearly see that, for each plate thickness, the different
impact velocities resulted in practically the same values for Vbl.
The small differences within each set (less than 2%) are probably
due to the different kinetic energies which the projectiles impart
to the targets. In fact, the code also lists the energy invested in
the target (the plastic work) after the perforation process. It turns
out that these energies are practically velocity independent and
they only depend on the thickness of the plate in these simulations.
This means that the simple analysis of (Recht and Ipson, 1963) is
good enough for a large range of velocities and the only important
quantity is the plastic work which is needed to perforate a given
target. This work is a function of target strength and thickness
but it does not depend on impact velocity.

At this stage we introduce a new concept which, as will be
shown here, is very useful for the analysis of perforation experi-
ments. This is the effective resisting stresses, which is exerted on
the projectile during perforation. Our basic assumption is that
there is no need to follow the complex temporal changes of the
stresses on the projectile. Instead, one can assign an effective stress
(rrÞ, for each plate thickness, which results in the same change in
projectile velocity. This means that the equation of motion (New-
ton) of the projectile is:
Table 2
Inferred Vbl values for the five plate thicknesses.

H (mm) 8.3 12.7 50.8 76.2 100
Vbl(m/s) 168�1.5 219�2 533�6 690�10 807�15
qp � Leff � dV=dt ¼ �rr ¼ const: ð5Þ

Using the well known relation: dV/dt=VdV/dx, together with the
boundary conditions: V0 ¼ Vbl at x = 0 and V = 0 at x = H, we get
after the integration:

qp � Leff � V2
bl ¼ 2Hrr ð6Þ

Thus, given a value for Vbl we can calculate the effective resisting
stress (rrÞ, which a target of thickness H exerts on the projectile
during perforation, at any impact velocity. While rr should be inde-
pendent on impact velocity, because Vbl is independent on V0, it
should depend on target strength, and possibly on its thickness.
Moreover, we assume that the important parameter here is the ratio
– H/D – of plate thickness to projectile diameter. Our simulations
results, to be presented here, will test this assumption. Using the
values for the inferred Vbl (Table 2), together qp (18.5 g/cc) and
Leff (25.6 mm), we get the following effective stresses, as a function
of plate thickness, from Eq. (7): which is a different way to write Eq.
(6):

rr ¼ qp � Leff � V2
bl=2H ð7Þ

It is clearly seen that the effective stresses increase in an asymptotic
manner as the ratio H/D increases. We can assume that for very high
H/D values rr reach the corresponding value of Rt, the resistance to
penetration in a semi-infinite target. In order to find the value of Rt

for these conical-nosed tungsten projectiles we performed another
simulation of an impact at 800 m/s, on a very thick aluminum target
with a strength of 0.4 GPa. Fig. 6 shows the resulting deceleration-
time history of the projectile in this simulation, together with that
for the 100 mm target. Clearly, even this relatively large thickness
(with H/D = 12) is not large enough to reach a constant deceleration
for the projectile. We see that the first part of the penetration is af-
fected by the front surface and the second half by the back face of
the target. In contrast, for the semi-infinite target the deceleration
reaches a constant value, of a = 4.0 � 10�3 mm/(ls)2, after the en-
trance phase is over. The fact that this tungsten projectile reached
Table 3
The effective resisting stresses as derived from Eq. (7) and Table 2.

H (mm) 8.3 12.7 50.8 76.2 100
H/D 1 1.53 6.12 9.18 12
rr ðGPaÞ 0.805 0.894 1.32 1.48 1.54



Table 4
Experimental results for the 12.7 mm plates and the inferred Vbl values.

V0 (m/s) 221 278 290 479 532 726 892 1023 1195
V r (m/s) 0 142 177 412 464 684 895 989 1156
Vbl (m/s) – 239 229.7 244 260 243 240 261 302.8

Table 5
Experimental results for the 50.8 mm plates and the inferred Vbl values.

V0 (m/s) 513 573 578 590 655 810 1037 1176
V r (m/s) 0 242 250 255 378 595 863 1022
Vbl (m/s) – 519 521 547.7 540 550 575 582

Table 6
Experimental results for the 76.2 mm plates and the inferred Vbl values.

V0 (m/s) 635 690 709 792 959 1021 1168
V r (m/s) 0 169 248 420 667 767 889
Vbl (m/s) – 669 664 671.5 689 674 757
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a constant deceleration is due to its high density which resulted in a
considerably higher penetration as compared with the steel projec-
tiles we discussed earlier. Thus, the deep penetration of short pro-
jectiles is also characterized by a constant deceleration, without
target inertia effects, as we found for long rods. Using Eq. (1), and
this value of deceleration, together with qp=18.5 g/cc and
Leff ¼ 25:6 mm, we get: Rt ¼ 1:894 GPa for this conical-nosed pro-
jectile penetrating the 0.4 GPa aluminum target. This value is very
close to the value of Rt ¼ 1:944 GPa which we obtained in (Rosen-
berg and Dekel, 2009) for a conical-nosed long rod, with a some-
what larger cone angle, penetrating the same target. The effective
stresses (rrÞ, for all the plates in our simulations (see Table 3), are
much lower than this value of Rt, due to the strong effects of the
target’s free faces.
4.2. Analysis of experimental data

The next step is to analyze the experimental results of Forrestal
et al. (1990), for the same conical-nosed tungsten projectiles perfo-
rating the 12.7, 50.8 and 76.2 mm thick aluminum 5083-H131
plates. The following tables (4, 5 and 6) include the impact velocity
(V0Þ and the residual velocity (V rÞ, for all the experiments in
(Forrestal et al., 1990), together with the inferred ballistic limit
velocity (VblÞ, from Eq. (4), for each plate thickness.

Several important points emerge by examining the inferred Vbl

values in these tables. First, it is clear that some experiments result
in ‘‘strange” values for the inferred Vbl, which are outside the
experimental range for Vbl. For example, the values for Vbl in the
last shots for the 12.7 mm plate (302.8 m/s) and the 76.2 mm plate
(757 m/s), are clearly too high. The same is true for the two exper-
iments with the highest impact velocity for the 50.8 mm plate.
Clearly, the inferred values for Vbl should not be higher than the
minimal velocities for which these plates have been penetrated.
A possible explanation for this discrepancy is that the way we infer
the values for Vbl from the data, is very sensitive to experimental
errors at high velocities. A reasonable estimate of this error is
about 2% for the residual velocity and about 1% for the impact
Table 7
The experimental results from (Piekutowski et al., 1996) and the inferred Vbl values.

V0 (m/s) 282 308 341 396 454
V r (m/s) 0 57 164 266 347
Vbl (m/s) – 302.7 299 293.3 292.7
velocity. Thus, an increase by 2% in V r, in the last shot for the
50.8 mm plate, results in a new inferred value of Vbl ¼ 545 m=s,
which is well within the permitted range for Vbl from the data.
In order to avoid such corrections we decided to ignore these
few ‘‘strange” data points, for the moment, and obtained the fol-
lowing average values of Vbl for the three sets. We also included
the range of impact velocities where these Vbl should be located,
according to the data in each set:

Vbl ¼ 245� 15 m=s for the 12:7 mm plate ð221 < Vbl < 278Þ
Vbl ¼ 535:5� 15 m=s for the 50:8 mm plate ð513 < Vbl < 573Þ
Vbl ¼ 664:5� 12 m=s for the 76:2 mm plate ð635 < Vbl < 690Þ

We should note that the relative scatter in these three cases is small
enough and that it is decreasing with plate thickness. However, the
most important observation is that the inferred values for Vbl do not
depend on impact velocity within each group. As discussed above
this is a clear indication that the simple model of (Recht and Ipson,
1963), is valid for these cases. Next we calculate the effective resist-
ing stresses which these plates exert on the conical projectiles
through Eq. (7), using the inferred Vbl values listed above. The val-
ues we get are: rr=1.12, 1.33 and 1.37 GPa for the 12.7, 50.8 and
76.2 mm plates, respectively. These values are quite close to those
which we derived for rr from the simulations above (see Table 3).
As with the simulation results, these effective stresses (rrÞ are also
increasing with plate thickness and their values seem to approach
an asymptotic valueðRtÞ for deep penetration.

Another set of experiments with conical-nosed steel projectiles,
20 mm in diameter, perforating aluminum plates, was given in
Borvik et al. (2004). The aluminum alloy was AA5083-H116 and
plate thicknesses were 15, 20, 25 and 30 mm. There was a measur-
able difference between the stress–strain curves for samples taken
from these plates. The 20 and 30 mm plates had the same flow
stresses, while the 25 mm plate was weaker by about 10% and
the 15 mm plate was stronger by the same amount. Using Eq. (4)
and the tabulated values for the impact and residual velocities in
(Borvik et al., 2004), one obtains: Vbl ¼ 215, 246, 257 and 310 m/
s, for the 15, 20, 25 and 30 mm plates, respectively. With the pro-
jectile’s effective length of Leff ¼ 78 mm, we get from Eq. (7):
rr=0.94, 0.93, 0.81 and 0.98 GPa, for the 15, 20, 25 and 30 mm
plates, respectively. One can clearly see the lower rr for the
25 mm plate, as expected. We shall come back to this set of exper-
iments later on (in Section 5.5).

4.3. Perforation by rigid rods

The data analyzed in (Chen et al., 2008; Forrestal and Warren,
2009) include several sets of perforation studies with ogive and
conical-nosed steel rods impacting thin aluminum plates. We wish
to check the applicability of our analysis for these cases and to
highlight the different qualities of these experimental results.
The three sets of data which we compare were reported by Pieku-
towski et al. (1996), Forrestal et al. (1987), Rosenberg and Forrestal
(1988). These works used aluminum 6061-T651 plates, 26.3 mm
thick in (Piekutowski et al., 1996) and 25.4 mm in (Forrestal
et al., 1987; Rosenberg and Forrestal, 1988). The rods were
ogive-nosed in (Piekutowski et al., 1996) (D=12.9 mm,
Leff ¼ 79:2 mm), and conical-nosed in (Forrestal et al., 1987)
(D=9.53 mm, Leff ¼ 136:5 mm) and in (Rosenberg and Forrestal,
508 565 630 633 730 863
415 482 555 561 665 802
293 294.8 298 293.2 301 318.7
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1988) (D=7.1 mm, Leff ¼ 74:6 mm). Thus, the corresponding H/D
values for the three sets of experiments are: H/D = 2.04 in (Pieku-
towski et al., 1996), 2.66 in (Forrestal et al., 1987), and 3.58 in
(Rosenberg and Forrestal, 1988). The following tables list the rele-
vant data from these works, as far as V0 and Vr are concerned to-
gether with the values inferred for Vbl from each shot ( by Eq. (4)):

Comparing the inferred Vbl values in these tables one can see
the differences in the quality of the data. All the values for Vbl from
(Piekutowski et al., 1996) (Table 7), except for the last shot, fall
within the range Vbl ¼ 297:5� 5 m=s. The last shot is also a
‘‘strange” one, as defined above, and we do not include it in the
averaging process. This set of data is certainly of excellent quality,
with a very small variation of the inferred Vbl values, enhancing
our claim that the simple model of Recht and Ipson (1963) is accu-
rate enough. The same conclusion holds for the results of Forrestal
et al. (1987) (Table 8) where, except for the highest impact veloc-
ity, all the inferred ballistic limit velocities fall in the range of
Vbl ¼ 235� 7:5 m=s. In contrast, the third set of experiments (Ta-
ble 9), from Ref (Rosenberg and Forrestal, 1988), is very problem-
atic, to say the least. Out of the eight shots above the ballistic
limit, only the first four result in Vbl values which are within the
permitted range of 327–383 m/s. Moreover, Vbl from these four
shots span a very large range between 318 and 341 m/s. To our
best understanding this is the result of large error bars on both
V0 and Vr in these shots, which were actually performed by one
of us (Z.R.), so he has no one else to blame. It is important to com-
pare these sets of experiments in order to demonstrate the vari-
ability in the quality of published data. One can also calculate
the effective resisting stresses for the experiments in (Piekutowski
et al., 1996; Forrestal et al., 1987) by using the average values for
Vbl, as given above. Using Eq. (7) with the corresponding values
for Leff , H and Vbl, we get rr=1.046 GPa for the plates in (Piekutow-
ski et al., 1996) with H/D = 2.04, and rr=1.19 GPa for plates in
(Forrestal et al., 1987) with H/D = 2.66. These rr values agree with
those we found in our simulations for the conical projectiles perfo-
rating 0.4 GPa aluminum plates (see Table 3) because the strength
of the 6061-T651 alloy is very close to 0.4 GPa.

4.4. More observations regarding perforation experiments

The simple relation (Eq. (4)) between the three relevant veloci-
ties V0;Vr and Vbl was justified by both our simulations, and the
experimental data which we analyzed here. In the present section
we wish to highlight some general observations, which may be
useful for the cases we discussed here, namely, ductile targets per-
forated by sharp projectiles. The first thing is to realize that V r is
always smaller than V0 and that it must approach this value
asymptotically at high impact velocities. This may seem as a trivial
statement but one should note that it is true only for targets which
are penetrated by the ductile hole enlargement process. Other per-
foration mechanisms, such as plug formation, do not show this
Table 8
The experimental results from Forrestal et al. (1987) and the inferred Vblvalues.

V0 (m/s) 213 254 272 315 344 537 691
V r (m/s) 0 80 141 207 258 479 640
Vbl (m/s) – 241 232.6 237.4 227.5 242.7 260.5

Table 9
The experimental results from Rosenberg and Forrestal (1988) and the inferred Vbl

values.

V0 (m/s) 327 383 419 515 886 1394 1442 1516 1575
V r (m/s) 0 175 260 399 827 1334 1397 1445 1509
Vbl (m/s) – 340.7 318.6 325.6 318 404 357.5 458 451
behavior since the kinetic energy of the plug has to be taken into
account. Thus, we expect that the V r ¼ V rðV0Þ curves for those
cases should keep a certain distance from the line V r ¼ V0, rather
than to merge towards it. This difference between the two mecha-
nisms can be clearly seen in the experimental results of Borvik
et al. (2002) who measured the residual velocities of both blunt
and conical-nosed rigid projectiles perforating the same steel
targets.

Another point to note is that by differentiating equation (4) we
get the slope of the V r vs.V0 curve as dV r=dV0 ¼ V0=V r. Thus, as V r

approaches zero the slope is infinite and the curve is perpendicular
to the V0 axis at Vbl. This means that small changes in impact
velocity, just above the ballistic limit, can result in large changes
in the residual velocities. With increasing impact velocities the
slope of the curve decreases, reaching a value of one in an asymp-
totic manner. As far as the sensitivity to experimental errors is con-
cerned we have from Eq. (4)

dVbl ¼ ðV0=VblÞdV0 þ ðV r=VblÞdV r ð8Þ

where the d signs stand for the errors in the corresponding vari-
ables. This equation means that the higher the impact velocity (with
correspondingly higher residual velocity) the larger is the error in
Vbl from Eq. (4). This is probably the main reason for all those
‘‘strange” results at the highest impact velocities in the tables
above. This increased sensitivity of Vbl to the errors in V0 and V r,
at high impact velocities, is due to the factors V0=Vbl and V r=Vbl

which multiply dV0 and dV r in Eq. (8). Thus, the importance of mea-
surement accuracy is enhanced at the high velocity range. Another
example for this issue is given in the data of Borvik et al. (2002) for
conical-nosed steel projectiles, with a diameter of 20 mm, perforat-
ing 12 mm Weldox 460E steel plates. The two shots at
V0 ¼ 300:3 m=s ðV r ¼ 110:3 m=sÞ and V0 ¼ 280:9 m=s ðV r ¼ 0Þ are
used by the authors to determine the ballistic limit velocity at
Vbl ¼ 290:6 m=s. However, using Eq. (4) it turns out that, except
for the highest impact velocity ðV0 ¼ 405:7 m=sÞ, the inferred Vbl

is closer to 275 m/s. This value is very close to the highest impact
velocity for which the projectile did not penetrate the target
ðV0 ¼ 280:9 m=sÞ. The small difference between these two values
is certainly within the error bars on these measurements, as we dis-
cussed above.

The most important issue here is that all the physics of the per-
foration process lies in the determination of Vbl. This is easily seen
by rewriting Eq. (4) in its normalized form, as suggested in (Recht
and Ipson, 1963):

V r=Vbl ¼ ðV0=VblÞ2 � 1
h i0:5

ð9Þ

Thus, a single normalized curve should be adequate to represent all
perforation experiments, with sharp nosed projectiles and ductile
targets. The only difference between various sets of data is in the
value of Vbl which is unique to each projectile/target pair. The obvi-
ous consequence of this result is that there is no need to perform a
lot of perforation experiments in order to determine the V r ¼ V rðV0Þ
curve for a given target/projectile combination. Rather, the ballistic
limit should be accurately determined and the rest of the curve, at
high velocities, can be safely drawn through this normalized rela-
tion. For the determination of Vbl; it is enough, in principle, to per-
form a single experiment in which V0 and V r are accurately
measured, and then use Eq. (4) to determine Vbl. We have seen that
at impact velocities near Vbl we expect large changes in V r, while at
high impact velocities the errors in the measured V0 and V r, may re-
sult in large errors in the inferred Vbl. Thus, the best way to deter-
mine Vbl, from a single experiment, is to perform it with an impact
velocity of (1.5–2) Vbl. In order to demonstrate the validity of this
normalized scheme we show in Fig. 7 all the data from Forrestal
et al. (1990), for the conical-nosed tungsten projectiles perforating
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the three aluminum plates (5083-H131) with the different thick-
nesses. We also added the data from Piekutowski et al. (1996)
and Forrestal et al. (1987) for the ogive and conical-nosed rods per-
forating the 6061 and T651 aluminum plates. The values for Vbl are
those we inferred above, through the averaging process (disregard-
ing the ‘‘strange” results). Still, even the experimental results from
these ‘‘strange” shots are included in Fig. 7. It is quite clear from this
figure that all the data, including the ‘‘strange” results, can indeed
be represented by the universal curve, with its normalized veloci-
ties, through Eq. (9).
5. A short parametric study of the effective resisting stress (rrÞ

5.1. The need for numerical simulations

As stated above, the only challenging scientific issue, in the per-
foration process of ductile plates, is to account for the value of Vbl

(or rrÞ, for a given projectile/target pair, through an analytical
model. A good way to avoid the complexity of analytical models,
and still learn a lot about a given process, is to use numerical sim-
ulations where each parameter can be changed within a large
range, while holding the other parameters constant. In this section
we present such a numerical study which may help in building a
physically based analytical model for rr. Before describing the re-
sults of these simulations, we should note that the previous simu-
lations, as well as the experimental data, show that rr increases
from a value of about 2Y, for plates with H/D = 1, to about 4Y at
H/D = 10. This increase, as well as the asymptotic approach of rr

to Rt, at large thicknesses, are the main challenge to the modeler.
The result for the H/D = 1 plates is in excellent agreement with
early works by Bethe (1941) (from the days of W.W.II), who
worked on the terminal ballistics of armor plates. Another work
from those times was by Taylor (1948). Their main results were
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Fig. 7. Comparing the normalized results from Forrestal et al. (1990); Piekutowski
et al. (1996); Forrestal et al. (1987) with Eq. (7): (a) showing all the results and (b)
expanded view of the low velocity range.
summarized by Corbett et al. (1996) in terms of the work (W)
which is needed to expand a hole of the projectile’s radius (rpÞ,
in a ductile plate of thickness H, made of a material with strength
Y. The thickness of the plate in their analysis was the same as the
diameter of the projectile. The two models start from somewhat
different assumptions, concerning the state of the stress in the
plate (see Corbett et al. (1996)), which result in the following
expressions for this work:

W ¼ 2pr2
p � Y � H ¼ A � 2Y � H Bethe ð1941Þ ð10aÞ

W ¼ 1:33pr2
p � Y � H ¼ A � 1:33Y � H Taylor ð1948Þ ð10bÞ

where A ¼ pr2
p is the area of the hole. This means that the effective

stress, which acts on the projectile in this process, is equal to 2Y
according to Bethe’s model and to 1.33Y according to Taylor’s mod-
el. The value rr=2Y is very close to the values we already found for
H/D = 1, in both our simulations and the experiments cited above,
for aluminum plates. In the next sections we describe simulation re-
sults for other projectile/target pairs. As the density of the plate
does not enter into these equations our first goal was to check
whether the effective stresses depend on plate density.

5.2. Steel targets

The first set of simulations was performed with the same coni-
cal-nosed tungsten projectile impacting steel targets (with von-
Mises strength of 0.4 GPa). As before, we used H = 8.3, 12.7, 50.8,
76.2 and 100 mm thick plates. In addition we simulated the deep
penetration of this projectile into a semi-infinite target, at
V0 ¼ 800 m=s, in order to obtain the corresponding value of Rt.
The resulting constant deceleration, from this simulation, was
a = 4.76 � 10�3 mm/(ls)2. From Eq. (1) we get a value of
Rt ¼ 2:254 GPa, for this projectile/target combination. The residual
velocities for the finite plates are given in Table 10 together with
the inferred ballistic limit velocities for each simulation, as calcu-
lated by Eq. (4). Table 10 also lists the effective stresses (rrÞ for
these plates, as calculated from Eq. (7). As is clearly seen, the value
of rr for the 8.3mm plate (H/D = 1) is very close to 2Y, as for the
aluminum plate, and as expected by Bethe’s model, Eq. (10a). On
the other hand, the values of rr for the thicker steel plates are
higher than the corresponding values for the aluminum plates
(see Table 3). This is probably due to the higher Rt value of the
semi-infinite steel target (2.254 GPa) compared with that of the
aluminum (1.894 GPa). The rr values for different material should
approach their corresponding Rt value at large thicknesses. Thus,
our conclusion from this set of simulations is that the density of
the target does not play a very important role in determining its
effective resisting stress.

Another simulation was performed for an 8.3 mm steel plate (H/
D = 1), with strength of 0.8 GPa, perforated by the same conical-
nosed projectile. An impact velocity of 300 m/s resulted in a resid-
ual velocity of V r ¼ 184 m=s. These values give Vbl ¼ 237 m=s from
Eq. (4), and rr ¼ 1:6 GPa from Eq. (7), which is exactly twice the
yield strength of the plate. Thus, our limited number of simulations
Table 10
Simulation results for conical-nosed tungsten projectiles perforating the 0.4 GPa steel
plates.

H (mm) V0ðm=sÞ V r (m/s) Vbl ðm=sÞ rr ðGPaÞ

8.3 200 109 167.7 0.805
300 249 168.5

12.7 300 204.3 220 0.93
500 445.3 227

50.8 800 566.5 564.8 1.49
76.2 800 352 718.4 1.6
100 900 301 848 1.7
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support the analysis of Bethe (1941), namely, that rr=2Y for the
special case of H/D = 1.

5.3. Ogive-nosed projectiles

In order to learn something about the influence of the projec-
tile’s nose shape on the ballistic limit velocities, and the effective
stresses, we simulated an ogive-nosed tungsten projectiles,
8.3 mm in diameter, impacting the same aluminum plates (with
a strength of 0.4 GPa), at different velocities. We used a short ogive
(1.5CRH) in order to have a significantly different nose shape, com-
pared to the conical. This projectile has a total length of 30 mm and
an effective length of 25.9 mm. Table 11 lists the different values
for the impact and residual velocities, together with the inferred
ballistic limits and effective stresses, which were calculated as be-
fore. We also simulated the deep penetration of this ogive nosed
projectile impacting a semi-infinite aluminum target (with
strength of 0.4 GPa), at 800 m/s. The deceleration at deep penetra-
tion was 4.2 � 10�3 mm/ls2 which, from Eq. (1), results in a value
of Rt ¼ 2:01 GPa for this projectile/target combination.

As for the other cases, the value of rr for the 8.3 mm plate (H/
D = 1) is close to 2Y, for this ogive nosed projectile. For the thicker
plates we obtained rr values which are higher than the corre-
sponding values for the conical-nosed projectile, by 5–10% (see Ta-
ble 3), probably because of the higher Rt value for this ogive nosed
projectile. This may not seem a large difference but it certainly tells
us that the nose shape has some relevance to rr for plates with H/
D P 1.

5.4. Thin plates (H/D < 1)

In order to explore the limiting value of rr, for very thin plates,
we performed several simulations for 0.4 GPa steel plates, with
H=2, 4 and 8.3 mm perforated by the same conical-nosed tungsten
projectiles. These are very thin plates which can bend easily and
absorb more energy from the projectile by this bending as dis-
cussed by Woodward (1978). In order to check the effect of plate
bending we performed these simulations also with aluminum pro-
Table 11
Simulation results for ogive-nosed tungsten projectiles perforating the 0.4 GPa
aluminum plates.

H (mm) V0 (m/s) V r (m/s) Vbl (m/s) rr ðGPaÞ

8.3 200 103 171.5 0.82
300 248.6 167.9

12.7 300 204 220 0.94
500 448 222
800 767 227

50.8 600 253 544 1.42
800 583 548
1000 832 555

76.2 800 375.8 706 1.57
100 900 328 838 1.69

1100 708 841

Table 12
Simulation results for tungsten and aluminum conical-nosed projectiles perforating
thin steel plates.

Projectile H (mm) V0 (m/s) V r (m/s) Vbl(m/s) rr ðGPaÞ

Aluminum 2 200 101 173 0.52
4 300 107 280.2 0.68

400 284.5 281.2
8.3 500 241.6 437.8 0.8

Tungsten 2 200 188.2 67.7 0.54
4 300 279.1 109.9 0.71
8.3 200 109 167.7 0.8
jectiles. Table 12 summarizes the results of these simulations from
which we can clearly see that for thin plates (H/D < 1) the values of
rr/Y change quite appreciably with the H/D ratio. It is interesting to
note that the simulation of the aluminum projectile perforating the
8.3 mm thick steel plate resulted in rr=0.8 GPa which is exactly 2Y,
as for the tungsten projectile, and in line with Bethe’s model.

Finally, we show in Fig. 8 all our simulation results for rr as a
function of H/D, for the conical and ogive nosed projectiles perfo-
rating aluminum and steel targets. Fig. 8a gives the results for
plates with H/D P 1, while Fig. 8b shows the results for the thin
steel targets (H/D 6 1). One can clearly see in Fig. 8a that the effec-
tive stresses start from about rr=0.8 GPa (2Y), for H/D = 1, and in-
crease asymptotically towards their respective Rt values. In
Fig. 8b, for the thin plates, we see that the difference between
the results for tungsten and aluminum projectiles is quite small,
considering the large difference in their densities. We also note
that the values for rr are decreasing very steeply for thinner plates.
It would be very interesting to perform similar simulations for
much thinner targets in order to find the transition from ductile
hole enlargement to bending and dishing failure, as discussed by
Woodward (1978). However these simulations are more difficult
to perform and they are outside the scope of the present paper.
An interesting point to note here is that our results for rr/Y as a
function of H/D seem to extrapolate to a value near rr=Y ¼ 0:5
for diminishing plate thickness. This is exactly the value which
the model of Thomson (1955) predicts for the resisting stress in
a very thin plate. In conclusion, our simulations show a strong
dependence of rr on the thickness of the perforated plate, espe-
cially for thin plates with H/D 6 1.
5.5. An example for our model’s applicability

As a final demonstration for the usefulness of our approach we
wish to analyze the data of Borvik et al. (2004) which we already



4180 Z. Rosenberg, E. Dekel / International Journal of Solids and Structures 46 (2009) 4169–4180
mentioned earlier. These experiments were recently simulated in
(Borvik et al., 2009) and compared with the predictions from an
analytical model which is based on the dynamic cavity expansion
analysis. The agreement between experimental results for Vbl val-
ues and the model predictions is within 9–15%. We shall demon-
strate here that our simple approach agrees with the data of
(Borvik et al., 2004) to a much better extent. The flow stresses of
the different plates, as given in Figs. 2 and 3 in (Borvik et al.,
2009), are: Y = 0.5 GPa for the 15 mm plate, Y = 0.45 GPa for the
20 and 30 mm plates and Y = 0.4 GPa for the 25 mm plate. Consid-
ering the different H/D values for these plates we get from Fig. 8b
the following values rr= 1.8Y, 2Y, 2.15Y and 2.3Y for the 15 mm,
20 mm, 25 mm and 30 mm plates, respectively. Thus:
rr ¼ 0:9 GPa for the 15 and 20 mm plates, rr ¼ 0:86 GPa for the
25 mm plate and rr ¼ 1:035 GPa for the 30 mm plate. Using these
values in Eq. (7), together with the values of qp ¼ 7:85 g=cc and
Leff ¼ 78 mm, we finally get the following values: Vbl ¼ 210,
242.5, 265 and 318.5 m/s for the 15, 20, 25 and 30 mm plates,
respectively. The experimental results from (Borvik et al., 2004)
for Vbl are: Vbl ¼ 216:8� 2:2; 249� 3; 256:6� 7 and
309:7� 4:7 m=s for these plates, respectively. One can clearly see
that our predictions are in excellent agreement with the experi-
mental results, strongly enhancing the validity and usefulness of
our approach.

6. Concluding remarks

We presented a large number of 2D numerical simulations of
deep penetrations and plate perforations by sharp-nosed rigid pro-
jectiles. We focused our attention on the effects of the entrance
phase on the resisting stress, which a short projectile experiences
during its penetration into a semi-infinite target. We showed that
the influence of this phase is dominant at ordnance velocity range
(up to about 1.0 km/s) and that it diminishes only for penetration
depths which are about four to six times the projectile diameter.
For deeper penetrations we found that the force on the projectile
is constant, as in (Rosenberg and Dekel, 2009) for rigid long rods.
The second issue which we dealt with here is the perforation of
ductile targets by sharp nosed projectiles and long rods. We fol-
lowed the resisting stresses on these rigid sharp-nosed projectiles,
with the 2D numerical simulations. We showed that these stresses
are far from constant, due to the enhanced effect of the back free
surface of the plate. However, as demonstrated here, the simple
analysis of Recht and Ipson (1963) for the ballistic limit velocities,
applies for a large range of plate thicknesses and impact velocities.
Thus, a single normalized curve can be used for all sets of experi-
ments in order to account for the residual velocity in terms of
the impact and the ballistic limit velocities. The only difference be-
tween these sets is through the corresponding values of the ballis-
tic limit velocity. We also defined an effective resisting stress (rrÞ
which can be assigned to a given metallic plate which is perforated
by a sharp nosed projectile. This effective stress determines the
ballistic limit velocity of the given target/projectile pair and we
showed that it depends on both the strength of the plate and on
its normalized thickness (H/D). We conclude this paper by suggest-
ing that the main theoretical challenge, in the field of plate perfo-
ration, is to account for the dependence of this effective resisting
stress on both the compressive strength and thickness of the plate.
Once these relations are worked out analytically, the prediction of
Vbl, for any projectile/target combination, follows immediately
through the equations we derived here.
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