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a b s t r a c t

Neuronal migration and subsequent differentiation play critical roles for establishing functional neural
circuitry in the developing brain. However, the molecular mechanisms that regulate these processes are
poorly understood. Here, we show that microtubule actin crosslinking factor 1 (MACF1) determines
neuronal positioning by regulating microtubule dynamics and mediating GSK-3 signaling during brain
development. First, using MACF1 floxed allele mice and in utero gene manipulation, we find that MACF1
deletion suppresses migration of cortical pyramidal neurons and results in aberrant neuronal positioning
in the developing brain. The cell autonomous deficit in migration is associated with abnormal dynamics of
leading processes and centrosomes. Furthermore, microtubule stability is severely damaged in neurons
lacking MACF1, resulting in abnormal microtubule dynamics. Finally, MACF1 interacts with and mediates
GSK-3 signaling in developing neurons. Our findings establish a cellular mechanism underlying neuronal
migration and provide insights into the regulation of cytoskeleton dynamics in developing neurons.

& 2014 Elsevier Inc. All rights reserved.

Introduction

Excitatory pyramidal neurons are generated in the cortical
ventricular zone and migrate into the cortical plate alongside the
radial glial processes (Chanas-Sacre et al., 2000; Hartfuss et al.,
2001; Noctor et al., 2001; Rakic, 1972; Tan et al., 1998). Neuronal
migration determines the positioning of developing neurons into
cortical layers and is therefore important in generating lamina-
specific neural circuits. Once neurons reach their destination, they
further differentiate by creating extensive dendritic branching and
forming spines to establish functional connectivity (Jan and Jan,
2010). Thus, correct positioning of neurons are critical determi-
nants of neural circuit formation during brain development.
Accordingly, problems in neuron migration during development
cause brain malformations and are associated with a variety of
neurological diseases such as mental retardation, autism, and
schizophrenia (Gleeson and Walsh, 2000; Jan and Jan, 2010;
Kaufmann and Moser, 2000; Wegiel et al., 2010). However, the
molecular mechanisms of developing neuron migration are not
fully understood.

Microtubule actin crosslinking factor 1 (MACF1) is a protein
that belongs to the plakin family of cytoskeletal linker proteins

(Fuchs and Karakesisoglou, 2001; Jefferson et al., 2004; Kodama et
al., 2003; Roper et al., 2002). The protein bridges microtubules and
actins through its corresponding domains at N- and C-terminals.
Mutations in shot, the Drosophila homolog of MACF1, induce
abnormal neurite outgrowth and guidance (Gao et al., 1999; Jan
and Jan, 2001; Kolodziej et al., 1995; Lee et al., 2000a; Lee and Luo,
1999; Prokop et al., 1998). However, the functions and mechan-
isms of MACF1 in neuronal differentiation in the developing
mammalian brain have not been clearly determined. Interestingly,
MACF1 is identified as a part of an interactome of DISC1, a
schizophrenia and autism susceptibility factor (Camargo et al.,
2007). In a separate study, MACF1 is shown to be associated with
glycogen synthase kinase-3 (GSK-3) signaling (Wu et al., 2011). It is
noted that DISC1 and GSK-3 bind to each other and coordinate
neuronal migration in the developing brain (Ishizuka et al., 2011;
Singh et al., 2010). Thus, these findings suggest a potential inter-
play among MACF1, GSK-3, and DISC1 in neuronal development.
We hypothesize that MACF1 plays critical roles in neuronal
migration in the developing brain by interacting with GSK-3
signaling and controlling microtubule stability.

Developing cortical and hippocampal neurons in mice actively
migrate and differentiate between embryonic day 13 (E13) and 20.
MACF1 null mice die before E11 (Chen et al., 2006), precluding the
use of MACF1 null mice in the analysis of MACF1 in neuronal
migration and further differentiation. To investigate the functions
and mechanisms of MACF1 in neuronal development in vivo, we
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used conditional knockout strategies to target MACF1 specifically
in developing neurons. Here, we show that MACF regulates
pyramidal neuronal migration via microtubule dynamics and
GSK-3 signaling in the developing brain. Our findings demonstrate
the mechanisms of MACF1-regulated positioning of developing
pyramidal neurons.

Results

Neural expression of MACF1

To begin to explore the role of MACF1 in neuronal development,
we first assessed the expression patterns of MACF1 in the developing

Fig. 1. Expression of MACF1 in the developing cortex. (A) Top panels: Immunostaining for MACF1 showed that the protein was broadly expressed in the developing mouse
brain at E12.5. Notably, MACF1 was accumulated in the VZ where nestin-positive radial glial neural progenitors were present (arrow heads). Scale bar, 25 μm. Right three
panels are higher magnification images showing co-localization of MACF1 and nestin. Scale bar, 10 μm. Bottom panels: At E15.5 stage, higher expression of MACF1 was found
in the CP (stars), while the expression was reduced in radial glial progenitors at the VZ and the SVZ (arrow heads). Scale bar, 50 μm. Right three panels are higher
magnification images. (B) Top panels: MACF1 protein was present in MAP2-positive cortical neurons in the MZ at E12.5 (arrow heads). Scale bar, 25 μm. Bottom panels:MACF1
was strongly expressed in the neurons of the CP and the SP at E15.5 (stars). Scale bar, 50 μm. Right three columns represent higher magnification images of upper cortex
containing the MZ and PP (top), and the CP (bottom). Scale bar, 10 μm. MZ: marginal zone. PP: pre-plate. CP: cortical plate. SP: sub-plate. IZ: intermediate zone. SVZ:
subventricular zone. VZ: ventricular zone. (C) MACF1 is expressed in neurites and somas of cortical neurons. Cortical neurons from E14.5 mice were cultured and
immunostained with a MAP2 antibody. Scale bar, 50 μm. Right three panels are higher magnification images showing co-localization of MACF1 and MAP2. Scale bar, 25 μm.
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brain with immunohistochemistry. The antibody specificity was
determined by Western blotting using brain lysates from control
and MACF1 knockout mice (Supplemental Fig. 1). MACF1 was
broadly expressed in the developing cerebral cortex at E12.5, with
higher levels in the ventricular zone and upper cortical areas near
the marginal zone (Fig. 1A, top panels). Ventricular labeling was
associated with nestin-positive radial glial neural progenitors
(Fig. 1A, arrow heads). At E15.5, MACF1 expression at the ventricular
zone was reduced compared to the expression pattern at E12.5
(Fig. 1A, bottom panels, arrow heads). Instead, MACF1 levels were
higher in the cortical plate where postmitotic neurons were posi-
tioned (Fig. 1A, bottom panels, stars). The neuronal localization of
MACF1 in the cortical plate and the marginal zone was shown by
double immunostaining with a MAP2 antibody (Fig. 1B). At E12.5,
MACF1 was accumulated in the neurons at the marginal zone layer
(Fig. 1B, top panels, arrow heads). The expression was expanded
throughout the cortical plate by E15.5 (Fig. 1B, bottom panels, stars),
suggesting a role for MACF1 in neuronal differentiation. Immunos-
taining of cultured cortical neurons confirmed the neuronal expres-
sion of MACF1 (Fig. 1C). MACF1 proteins were found in cortical
neurites as well as somas.

Cell-autonomous role of MACF1 in positioning and migration of
cortical pyramidal neurons

To investigate potential roles of MACF1 in neuron development,
we first examined radial neuron migration in the developing cortex
using an shRNA to MACF1 (shMACF1). The knockdown efficiency of
shMACF1 was checked by measuring the level of endogenous MACF1
in cultured cortical cells (Supplemental Fig. 2A). We used an in utero
electroporation of shMACF1 to delete MACF1 transcripts and trace
radial migration of newly-born neurons (Supplemental Fig. 2B).
shMACF1 encodes GFP in a separate reading frame of an shRNA
sequence, thus GFP expression marks the cells transfected with the
shRNA. We electroporated in utero either a plasmid encoding non-
silencing shRNA (control) or an shMACF1 into the ventricles of E14.5
brains. Then, we sacrificed the mice and collected brain samples at
P10. The electroporation targeted similar regions of the cerebral
cortex in control and shMACF1-injected brains (Supplemental
Fig. 2C). Most GFP-labeled neurons were found in the cortical plate
in control brain sections (Fig. 2A and B). However, neurons expres-
sing shMACF1 were localized throughout the cerebral cortex with the
highest numbers within ventricular/subventricular zones and upper
layers of the cortical plate. At E18.5, GFP-labeled neurons were
mostly retained within the ventricular/subventricular zones
(Supplemental Fig. 2D). These results suggest a critical role of MACF1
in radial neuronal migration during brain development.

Electroporation of shRNA into the brain ventricles targets radial
glial neural progenitors at the ventricular zone. Thus, there is a
possibility that the migration defects with shMACF1 might indir-
ectly result from disrupted regulation of radial neural progenitors.
Furthermore, it is difficult to assess cell autonomous effects of
some genes as the radial glial scaffold contributes to neuronal
migration in the developing brain. Defects in the radial platform
could secondarily influence migration phenotypes. These issues
need to be resolved to define the role of MACF1 in neuronal
migration. Thus, we deleted MACF1 in developing neurons by
performing in utero electroporation of E14.5 MACF1loxP/loxP mice
with Dcx-cre-iGFP plasmid. The Dcx-cre-iGFP construct expresses
Cre recombinase only in neuronal populations under the Dcx
promoter, not in radial neural progenitors (Franco et al., 2011).
Thus, MACF1 is knocked out selectively in neuronal population
transfected with DCX-cre-iGFP. After electroporation, we collected
brain tissues at P0 and P10 and assessed neuron migration
patterns. Control (MACF1loxP/þ ; Dcx-cre-iGFP) neurons were posi-
tioned normally in the cortical plate at P0 (Fig. 2C and D). In

striking contrast, MACF1loxP/loxP; Dcx-cre-iGFP neurons were mostly
found in the ventricular/subventricular zone. At P10 stage after the
electroporation, MACF1loxP/loxP; Dcx-cre-iGFP neurons were found
throughout the cerebral cortex while control neurons were con-
fined in the cortical plate (Fig. 2E and F, top panels). The increased
proportion of MACF1-deleted neurons in the cortical plate at P10
compared to P0 samples suggests a migration delay (Fig. 2D and F).
It is important to note that only 5% of MACF1loxP/loxP; DCX-cre-iGFP
neurons were found in the ventricular/subventricular zone
whereas approximately 35% shMACF1-transfected cells were loca-
lized in the area at P10 stage, indicating the importance of neuron-
specific gene deletion.

Next, we confirmed these results with another strategy to
delete MACF1 in neuronal populations in vivo using a Nex-cre
mouse line (Goebbels et al., 2006; Wu et al., 2005). The Nex-cre
line expresses Cre recombinase exclusively in neurons but not in
dividing neural progenitors in the developing cerebral cortex. We
generated control (MACF1loxP/þ; Nex-cre) and mutant (MACF1loxP/loxP;
Nex-cre) mice. Western blots showed that MACF1 was eliminated in
the mutant brain (Supplemental Fig. 3). Then, we examined Brn1-
positive upper layer neurons and Tbr1-positive deeper layer neu-
rons in control and MACF1loxP/loxP; Nex-cre brains (Fig. 3). Brn1-
positive neurons in MACF1loxP/loxP; Nex-cre mice were found in
both higher bins (3, 4) and lower bins (1, 2) of the cortical plate
while control Brn1-positive neurons were relatively accumulated
in higher bins (Fig. 3A and B). Similar patterns were observed
with Tbr1 immunostaining. Tbr1-positive neurons in MACF1loxP/loxP;
Nex-cre mice were spread out evenly throughout the cortical bins
compared to controls (Fig. 3C and D). Notably, both Brn1- and
Tbr1-positive neurons were appeared to be abnormally spaced in
the MACF1loxP/loxP; Nex-cre cortical plate (arrows), suggesting that
MACF1 plays a role in neuronal contact and organization. These
phenotypes of neuron positioning in MACF1loxP/loxP; Nex-cre brains
are not associated with cell death because there was no change
in the level of cleaved caspase-3 in the mutant brain tissues
(Supplemental Fig. 4).

We examined movement of migrating neurons in control and
MACF1-deleted neurons using time-lapse imaging on cortical slice
cultures. Abnormal positioning of cortical neurons found above
(Figs. 2 and 3) still raises a possibility that MACF1-deleted neurons
might migrate at rates similar to control neurons, but forward-
and-backward movement could lead to the aberrant positioning.
Time-lapse imaging can clarify this issue. Control neurons devel-
oped a leading process toward the cortical plate and the soma
moved following the process (Fig. 4A and B). In contrast, the
movement of MACF1-deficient neurons was minimal, indicating
MACF1 is required for neuron migration in the developing brain.
Taken together, our results demonstrate that MACF1 cell-
autonomously determines the positions of cortical pyramidal
neurons by controlling neuronal migration.

MACF1 functions in cortical neuron migration strongly suggest
that the protein carries similar roles during hippocampal develop-
ment. To test this idea, we manipulated genes in the developing
hippocampus using an in utero electroporation with a modified
orientation of the electrodes (Supplemental Fig. 5A). Using this
method, we targeted Dcx-cre-iGFP into the lower part of the medial
cortical region around the cortical hem at E14.5, which forms
hippocampus at later developmental stages (Grove and Tole, 1999;
Grove et al., 1998; Lee et al., 2000b; Mangale et al., 2008; Monuki et
al., 2001). Control hippocampal neurons (MACF1loxP/þ ; Dcx-cre-iGFP)
were found exclusively within the pyramidal layer of the hippocam-
pus at P10 (Supplemental Fig. 5B and C). However, MACF1loxP/loxP;
Dcx-cre-iGFP neurons were mostly located in the alveus and oriens
layers that are supposed to contain axons and basal dendrites of
pyramidal neurons in a normal hippocampus. The proportion of
MACF1-deleted cells in the pyramidal layer was sharply decreased,
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Fig. 2. MACF1 regulates radial neuron migration in the developing brain. (A) shRNA-mediated MACF1 deletion induced abnormal localization of electroporated cells in the
brain. E14.5 mouse brains were electroporated in utero with non-silencing shRNA (control) or shMACF1 construct. shRNAs encode GFP in a separate reading frame for a
labeling purpose. The electroporated mice were then sacrificed at age P10 and the brain samples were collected. GFP-positive cells were visualized in the lateral cerebral
cortex. Scale bar: 50 μm. (B) Quantification of neuron positions throughout the cerebral cortex. n¼5 mice for each condition; cell counts¼3605 cells for control and 3912
cells for shMACF1. Statistical significance was determined by multiple t-tests with Bonferonni correction test. Data shown are mean7SEM. Stars indicate significant
difference when compared with controls. npo0.05, nnpo0.01, nnnpo0.001. (C) Neuron-specific deletion of MACF1 leads to abnormal neuron migration in the developing
cerebral cortex. Control (MACF1loxP/þ) or MACF1loxP/loxP embryos were electroporated in utero with Dcx-cre-iGFP at E14.5 to target radially-migrating neurons. The
electroporated brains were collected at P0 and neurons expressing GFP were visualized in the lateral cerebral cortex. Scale bar: 50 μm. (D) Quantification of neuron
positioning in the brain. Control: MACF1loxP/þ; Dcx-cre-iGFP. KO: MACF1loxP/loxP; Dcx-cre-iGFP. n¼5 mice for each condition; cell counts¼2983 cells for control and 3318 cells
for KO. Statistical significance was determined by multiple t-tests with Bonferonni correction test. npo0.05, nnpo0.01, nnnpo0.001. (E) Same experiments were performed
as (C), but brain samples were collected at P10 to examine postnatal migration patterns. Scale bar: 50 μm. (F) Quantification of (E). Positioning of GFP-positive neurons in the
lateral cortex. Control: MACF1loxP/þ ; Dcx-cre-iGFP. KO: MACF1loxP/loxP; Dcx-cre-iGFP. n¼5 mice for each condition; cell counts¼2776 cells for control and 2454 cells for KO.
Statistical significance was determined by multiple t-tests with Bonferonni correction test. npo0.05, nnpo0.01, nnnpo0.001.

M. Ka et al. / Developmental Biology 395 (2014) 4–18 7



compared to controls. These findings indicate MACF1 regulates the
placement of hippocampal pyramidal neurons.

Elimination of MACF1 disrupts the formation of leading processes

Extension of a leading process is important for neuronal migra-
tion in the cerebral cortex because somal movement is coupled to
specific dynamics of leading processes. Migrating neurons first
extend a leading process, and then the soma translocates into the
leading process (Marin et al., 2010). Thus, we investigated leading
process development in MACF1-deficient neurons. Most control
neurons formed a single leading process which was aligned vertically
(Fig. 5A). However, MACF1-deleted neurons often developed short
multiple leading processes. The lengths of total and primary leading
processes were decreased in MACF1-deficient neurons, while the
number of processes was increased (Fig. 5B). Furthermore, we
examined the dynamics of leading process by measuring angles

between a leading process and the midline of the cell by live-cell
imaging. Control leading process showed small differences in angle
changes (Fig. 5C–E). However, leading processes of MACF1-deleted
neurons were actively swinging around the midline of the cells.
These results revealed an important role of MACF1 in leading process
morphogenesis and dynamics.

MACF1 regulates centrosome movement in migrating neurons

Centrosomes are crucial for coordinating neuronal migration
(Kuijpers and Hoogenraad, 2011; Sakakibara et al., 2014). Centro-
somes in a migrating neuron orient and move toward the tip of
leading process, and the nucleus follows the movement. We
examined whether MACF1 plays a role in centrosome dynamics
in radially migrating neurons. We electroporated a plasmid
(dsRed-cent2) encoding Centrin-2, a centrosome marker, tagged
with a red fluorescent protein into the developing brain in utero.

Fig. 3. Neuronal placement in MACF1loxP/loxP; Nex-cre brains. (A) MACF1 deletion disrupted cortical neuron placement in the developing brain. Brn1 immunostaining of P10
control (MACF1loxP/þ ; Nex-cre) and MACF1loxP/loxP; Nex-cre brains. Top panels: The distinct localization pattern of Brn1-positive neurons was not seen in MACF1loxP/loxP; Nex-cre
brain sections. Cells were counterstained by DAPI. Scale bar: 50 μm. Bottom panels: Higher magnification images. Arrows indicate noticeable empty spaces. Scale bar: 10 μm.
(B) Quantification of the positioning patterns of Brn1-positive neurons in the cortical plate. The graph indicates the distribution of Tbr1-positive neurons in the 4 bins
dividing the thickness of the cortical plate as indicated in (A) in each genotype. Brn1-positive neurons were distributed relatively evenly in the cortical plate of MACF1-
deficient brains while they were relatively accumulated in higher bins in controls. Control: MACF1loxP/þ; Nex-cre. KO: MACF1loxP/loxP; Nex-cre. n¼5 mice for each condition;
cell counts¼11,878 cells for control and 10,266 cells for KO. Statistical significance was determined by multiple t-tests with Bonferonni correction test. npo0.05, nnpo0.01,
nnnpo0.001. (C) Tbr1 immunostaining patterns of control and MACF1-deficient samples. Top panels: Brain sections from P10 control and MACF1loxP/loxP; Nex-cre mice were
immunostained with Tbr1 antibody. Scale bar: 50 μm. Bottom panels: Higher magnification images. Arrows indicate noticeable empty spaces. Scale bar: 10 μm. (D) The
distribution of Tbr1-positive neurons was quantified. Control: MACF1loxP/þ ; Nex-cre. KO: MACF1loxP/loxP; Nex-cre. n¼5 mice for each condition; cell counts¼16,724 cells for
control and 14,935 cells for KO. Statistical significance was determined by multiple t-tests with Bonferonni correction test. npo0.05, nnpo0.01, nnnpo0.001.
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Then, we assessed the location of centrosomes in control and
MACF1-deficient brains. Fig. 6A shows migrating neurons expres-
sing dsRed-cent2. The locations of centrosomes in control neurons
varied along the leading processes (Fig. 6A). In contrast, most
centrosomes in MACF1-deficient neurons were localized close to
somas. The distances between centrosomes and nuclei of MACF1-
deficient neurons mostly ranged from 1 to 2 μm while control
neurons showed wider distribution patterns (Fig. 6B). These
results revealed a novel function of MACF1, i.e. a determinant of
centrosome movement in migrating neurons. Along with the
results presented in Fig. 5, these data suggest that migrating
neurons require MACF1 activity to properly coordinate dynamics
of leading process development and centrosomal movement.

MACF1 controls microtubule stability and dynamics in cortical
neurons

Cytoskeletal components regulate the migration of developing
neurons. This raises a question of whether MACF1 plays roles in
microtubule dynamics in developing neurons. Thus, we assessed
microtubule stability in control and MACF1-deleted neurons. First,
we examined the levels of total and acetylated-tubulin by immu-
nostaining of E14.5 control and MACF1loxP/loxP; Nex-cre brain tissues.
When acetylated, microtubules are stabilized (Westermann and
Weber, 2003). The level of acetylated-tubulin was decreased in
MACF1loxP/loxP; Nex-cre brains compared to control samples while
the level of total tubulin was not changed (Fig. 7A). Western blotting
confirmed the immunostaining results (Fig. 7B and C).

Next, we examined microtubule dynamics by tracing cellular
microtubule structures by transfecting control and MACF1loxP/loxP;
Nex-cre neurons with a plasmid construct encoding EMTB-3XGFP.
Expression of EMTB-3XGFP construct labels polymerized micro-
tubules (Miller and Bement, 2009). The extent of microtubule
rearrangement and stability can be measured by comparing
microtubule cytoskeleton from adjacent time points of observation.
Dynamically unstable microtubule cytoskeletons continuously

remodel their structures. Thus, the levels of overlap of microtubule
cytoskeletons between neighboring time points indicate the
extent of stability and dynamic changes in microtubule cytoske-
leton (Reilein et al., 2005; Yokota et al., 2009). We visualized
EMTB-3XGFP expression patterns with time-lapse imaging. Images
were taken at 2.5 min intervals, and the images of adjacent time
frames were superimposed to measure microtubule stability.
Microtubules in control neurons were relatively stable within the
time frames (Fig. 7D and E). However, microtubules in MACF1-
deficient neurons frequently changed their structures within the
short time frames. Additionally, we traced microtubules at neurite
tips. Microtubules at the tip of MACF1-deleted neurites underwent
more dynamics of polymerization and depolymerization within
the defined time compared to microtubules in control cells (Fig. 7F
and G). These findings demonstrate that MACF1 controls micro-
tubule stability in the developing neurons and suggest that
MACF1-mediated regulation of microtubule stability contributes
to neuronal migration and differentiation.

Association of MACF1 with GSK-3 signaling in cortical neuron
migration

MACF1 is implicated in GKS-3 signaling in skin stem cells (Wu
et al., 2011), and GSK-3 is shown to regulate cortical placement
and radial migration of pyramidal neurons (Asada and Sanada,
2010; Yokota et al., 2009). We wondered whether MACF1 interacts
with GSK-3 in the developing brain. E14.5 brain lysates were
coimmunoprecipitated with GSK-3β or MACF1 antibody, and
subsequently immunoblotted with the antibodies. We found that
MACF1 was indeed physically bound to GSK-3 in the developing
brain (Fig. 8A). Interestingly, a recent study showed that MACF1
has potential GSK-3 phosphorylation target motifs (Wu et al.,
2011). Thus, we assessed the levels of phosphorylated MACF1
in wild type control and GSK-3 knockout brain samples. Phos-
phorylation of MACF1 was suppressed in GSK-3 knockout brain
lysates (Fig. 8B) indicating GSK-3 phosphorylates MACF1. When

Fig. 4. Time-lapse imaging of MACF1-deleted neurons. (A) MACF1 deletion suppressed radial neuron migration. E14.5 mouse brains were electroporated in uterowith a non-
silencing control or shMACF1. After two days, brains were collected and subjected to slice cultures. Then, radial movement of migrating neurons in the slices was traced by
using fluorescence live-cell imaging. (B) Neuron migration was quantified. Top graphs: The somal movements were traced in control and MACF1-deficient neurons. Each
colored line represents the movement of each neuron. Bottom graph: Migration distances per hour were measured. n¼21 cells from 3 mice for control, and 20 cells from
3 mice for shMACF1. Statistical significance was determined by two-tailed Student’s t-test. nnnpo0.001.
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Fig. 5. Abnormal morphogenesis of leading processes in MACF1-deficient migrating neurons. (A) MACF1 deletion induced multiple shorter leading processes in radially
migrating neurons. Left panels: A construct encoding either a GFP (control) or shMACF1 was electroporated in utero into E14.5 embryos. The electroporated brains were
collected at E16.5 and migrating neurons expressing GFP were visualized. Right panels: Representative control and shMACF1-expressing neurons with their leading
processes. (B) Quantification of lengths and numbers of leading processes in control and MACF1-deficient neurons. MACF1-deficient neurons exhibited decreased lengths,
but increased numbers of leading processes. n¼56 cells from 5 mice for control, and 61 cells from 5 mice for shMACF1. Statistical significance was determined by two-tailed
Student’s t-test. nnnpo0.001. (C) MACF1-deficient neurons did not maintain directionality of leading processes. E14.5 mouse brains were electroporated with a GFP construct
or shMACF1. Brain slices were prepared two days later and cultured for examining movement of leading processes with live-cell imaging. Dashed white lines indicate vertical
midlines of migrating neurons. Dashed red lines follow leading processes and show the directionality of the processes. MACF1-deficient neurons changed the leading process
direction noticeably more than controls. (D) Graphs indicate the representative tracings of the directional movement of the leading processes in control (top graph) and
MACF1-deficient cells (bottom graph). The angles between white lines and red lines shown in (C) were measured every hour. Each colored line represents the changes of
leading process angles in each neuron. (E) Quantification of leading process directionality. Changes in the leading process angles were quantified at each time point (top
graph), and the angle changes per hour were calculated (bottom graph). n¼20 cells from 3 mice for each condition. Statistical significance was determined by multiple t-tests
with Bonferonni correction test (top graph) or by two-tailed Student’s t-test (bottom graph). npo0.05, nnPo0.01, nnnpo0.001.
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phosphorylated by GSK-3, MACF1 is inactivated in skin cells (Wu
et al., 2011), suggesting a potential interplay between GSK-3 and
MACF1 in neuronal migration. Thus, we examined the role of GSK-
3 phosphorylation of MACF1 in migrating neurons by electropor-
ating a control GFP, a constitutively active GSK-3β (ca-GSK-3β), or
ca-GSK-3β and MACF1 S:A in utero into the developing brain. There
are MACF1 plasmid constructs containing point mutations that
convert GSK-3 phosphorylation sites to a kinase-refractile version
harboring Ser/Ala mutations (MACF1 S:A). Expression of ca-GSK-
3β suppressed radial neuron migration (Fig. 8C and D). Impor-
tantly, co-expression of MACF1 S:A partially rescued the inhibitory

effects of ca-GSK-3β in radial neuronal migration. These findings
suggest that GSK-3-mediated phosphorylation is an important
mechanism for MACF1 function in neuron migration.

Discussion

Here, we have defined the role and mechanisms of MACF1 in
pyramidal neuronal migration in the mammalian developing
brain. Inactivation of MACF1 gene leads to disrupted migration
of cortical and hippocampal pyramidal neurons, and subsequent

Fig. 6. Elimination of MACF1 leads to disrupted positions of centrosomes. (A) Centrosomes were localized closer to somas in MACF1-deleted neurons compared to control
cells. Left panels: E14.5 mouse were electroporated with either a GFP (control) and dsRed-cent2 constructs or shMACF1 and dsRed-cent2 constructs. Brain samples were
collected two days later and red-fluorescent centrin 2 was visualized within GFP-positive cells. Arrows indicate dsRed-cent2-positive centrosomes. Cells were counterstained
by DAPI. Right panels: Same images as left panels. DAPI-stained nuclei were marked with white ovals. Red lines indicate distances between centrosomes and nuclei. (B) The
distances shown in right panels of (A) were quantified. Each dot represents the distance in a cell. n¼75 cells from 5 mice for each condition.
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Fig. 7. Deletion of MACF1 disrupt microtubule stability. (A) Microtubule stability was reduced in MACF1loxP/loxP; Nex-cre brains. Brain sections of control (MACF1loxP/þ; Nex-
cre) and MACF1loxP/loxP; Nex-cre mice at E14.5 were immunostained with an α-tubulin (top panels) or an acetylated-tubulin antibody (bottom panels). Scale bar: 50 μm.
(B) Western blotting was performed to measure levels of α-tubulin or acetylated-tubulin using E14.5 control and MACF1loxP/loxP; Nex-cre brain lysates. Control: MACF1loxP/þ;
Nex-cre. KO: MACF1loxP/loxP; Nex-cre. (C) The levels of tubulins as shown in (B) were quantified. Data were shown as relative changes vs. control. n¼3 independent
experiments using 3 mice for each condition. Statistical significance was determined by two-tailed Student’s t-test. nnnpo0.001. (D) MACF1-deleted neurons showed faster
dynamics of microtubule structures. A plasmid encoding EMTB-3XGFP was transfected into control and MACF1loxP/loxP; Nex-cre neurons. Then, microtubule structures labeled
by EMTB-3XGFP were traced by live-cell imaging at 2.5 min intervals. Images from adjacent time intervals were superimposed to assess the structural changes of
microtubule cytoskeleton between different time points of observation. The more overlap of microtubule cytoskeleton between different time points indicates the more
stability of microtubules and less overall dynamic changes in microtubule structures. (E) Microtubule stability index was calculated as indicated in (D). Data were shown as
relative changes vs. control. Control: MACF1loxP/þ; Nex-cre. KO: MACF1loxP/loxP; Nex-cre. n¼30 cells from 5 mice for each condition. Statistical significance was determined by
two-tailed Student’s t-test. nnnpo0.001. (F) Microtubule polymerization and depolymerization were traced at neurite tips after EMTB-3XGFP transfection into control and
MACF1loxP/loxP; Nex-cre neurons. Neurons labeled with EMTB-3XGFP were imaged at 1 min intervals. Distances between the neurite tip (arrows) and the initial elongation
point (red arrow heads) were assessed. (G) Quantification of (F). Top graph: Each line represents a neuron. Control: MACF1loxP/þ; Nex-cre. KO: MACF1loxP/loxP; Nex-cre. n¼20
cells from 5 mice for each condition. Bottom graph: Distances of neurite tip movement per minute were quantified. Statistical significance was determined by two-tailed
Student’s t-test. nnnpo0.001.
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mis-positioning in neuronal layers. The defective migration in
MACF1-deficient neurons is caused by unstable microtubules and
static centrosomes. Furthermore, MACF1 mediates GSK-3 signaling
for correct positioning of migrating neurons.

MACF1 in pyramidal neuron migration in the developing brain

Studies have revealed that MACF1 is expressed in the nervous
system during development (Chen et al., 2006; Leung et al., 1999).

Consistently, we found MACF1 expression in the developing
cerebral cortex. A recent study reported that Tbr1- and Citp2-
positive cortical layers are partially mixed in MACF1 conditional
knockout brains induced by a Nestin-cre driver (Goryunov et al.,
2010), suggesting a potential role of MACF1 in cortical neuron
migration. However, the role of MACF1 in neuronal migration was
unclear in the previous study due to the use of the Nestin-cre
driver that expresses Cre recombinase in radial glial neural
progenitors at E9 (Tronche et al., 1999). Neural progenitors mainly

Fig. 8. MACF1 interacts with GSK-3 signaling in the developing brain. (A) MACF1 bound to GSK-3. E14.5 brain lysates were immunoprecipitated with a MACF1 antibody and
subsequently subjected to Western blotting using either a GSK-3β or a MACF1 antibody. (B) GSK-3 deletion inhibited phosphorylation of MACF1in the developing brain.
Phosphorylation of MACF1 was measured by Western blotting using brain lysates from control and GSK-3 knockout mice. (C) Suppression of GSK-3 phosphorylation of
MACF1 partially restored the inhibitory effects of GSK-3 in neuronal migration. E14.5 mice were electroporated in utero with a GFP, ca-GSK-3β-GFP, or ca-GSK-3β-GFP and
MACF1 S:A-GFP construct. Brain sections were prepared at P10 to assess neuronal positioning. The overexpression of ca-GSK-3β-GFP inhibited neuron migration. However,
the defective migration was partially rescued by co-overexpression of ca-GSK-3β-GFP with MACF1 S:A-GFP construct. Scale bar: 50 μm. (D) Quantification of (C). n¼5 mice
for each condition; cell counts¼1893 cells for control, 2026 cells for ca-GSK-3β, and 1807 cells for ca-GSK-3β⧸MACF1 S:A. Statistical significance was determined by one-way
ANOVA with Bonferonni correction test. npo0.05, nnPo0.01, nnnpo0.001.
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maintain their pools by self-renewal at early stages of develop-
ment and actively generate neurons by asymmetric division at
later stages (Fietz and Huttner, 2011; Gotz and Huttner, 2005;
Shitamukai and Matsuzaki, 2012). Thus, changes in neural pro-
genitor development such as defective neural progenitor self-
renewal, cell cycle progression, or neurogenesis can indirectly lead
to cortical neuron misplacement. Additionally, the mixed cortical
layers found in the study could be due to a delay in neural
progenitor fate determination. Furthermore, correct formation of
the radial glial scaffold is necessary for radial neuronal migration.
Migrating projection neurons in the developing cortex follow a
trajectory that is perpendicular to the ventricular surface, moving
alongside the radial glial scaffold (Hatten, 1999; Marin et al., 2010).
Abnormal formation of the radial glial scaffold due to defective
development of radial neural progenitors could result in neuronal
disorganization. In this regard, to define the cell-autonomous
effect of MACF1 in neuronal migration, it is important to eliminate
MACF1 selectively in migrating neurons, but not in neural pro-
genitors in the developing brain. In our study, we eliminated
MACF1 only in neuronal populations, but not in neural progenitors
using in utero electroporation with Dcx-cre-iGFP. We also analyzed
neuronal migration in MACF1loxP/loxP; Nex-cre brains in which
MACF1 is exclusively deleted in neurons of dorsal telencephalon.
Using these strategies, we conclusively showed that MACF1 is
required for migrating neurons to be positioned correctly in the
cortical plate. MACF1 deletion in migrating neurons mediated by
Dcx-cre-iGFP expression had no effects on radial glial scaffold
formation. Additionally, we observed that MACF1loxP/loxP; Nex-cre
brains develop radial glial fibers normally. Thus, the abnormal
migration phenotype induced by MACF1 deficiency appears to be
cell-autonomous. However, due to the timing of Nex-cre expres-
sion, we cannot exclude the possibility that radial glial platform
can influence neuronal migration and subsequent positioning non-
autonomously in MACF1-deficient brains. Although knocking
down of MACF1 suppresses radial migration of cortical neurons,
a substantial number of cells are still capable of positioning
normally in the cortex. This result suggests that MACF1 may be
necessary, but not be sufficient for neuronal migration. However,
the recombination efficiency of the MACF1 gene should also
be considered. Whether some neurons can truly migrate

independently of MACF1 or whether the normally-migrating
neurons represent a population of pyramidal neurons that still
express some MACF1 due to either late or incomplete deletion of
MACF1 remains to be determined.

For functional circuitry, developing hippocampal neurons must
migrate into the correct positions and differentiate appropriately.
Neuronal positioning and subsequent hippocampal development
are the main components of neural circuits and therefore are
considered to be important in learning and memory processes. We
found that MACF deletion suppressed integration of hippocampal
pyramidal neurons into appropriate cell layers. Our data demon-
strate the requirement of MACF1 for hippocampal neuron posi-
tioning and further differentiation in the developing hippocampus.

Cytoskeletal regulation by MACF1

We found that deletion of MACF1 reduces the levels of stable
microtubules and destabilizes polymerized microtubules in devel-
oping neurons. This microtubule instability results in excessive
dynamics in microtubule localization in MACF1-deficient neurons.
The relatively unstable leading processes of MACF1-deficient
migrating neurons may be attributed to the lack of MACF1
functions in microtubule stabilization. Likewise, the immobilized
centrosomes in MACF1-deleted migrating neurons also appear to
be caused by microtubule instability. Consistent with an important
function in mammalian cells, the role of MACF1 in maintaining
microtubule stability is conserved in non-mammalian systems too.
For example, mutations in the MACF1 gene cause a loss of stable
microtubule localization to the periphery of the zebrafish oocyte
(Gupta et al., 2010). A model of how centrosomes move in the
absence or presence of MACF1 is presented in Fig. 9A. MACF1
appears to stabilize microtubules along the leading process, which
allows leading process extension and centrosome movements
followed by somal translocation. Additionally, soma morphology
is more roundish in MACF1-deficient neurons, suggesting that
MACF1 functions more globally as a microtubule regulator than
just locally in centrosome positioning.

Shot organizes the microtubule network and promotes micro-
tubule assembly by forming a complex with the microtubule binding
proteins adenomatous polyposis coli (APC) and end-binding 1 (EB1)

Fig. 9. A model for a role of MACF1 in neuronal migration. (A) The regulation of neuron migration by MACF1. In control migrating neurons, MACF1 stabilizes polymerized
microtubules, which enables them to elongate single long leading process toward the pia in the developing brain. Then, centrosomes move forward to the tip of the leading
process, followed by somal translocation of migrating neurons. In contrast, MACF1 deletion renders instability of microtubules in leading processes and suppresses
elongation of the processes. Instead, MACF1-deficient neurons form multiple leading processes that have problems in maintaining directionality. Centrosomes also have no
movement, resulting in disrupted migration. (B) GSK-3 regulation of MACF1. Unphosphorylated MACF1 is required for the migration of pyramidal neurons in the developing
brain. However, when phosphorylated by GSK-3, MACF1 is inactivated, resulting in migration abnormalities.
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(Subramanian et al., 2003). Recently, APC and EB are shown to play
important roles in neuronal placement (Alves-Silva et al., 2012; Chen
et al., 2011; Mattie et al., 2010; Yokota et al., 2009). It will be
interesting to see whether MACF1 determines the localization of APC
and EB1 in mammalian neuronal cells. Along with previous findings,
our data strongly suggest that MACF1 plays an essential role in
neuronal migration via microtubule stabilization.

Interestingly, MACF1 contains EF-hand calcium-binding motif
at C-terminal (Jefferson et al., 2004; Roper et al., 2002). Calcium is
a ubiquitous second messenger and is important in the control of
neuronal migration and neurite development (Komuro and
Kumada, 2005; Zheng and Poo, 2007). Studies have shown that
EF-hand proteins such as MACF1, caltubin, and calmyrin1 regulate
cytoskeletal components through EF-hand motifs during neurite
outgrowth (Nejatbakhsh et al., 2011; Sanchez-Soriano et al., 2009;
Sobczak et al., 2011), suggesting potential roles of EF-hand motif in
MACF1 activity during neuronal development. Future studies
would address whether the actin-microtubule bridging property
of MACF1 is dependent on calcium binding in the EF-hand motif.

MACF1 in GSK-3 signaling

GSK-3, a major downstream of Wnt pathway, is involved in
neuronal migration in the developing cortex. Radial migration and
placement of cortical neurons were aberrant in GSK-3-deleted
brains (Yokota et al., 2010). A separate study showed that in utero
electroporation with active GSK-3β plasmid into cortical ventricu-
lar zone elicited neuronal migration defects (Asada and Sanada,
2010). MACF1 is associated with the canonical Wnt pathway. By
binding to the Wnt-mediated destruction complex, MACF1 mod-
ulates cellular β-catenin levels (Chen et al., 2006). GSK-3, a
primary mediator of Wnt signaling, is responsible for regulating
cellular β-catenin levels (Doble and Woodgett, 2003). These find-
ings suggest that MACF1 interacts with GSK-3 signaling. Indeed, a
recent study showed that GSK-3 phosphorylates C-terminal
domain of MACF1 and that the phosphorylation controls MACF1’s
microtubule-binding capacity and migration potential in skin stem
cells (Wu et al., 2011). Consistent with this, our study found that
GSK-3 physically binds to and phosphorylates MACF1. Further-
more, overexpression of MACF1 S:A partially rescued ca-GSK-3
effects in the developing brain. Thus, MACF1 phosphorylation by
GSK-3 appears to inhibit its role in neuronal migration (Fig. 9B).
These findings suggest MACF1 is a downstream target of GSK-3
signaling in migrating neurons.

GSK-3 regulates centrosome reorientation and microtubule
spindle formation during cell division (Cheng et al., 2008; Izumi
et al., 2008; Kim and Snider, 2011; Wakefield et al., 2003).
Phospho-GSK-3 (serine 9; inactive GSK-3) is abundant at the
centrosome and spindle microtubules (Wakefield et al., 2003),
suggesting its role in stabilization of microtubules in the cell. This
would allow centrosomes to be an important site of microtubule
growth. To the best of our knowledge, centrosome positioning in
GSK-3 knockout mice is not known. However, a mouse model that
generated by in utero electroporation of GSK-3beta mutant plas-
mid showed that GSK-3beta is required for centrosomal forward
movement in the leading process of migrating neurons (Asada and
Sanada, 2010). Overexpression of a GSK-3beta mutant plasmid that
cannot be phosphorylated at serine 9 leads to abnormal centro-
some positioning and leading process extension in migrating
neurons. Furthermore, microtubules at the leading process are
unstable in these neurons (Asada and Sanada, 2010). GSK-3 is well
known for transducing polarity signals into microtubule stabiliza-
tion (Hur and Zhou, 2010). GSK-3 can phosphorylate many micro-
tubule binding proteins such as APC, EB proteins, CLIP-associating
proteins, Tau, and collapsin response-associated proteins
(Akhmanova et al., 2001; Cole et al., 2004; Hur and Zhou, 2010;

Zumbrunn et al., 2001). Phosphorylation of these proteins by GSK-
3 inhibits their ability to bind to microtubules, thus destabilizing
microtubules (Akhmanova et al., 2001; Watanabe et al., 2009;
Zumbrunn et al., 2001). For example, binding of APC to the
microtubule is negatively regulated by GSK3-mediated phosphor-
ylation (Zhou et al., 2004; Zumbrunn et al., 2001). APC is required
for centrosomal movement and neuronal migration in the devel-
oping brain (Asada and Sanada, 2010). Like APC, MACF1 is
negatively regulated by GSK-3 (Wu et al., 2011). MACF1 appears
to mediate GSK-3 signal in microtubule stabilization during
neuronal migration. Thus, these findings suggest that GSK-3
regulation of microtubule binding proteins such as MACF1 is a
key mechanism of microtubule stabilization and neuronal migra-
tion during brain development.

Disc1, an autism and schizophrenia susceptibility factor, is well
known molecule for the migration control of excitatory and
inhibitory neurons in the developing cortex and the hippocampus
(Brandon et al., 2009; Kamiya et al., 2005; Steinecke et al., 2012;
Tomita et al., 2011). Importantly, MACF1 has been identified as an
interactome of Disc1 (Camargo et al., 2007). Furthermore, Disc1
interacts with GSK-3 in developing neural cells and the interaction
has been implicated in control of cortical neuronal migration
(Ishizuka et al., 2011; Singh et al., 2010). Our data provide evidence
for the interplay between MACF1 and GSK-3 in migrating neurons.
Interestingly, our results and previous studies have revealed that
MACF1, DSC1, and GSK-3 are involved in centrosome localization
and functions (Asada and Sanada, 2010; Kamiya et al., 2005). These
findings suggest that the interaction of DISC1/GSK-3/MACF1 coor-
dinately plays critical roles in cortical neuron migration and
neuronal connectivity. Given that neuronal hypo- or hyper-
connectivity is increasingly implicated with neurodevelopmental
disorders (Geschwind and Levitt, 2007; Uddin et al., 2013),
abnormal activities of these molecules may result in pathophysio-
logical symptoms of neurodevelopmental disorders.

Materials and methods

Plasmids

Constitutively-active GSK-3β (S9A) plasmid was generously
provided by Dr. James Woodgett (Samuel Lunenfeld Research
Institute). Dcx-cre-iGFP was described previously (Franco et al.,
2011). To generate shMACF1, we targeted a sequence (50-GCAGA-
GATGTATCATCCATCA-30) and its complement, and then cloned
them into a modified pSuper-Basic vector as previously described
(Kim et al., 2006). For control, non-silencing shRNAs were gener-
ated using scrambled targeting sequences (50-GATTAACCGACGCTT-
CAGATA-30 and 50-GTCCAGTCTACGATCTAAAGA-30). MACF1-GFP S:
A plasmid was a generous gift from Dr. Elaine Fuchs (Howard
Hughes Medical Institute, The Rockefeller University). EMTB-
3XGFP and dsRed-cent2 plasmids were purchased from Addgene.

Mice

Mice were handled according to our animal protocol approved
by the University of Nebraska Medical Center. MACF1 floxed
mouse (Wu et al., 2011) was described previously. Nex-cre mouse
(Goebbels et al., 2006) was used to generate conditional MACF1
knockout mice (MACF1loxP/loxP; Nex-cre). Nestin-cre mouse
(#003771) was purchased from Jackson Laboratory.

Immunohistochemistry

Immunohistochemical labeling of embryonic brain sections or
dissociated neural cells was performed as described previously
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(Kim et al., 2009). The following primary antibodies were used:
rabbit anti-MACF1 (Wu et al., 2011), rabbit anti-MACF1 (Santa
Cruz), rabbit anti-phospho-MACF1 (Wu et al., 2011), chicken anti-
nestin (Neuromics), mouse anti-MAP2 (Covance), rabbit anti-Tbr1
(Chemicon), rabbit anti-Cux1 (Santa Cruz), goat anti-Brn1 (Novus
Biologicals), rabbit anti-acetyl-α-tubulin (Cell Signaling), mouse
anti-α-tubulin (Sigma), and chicken anti-actin (Millipore). Appro-
priate secondary antibodies conjugated with Alexa Fluor dyes
(Invitrogen) were used to detect primary antibodies.

In utero electroporation

Timed pregnant female mice from E14.5 day of gestation were
deeply anesthetized and the uterine horns were gently exposed.
The lateral ventricles of an embryonic brain were injected with
plasmid DNA (2 μg/μl) and 0.001% fast green using a Picospritzer II
(Parker Inc.). Electroporation was achieved by placing two sterile
forceps-type electrodes on opposing sides of the uterine sac
around the embryonic head and applying a series of short
electrical pulses using BTX ECM830 elecroporator (5 pulses with
100 ms length separated by 900 ms intervals were applied at
45 V). The small electrical pulses drive charged DNA constructs
into surrounding cells in the embryonic brain. Embryos were
allowed to develop in utero for the indicated time. For hippocam-
pal gene delivery, one lateral ventricle of E14.5 brain was injected
with a DNA mixture. The electrodes were placed at an angle to the
opposite way of cortical targeting.

Morphometry

For the quantification of lengths, numbers, or thickness of
leading processes, images of 20 different brain sections at periodic
distances along the rostro-caudal axis were taken with Zeiss
LSM510 and LSM710 confocal microscopes and a Nikon Eclipse
epifluorescence microscope attached with a QImaging CCD cam-
era. The images were analyzed by using ZEN (Zeiss), LSM image
browser (Zeiss), QCapture software (QImaging), and ImageJ (NIH).
The calculated values were averaged, and some results were
recalculated as relative changes versus control.

For cell counts, numbers of neurons positive to Tbr1, Cux1, Brn1,
GFP, or DAPI were obtained as described previously (Cappello et
al., 2006). Ten mice for each experiment (control mice, n¼5;
mutant mice, n¼5) were used. Cell counts were described in
figure legends. More than 20 coronal tissue sections alongside
rostro-caudal axis from each embryonic brain were examined. For
analyzing cultured cells, more than 20 fields scanned horizontally
and vertically were analyzed in each condition. Cell numbers
examined were described in figure legends.

The analysis of microtubule dynamics in neurons was per-
formed as described in a previous paper with some modifications
(Yokota et al., 2009). EMTB-3XGFP plasmid was transfected into
E14.5 control and MACF1-deleted neurons. EMTB-3XGFP-positive
neurons were repeatedly imaged at 2.5 min intervals, and changes
in EMTB-3XGFP-positive microtubule organization within the
soma were quantified using Zeiss LSM image browser. Images
from adjacent time points of observation were superimposed, and
a 20 μm length line scan on neurons was used to quantify the
number of spots of microtubule co-localization at three different
locations and used as microtubule stability index.

Western blotting

Lysates from E14.5 telencephalon were prepared using RIPA
buffer and the protein content was determined by a Bio-Rad
Protein Assay system. Proteins were separated on 3–8% or 4–12%
SDS-PAGE gradient gel and transferred onto nitrocellulose

membrane. Then the membrane was incubated with rabbit anti-
MACF1 (Wu et al., 2011), rabbit anti-MACF1 (Santa Cruz), rabbit
anti-phospho-MACF1 (Wu et al., 2011), mouse anti-GSK-3β (BD
Biosciences), rabbit anti-acetyl-α-tubulin (Cell Signaling), mouse
anti-α-tubulin (Sigma), or rabbit anti-GAPDH (Cell Signaling) at
4 1C overnight. Appropriate secondary antibodies conjugated to
HRP were used (Cell Signaling) and the ECL reagents (Amersham)
were used for immunodetection.

For quantification of band intensity, blots from 3 independent
experiments for each molecule of interest were used. Signals were
measured using ImageJ software and represented by relative
intensity versus control. GAPDH was used as an internal control
to normalize band intensity.

Primary neuron cultures

Primary neuronal culture was described previously (Kim et al.,
2006). Briefly, cerebral cortices or hippocampi from E13.5 to 16.5
mice were isolated and dissociated with trituration after trypsin/
EDTA treatment. Then, the cells were plated onto poly-D-lysine/
laminin-coated coverslips and cultured in the medium containing
neurobasal medium, 5% serum, B27 and N2 supplements.

Time-lapse experiments

Organotypic brain slices were prepared from E14.5 mice as
described previously (Polleux and Ghosh, 2002). Briefly, E14.5
mice were electroporated as described above and the brains were
collected two days later. The brains were embedded in 3% low
melting point agarose and coronal brain slices at 250 μm thickness
were prepared using a LEICA VT1000S vibratome. The slices were
then placed on poly-lysine/laminin-coated transwell inserts and
cultured in neurobasal media organotypically using an air inter-
face protocol until imaging.

For time-lapse imaging, a LSM 710 inverted confocal micro-
scope (Zeiss) equipped with a CO2 incubator chamber (5% CO2,
37 1C) was used. Multiple Z-stacks with the options of 10–20
successive ‘z’ optical planes spanning 50–70 μm were acquired on
pre-selected positions of electroporated slices. Repetitive imaging
was performed every 15 min for up to 11 h. Mean velocity of
migrating cells was obtained using the Image J plugin Manual
tracking.

Cell transfection

Mouse cortical or hippocampal neurons were transfected with
various plasmids as described in a previous paper (Kim et al.,
2006). Briefly, embryonic cortices or hippocampi were dissociated
and suspended in 100 μl of Amaxa electroporation buffer with
1–10 μg of plasmid DNA. Then, suspended cells were transferred to
Amaxa electroporation cuvette and electroporated with an Amaxa
Nucleofector apparatus. After electroporation, cells were plated
onto coated coverslips and the medium was changed 4 h later to
remove the remnant transfection buffer.

Statistical analysis

Normal distribution was tested using Kolmogorov–Smirnov
test and variance was compared. Unless otherwise stated, statis-
tical significance was determined by two-tailed unpaired Student’s
t-test for two-population comparison or one-way ANOVA with
Bonferonni correction test for multiple comparisons. Data were
analyzed using GraphPad Prism and presented as mean (7) SEM.
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