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1. Introduction

The field of tropical geometry is a growing branch of mathematics establishing a deep connection between
algebraic geometry and combinatorics. There are various different approaches and applications of tropical geometry; see
[5,10,16,20], and for general overviews see [9,14].

One important aspect of tropical geometry is that it provides a tool to investigate affine algebraic varieties by studying
certain combinatorial objects associated with them. This is done by considering the image of an affine algebraic variety
X under a valuation map; see [7,18,20]. The set of real-valued points of this image is defined to be the tropical variety of
X or, equivalently, of the ideal I defining X . The tropical variety has the structure of a polyhedral complex in Rn and can
be used to obtain information of the original variety as is done for example in [7]. For practical purposes, there is a useful
characterization of tropical varieties in terms of initial polynomials given in [20] and fully proved in [7, Theorem 4.2] and
more explicitly in [18]. From this it follows that in the case of constant coefficients, i.e. if the valuation on the ground field
is trivial, the tropical variety of an algebraic variety defined by a graded ideal I is a subfan of the Gröbner fan of I . It contains
exactly those cones of the Gröbner fan corresponding to initial ideals that do not contain a monomial.

Let K be an infinite field, I ⊂ SK = K [x1, . . . , xn] a graded ideal and ≻ a term order. It is well known that there exists a
generic initial ideal gin≻(I) with respect to ≻. More precisely, there is a non-empty Zariski-open set U ⊂ GLn(K) such that
in≻(g(I)) is the same ideal for every g ∈ U . This will be made precise in Definition 2.3; see also [8] or [11] for details, and
see for example [2,13] for applications of this concept in algebraic geometry and commutative algebra. Since the tropical
variety of I is closely related to the Gröbner fan of I and thus to initial ideals of I , the question arises, whether there exists a
generic tropical variety of I analogous to gin≻(I) and what properties it has.

Our aim is to study the tropical variety of a graded ideal under a generic coordinate transformation. We prove the
existence of a generic Gröbner fan and a generic tropical variety in the case of constant coefficients. Moreover, we explicitly
describe the generic tropical variety of an ideal as a set. This set only depends on the dimension m of the coordinate ring
SK/I . It is equal to the support of them-skeleton Wm

n of one particular fan Wn in Rn (see Definition 4.1). The following main
results of this paper are restated in Corollary 3.2 and Theorem 4.5.

Theorem 1.1. Let I ⊂ SK = K [x1, . . . , xn] be a graded ideal with dim(SK/I) = m. Then there exists a Zariski-open subset
∅ ≠ U ⊂ GL( K), such that
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(i) the Gröbner fan GF(g(I)) of the ideal g(I) is the same fan for every g ∈ U,
(ii) the tropical variety T (g(I)) of g(I) is the same fan for every g ∈ U and this fan is supported by the underlying set of Wm

n . In
addition, every ideal has a generic tropical basis.

The latter result yields away to associate a non-empty tropical variety to an ideal of dimension at least one, even if it contains
a monomial. This opens the possibility to study such ideals by means of tropical varieties as well. Note that the existence of
a generic tropical variety highly depends on the fact that we use the constant coefficient case. The existence result is false
in the general setting; see Remark 2.8.

Our paper is organized as follows. In Section 2 we will introduce our notation and the basic setting for our work. In
Section 3 we present a proof of the existence of the generic Gröbner fan in this setting. Section 4 contains the proof of the
main theorem regarding generic tropical varieties. In the last Section the example classes of principal ideals and linear ideals
are discussed. We refer to [19] for further results on generic tropical varieties, like the relationship between the multiplicity
of a generic tropical variety (see, e.g., [6] or [23] for the definition) and the multiplicity of the defining ideal.

2. Basic concepts and notation

In this section we present some results and recall definitions which are used in the subsequent sections. Let K be an
infinite field. In general, for the purposes of tropical geometry K is equipped with a non-archimedean valuation v : K →

R∪{∞}, which induces the transitionmapbetween classical and tropical varieties. In this notewe only consider the constant
coefficient case, i.e. that v(a) = 0 for all a ∈ K ∗. This reduces the tropical geometry in our setting to the study of Gröbner
fans (at least in characteristic 0); see Remark 2.8 for a hint at the general situation. Note that the definition of a tropical
variety as given below works in any characteristic and for the results of this paper only |K | = ∞ is required.

We will denote the polynomial ring in n variables over K by SK . For a polynomial f ∈ SK with f =
∑

ν∈Nn aνxν and
ω ∈ Rn we denote by inω(f ) the initial polynomial of f , which consists of all terms of f such that ω · ν is minimal. Note that
our definition is slightly different from the original one in the context of Gröbner basis theory, since for a given polynomial
we always take terms of lowest ω-weight, while one usually takes terms of maximal ω-weight. However, this does not
change the theory at all for the case of graded ideals. We use the above definition, since it is consistent with the definition
of initial forms in the non-constant coefficient case. If the valuation on K is non-trivial, the valuations of the coefficients aν

are taken into account in the definition of inω(f ), see [7] or [20] for two such variations.
The tropical variety T (I) of a graded ideal I ⊂ SK is the set of all ω ∈ Rn such that the minimal weight of the terms of f is

attained at least twice for all f ∈ I . In other words, we have

T (I) =

ω ∈ Rn

: inω(f ) is not a monomial for every f ∈ I

.

If I = (f ) is principal, we also write T (f ) for T (I).
In the constant coefficient case the tropical variety of an ideal has a natural fan structure. Recall that a fan F in Rn is a

finite collection of (polyhedral) cones in Rn such that for C ′
⊂ C with C ∈ F we have that C ′ is a face of C if and only if

C ′
∈ F , and secondly if C, C ′

∈ F , then C ∩ C ′ is a common face of C and C ′. To simplify notation we denote by F also the
union of all its cones. The dimension dimF of F is the maximum of the dimensions dim C for all cones C ∈ F in the usual
topology of Rn. We call the fan pure-dimensional if every maximal cone has the same dimension dimF .

In the following wewill always assume I to be a graded ideal with I ≠ {0}, if not stated otherwise. Recall in this situation
the notion of the Gröbner fan GF(I) of I; see for example [15,17] or [21]. For ω ∈ Rn we let inω(I) be the ideal generated by
all inω(f ) for f ∈ I . Two vectors ω, ω′

∈ Rn are elements of the same relatively open cone C̊ for C ∈ GF(I) if and only if
inω(I) = inω′(I). Then we set inC (I) for this common initial ideal.

It was observed in [22] that the tropical variety T (I) is a subfan of the Gröbner fan of I in a natural way (see also [4]).
More precisely, we have:

Proposition 2.1. The tropical variety T (I) of a graded ideal I ⊂ SK is the subfan of the Gröbner fanGF(I)which contains all cones
C ∈ GF(I) such that the corresponding initial ideal inC (I) contains no monomial.

The next basic result on tropical varieties is a direct consequence of the definition.

Lemma 2.2. Let I, J ⊂ SK be graded ideals with I ⊂ J . If we consider the tropical varieties of I and J as sets, we have T (J) ⊂ T (I).
In particular, for a homogeneous polynomial f ∈ I we have T (I) ⊂ T (f ).

To compute tropical varieties the concept of a tropical basis is useful. Let I ⊂ SK be a graded ideal. Then a finite system
of homogeneous generators f1, . . . , ft of I is called a tropical basis of I if

T (I) =

t
i=1

T (fi).

Every ideal has a tropical basis. See, e.g., [4, Theorem 2.9] for the constant coefficient case and [12] for the general case.
We will now specify the meaning of the term generic for this note and introduce the notation used here.
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Definition 2.3. Let G =

yij : i, j = 1, . . . , n


be a set of n2 independent variables over some field K and let K ′

= K(G) be
the quotient field of K [G]. In the following we denote by y the K -algebra homomorphism

y : K [x1, . . . , xn] −→ K ′
[x1, . . . , xn]

xi −→

n−
j=1

yijxj.

For any g = (gij) ∈ GLn(K) this induces a K -algebra automorphism on K [x1, . . . , xn] by substituting gij for yij. We identify g
with the induced automorphism and use the notation g for both of them.

Notation 2.4. A polynomial f ∈ K ′
[x1, . . . , xn] will sometimes be denoted as f (y) to emphasize its dependence on the

variables yij ∈ G. Let f (y) ∈ K ′
[x1, . . . , xn] and g ∈ GLn(K) such that no denominator in the coefficients of the monomials

xν1
1 . . . xνn

n vanishes when the gij are substituted for the yij. Then we will denote the polynomial in K [x1, . . . , xn] obtained by
this substitution by f (g).

The dimension dim(SK/I) for an ideal I ⊂ SK always refers to the Krull dimension of the coordinate ring SK/I . Note that
for any g ∈ GLn(K) the ideal g(I) is a graded ideal of the same dimension as I . If dim(SK/I) > 0, generically the tropical
variety of I is non-empty.

Lemma 2.5. Let I ⊂ SK be a graded ideal with dim(SK/I) > 0. Then there exists a Zariski-open set ∅ ≠ U ⊂ GLn(K) such that
T (g(I)) ≠ ∅ for every g ∈ U.

Proof. We have to show that g(I) contains no monomial for all g in a non-empty Zariski-open set U ⊂ GLn(K). If g(I)
contains a monomial xα for a fixed g , we would have (xα) ⊂ g(I), which implies the inclusions

V (g(I)) ⊂ V (xα) =

z ∈ K n

: zi = 0 for αi > 0


of the zero-sets of the two ideals. Thus it suffices to show that there is a zero of g(I), none of whose coordinates is zero to
show that no monomial can be contained in g(I).

If I = (f1, . . . , fr), then g(I) = (g(f1), . . . , g(fr)). Since g ∈ GLn(K), we can also consider it as a vector space isomorphism
on K n. Let g−1 denote its inverse. Then by definition g(fi)(v) = fi(g(v)) for any v ∈ K n. Thus for any z ∈ V (I) we get

g(fi)(g−1(z)) = fi(g(g−1(z))) = fi(z) = 0,

so g−1(z) ∈ V (g(I)).
Since dim(SK/I) > 0, we know

√
I ≠ (x1, . . . , xn). In particular, there exists 0 ≠ z ∈ V (I) because we are assuming that

K is algebraically closed. Now the ith coordinate (g−1(z))i is zero if and only if
∑n

j=1 g
′

ijzj = 0, where the g ′

ij are the entries
of the matrix of g−1

∈ GLn(K). This sum can be considered as a non-zero polynomial in the variables g ′

ij with coefficients zj.
Now we can choose U to be the set

U =


g ∈ GLn(K) :

n−
j=1

g ′

ijzj ≠ 0 for i = 1, . . . , n


,

which is non-empty and Zariski-open. Then for any g ∈ U we have g−1(z) ∈ V (g(I)) ∩ (K ∗)n, so g(I) cannot contain a
monomial. Hence, T (g(I)) ≠ ∅ for g ∈ U . �

Let ≻ be a term order on SK = K [x1, . . . , xn] with x1 ≻ x2 ≻ · · · ≻ xn. Then the initial ideal of some ideal I ⊂ SK
with respect to ≻ is constant under a generic coordinate transformation of I . In other words there is a Zariski-open set
∅ ≠ U ⊂ GLn(K) such that in≻(g(I)) is the same ideal for every g ∈ U , and this ideal is denoted by gin≻(I).

Let Bn(K) ⊂ GLn(K) denote the Borel subgroup of GLn(K), i.e. all upper triangular matrices in GLn(K). Then for every
g ∈ Bn(K) we have gT (gin≻(I)) = gin≻(I), where gT is the transposed matrix of g . This fact is expressed by calling gin≻(I)
Borel-fixed. In the case that char(K) = 0 this condition is equivalent to gin≻(I) being strongly stable; see [8, Theorem 15.23].
This means that for any index i ∈ {1, . . . , n} and any monomial xν

∈ gin≻(I) which is divisible by xi, also the monomial
(xj/xi)xν is in gin≻(I). This condition will be used repeatedly in the following explaining our assumption char(K) = 0.

As explained above the tropical variety of I is a subfan of the Gröbner fan of I and thus closely related to initial ideals of
I . This leads to the question, whether there exists a generic tropical variety of I analogous to gin≻(I) and what it looks like,
if it does exist.

Definition 2.6. Let I ⊂ SK be a graded ideal. If T (g(I)) is the same fan for all g in a Zariski-open subset ∅ ≠ U ⊂ GLn(K),
then this fan is called the generic tropical variety of I and is denoted by gT(I).

Note that every graded ideal I ⊂ SK with dim(SK/I) = 0 contains a monomial. Thus Lemma 2.5 immediately implies
that we have gT(I) = ∅ if and only if dim(SK/I) = 0.

The support of a polynomial f is the finite set of all exponent vectors of f . More generally, the support of a finite set G of
polynomials is the union of the support-sets of every polynomial in G. We would like to obtain tropical bases of g(I) with
the same support for all g in some non-empty open subset of GLn(K). This idea is captured in the next definition.



T. Römer, K. Schmitz / Journal of Pure and Applied Algebra 216 (2012) 140–148 143

Definition 2.7. Let I ⊂ SK = K [x1, . . . , xn] be a graded ideal. A finite set {f1(y), . . . , fs(y)} of polynomials in y(I) is called
a generic tropical basis of I , if there is an open subset ∅ ≠ U ⊂ GLn(K) such that {f1(g), . . . , fs(g)} is a tropical basis of g(I)
with the same support for every g ∈ U . If an open set ∅ ≠ U ⊂ GLn(K) fulfills this condition, the generic tropical basis is
said to be valid on U .

In Section 4 it will be proved that generic tropical varieties exist and that every graded ideal has a generic tropical basis
in the constant coefficient case.
Remark 2.8. Definition 2.6 can be formulated in the same way in the non-constant coefficient case, i.e. if the valuation v
on K is non-trivial. In this case the initial form of a homogeneous polynomial f ∈ K [x1, . . . , xn] is defined by taking the
valuations of the coefficients of f into account; see e.g. [20]. For example, for the linear form f = g11x + g12y ∈ K [x, y], the
initial form inω(f ) is not a monomial, if and only if v(g11) + ω1 = v(g12) + ω2.

This example suffices to show that the condition of Definition 2.6will not be fulfilled in general in the constant coefficient
case. We consider the ideal I = (x) ⊂ K [x, y]. Then g(I) = (g11x + g12y), so if g11, g12 ≠ 0, we get

T (g(I)) =

ω ∈ R2

: v(g11) + ω1 = v(g12) + ω2

.

This affine subspace of R2 of course depends on the value of v(g11) − v(g12) = v(
g11
g12

) which will not the same for general
g11, g12 ∈ K . Hence, there is no Zariski-open subset U ⊂ GL2(K) such that T (g(I)) is the same set for every g ∈ U .

3. The generic Gröbner fan

In this section we show the existence of a ‘‘generic Gröbner fan’’ of a graded ideal I ⊂ SK = K [x1, . . . , xn].
Recall that I has only finitely many initial ideals with respect to term orders on the polynomial ring K [x1, . . . , xn] and

these initial ideals correspond to themaximal cones in the Gröbner fan of I . A universal Gröbner basis of I is a finite generating
set of I which is a Gröbner basis of I with respect to every term order. Note that such a universal Gröbner basis always exists.
Indeed, choosing termorders≻1, . . . ,≻m such that in≻1(I), . . . , in≻m(I) are all initial ideals of I , then theunionof all reduced
Gröbner bases of I with respect to ≻i for i = 1, . . . ,m is a universal Gröbner basis of I; see for example [15, Corollary 2.2.5].

Recall that K ′
= K(yij : i, j = 1, . . . , n) as defined in Section 2. We may identify term orders on SK with those on

SK ′ = K ′
[x1, . . . , xn]. Moreover, we also identify monomial ideals in SK with those in K ′

[x1, . . . , xn], since the monomials do
not depend on the ground field.
Theorem 3.1. Let I ⊂ SK be a graded ideal. There exists a Zariski-open subset ∅ ≠ U ⊂ GLn(K) and polynomials
h1(y), . . . , hs(y) ∈ y(I) such that
(i) G(y) = {h1(y), . . . , hs(y)} is a universal Gröbner basis of y(I).
(ii) For every g ∈ U the set G(g) = {h1(g), . . . , hs(g)} is a universal Gröbner basis of g(I).
(iii) All these universal Gröbner bases have the same support.
Proof. Let J ⊂ K ′

[x1, . . . , xn] be the image ideal y(I) of I under the K -algebra homomorphism y as defined in Definition 2.3.
There exists only finitely many initial ideals in1(J), . . . , inm(J) of J with respect to term orders of K ′

[x1, . . . , xn]. We choose
a term order ≻i for each initial ideal ini(J) such that in≻i(J) = ini(J). Using the Buchberger Algorithm we can compute
a reduced Gröbner basis Gi of J with respect to ≻i. Let G(y) be the union of all these reduced Gröbner bases Gi of J , i.e. a
universal Gröbner basis of J . The coefficients of all polynomials occurring throughout these computations are themselves
quotients of polynomials in the variables yij. Now choose U to be the non-empty Zariski-open set of all g ∈ GLn(K) such that
all of the finitely many numerators and denominators of the polynomials appearing during the calculations in the algorithm
are non-zero with respect to any of the ≻i. Then for any g ∈ U the reduced Gröbner basis Gi(g) of g(I) with respect to ≻i is
obtained by evaluating the polynomials of Gi at g .

Now it remains to show that for g ∈ U the union of the Gi(g) is a universal Gröbner basis of g(I). For this it is enough to
prove that every initial ideal of g(I) is one of the in1(J), . . . , inm(J). Let g ∈ U be fixed and≻ be any term order and consider
the initial ideal in≻(g(I)). We know that in≻(J) = ini(J) for some i ∈ {1, . . . ,m}. This implies that the reduced Gröbner
basis Gi of J with respect to ≻i is also a reduced Gröbner basis of J with respect to ≻; see [15, Corollary 2.2.5]. Moreover,
by the choice of U we know that Gi(g) is a reduced Gröbner basis of g(I) with respect to ≻i for g ∈ U . Since Gi and Gi(g)
have the same support, we know in≻(y(f )) = in≻(g(f )) and in≻i(y(f )) = in≻i(g(f )) for every y(f ) ∈ Gi. We also know that
in≻(y(f )) = in≻i(y(f )), since in≻(J) = in≻i(J) and Gi is reduced. But then we get

in≻i(g(I)) = (in≻i(g(f )) : g(f ) ∈ Gi(g))
= (in≻i(y(f )) : y(f ) ∈ Gi)

= (in≻(y(f )) : y(f ) ∈ Gi)

= (in≻(g(f )) : g(f ) ∈ Gi(g)) ⊂ in≻(g(I)).

However, both in≻i(g(I)) and in≻(g(I)) are initial ideals of the same ideal g(I), and hence, in≻(g(I)) = in≻i(g(I)).
This means that G(g) defined as the union of the Gi(g) for i = 1, . . . ,m is a universal Gröbner basis of g(I). Now G(g)

is obtained by evaluating the coefficients of the polynomials in G, and for g ∈ U none of these coefficients vanishes. Hence,
all G(g) consist of polynomials which differ only in the coefficients not equal to zero. So all G(g) for g ∈ U have the same
support. �
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Note that in particular this implies the well-known result that for a graded ideal I ⊂ SK there exist only finitely many
generic initial ideals of I . As the Gröbner fan of g(I) depends only on the support of the polynomials in the universal Gröbner
basis, this also immediately implies the existence of a generic Gröbner fan.

Corollary 3.2. Every ideal g(I) has the same Gröbner fan for every g ∈ U for some non-empty open subset U ⊂ GLn(K).

Since every non-empty Zariski-open subset is dense in GLn(K), the following definition makes sense.

Definition 3.3. The unique polyhedral fan that equals GF(g(I)) for all g in a non-empty Zariski-open subset of GLn(K), is
called the generic Gröbner fan of I . We denote this fan by gGF(I).

We also state two Corollaries of Theorem 3.1 needed in Section 4.

Corollary 3.4. Let I ⊂ SK be a graded ideal and ≻ a term order. Then in≻(y(I)) ⊂ SK ′ and gin≻(I) ⊂ SK have the same sets of
minimal generators.

Proof. The reduced Gröbner bases of y(I) and g(I)with respect to≻ have the same support for every g in a non-empty open
subset of GLn(K) by Theorem 3.1. �

Corollary 3.5. Let I ⊂ SK be a graded ideal. Then there exists an open set ∅ ≠ U ⊂ GLn(K) such that for every ω ∈ Rn, every
term order ≻ and every g ∈ U we have in≻(inω(g(I))) = gin≻ω

(I).

Proof. We claim that the set U ⊂ GLn(K) from Theorem 3.1 has this property. Let ω ∈ Rn and ≻ any term order. Let
G(g) = {h1(g), . . . , hs(g)} be the universal Gröbner basis of g(I) with the same support for g ∈ U existing by Theorem 3.1.
In particular, G(g) is a Gröbner basis of g(I) with respect to ≻ω . Thus {inω(h1(g)), . . . , inω(hs(g))} is a Gröbner basis of
inω(g(I)) with respect to ≻. With Theorem 3.1 this implies

in≻(inω(g(I))) = (in≻(inω(h1(g))), . . . , in≻(inω(hs(g))))
= (in≻ω (h1(g)), . . . , in≻ω (hs(g)))
= in≻ω (g(I))
= gin≻ω

(I). �

The generic Gröbner fan is symmetric with respect to coordinates in the following sense. Let Sn denote the symmetric
group of degree n. For σ ∈ Sn and ω = (ω1, . . . , ωn) ∈ Rn we set σ(ω) = (ωσ(1), . . . , ωσ(n)). Moreover, σ induces a K -
algebra automorphism on K [x1, . . . , xn] by setting σ(xi) = xσ(i). By abuse of notation this map will also be denoted by σ .
For g = (gij) ∈ GLn(K) let σ(g) = (giσ−1(j)). Hence, σ(g) corresponds to a switching of the columns of the matrix of g . Note
that with this notation for a graded ideal I ⊂ K [x1, . . . , xn] and σ , τ ∈ Sn we have

(i) σ(g(I)) = σ(g)(I),
(ii) τ(σ (g)) = (σ ◦ τ)(g)).

Furthermore, every non-empty Zariski-open subset of GLn(K) contains an open subset which is symmetric with respect
to renaming coordinates. This means that for an open set ∅ ≠ U ⊂ GLn(K) we can choose an open set ∅ ≠ V ⊂ U such that
for every σ ∈ Sn we have:

g ∈ V implies σ(g) ∈ V .

With this we can state a result on the symmetry of generic Gröbner fans.

Proposition 3.6. Let I ⊂ K [x1, . . . , xn] be a graded ideal and C̊ be a relatively open cone in gGF(I). Then

σ(C̊) =

σ(ω) : ω ∈ C̊


is also a relatively open cone of gGF(I) for σ ∈ Sn.

Proof. Let∅ ≠ V ⊂ GLn(K) be Zariski-open such that GF(g(I)) = gGF(I) for all g ∈ V and such that g ∈ V impliesσ(g) ∈ V .
Let J be the initial ideal corresponding to C̊ . Now we have ω ∈ C̊ if and only if inω(g(I)) = J for g ∈ V . As inσ(ω)(σ (g(I))) is
obtained from inω(g(I)) by renaming coordinates, ω ∈ C̊ is equivalent to inσ(ω)(σ (g)(I)) = inσ(ω)(σ (g(I))) = σ(J). Since
σ(g) ∈ V , the ideal σ(J) then also defines a cone of gGF(I). This cone contains exactly all σ(ω) for ω ∈ C̊ in its relative
interior. �

4. Generic tropical varieties

The generic tropical variety of an ideal turns out to be closely connected to one particular fan in Rn which we describe
first. Let ei denote the ith standard basis vector of Rn and cone(M) denote the positive hull of a setM .
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Definition 4.1. Let Wn be the fan in Rn consisting of the following closed cones: For each non-empty subset A ⊂ {1, . . . , n}
let

CA = cone({ei : i /∈ A}) + R(1, . . . , 1).
This fan will be called the generic tropical fan in Rn. The t-skeleton of Wn will be denoted by W t

n .
Equivalently we can write CA = {ω ∈ Rn

: ωi = mink {ωk} for all i ∈ A}. Note that the image of Wn in Rn/(1, . . . , 1) is a
fan of the projective (n − 1)-space as a toric variety.

For a k-dimensional cone CA ofWn the set A has to have exactly n−k+1 elements. Thus the number of cones of dimension
k is equal to the number of possibilities to choose n−k+1 from n, which is

 n
n−k+1


=
 n
k−1


. Therefore, Wn has exactly

 n
k−1


cones of dimension k for k = 1, . . . , n.

We now show that for an ideal I ⊂ SK = K [x1, . . . , xn] with dim(SK/I) = m generically the tropical variety is contained
in the m-skeleton of the generic tropical fan. Recall the definition of the field K ′ and the ideal y(I) in SK ′ = K ′

[x1, . . . , xn]
from Definition 2.3.
Lemma 4.2. Let I ⊂ SK = K [x1, . . . , xn] be a graded ideal with dim(SK/I) = m < n. Then there exist polynomials
f1(y), . . . , fs(y) ∈ y(I), such that

s
i=1 T (fi(y)) ⊂ Wm

n . In particular, T (y(I)) ⊂ Wm
n .

Proof. Since y : SK → SK ′ is a flat extension, we have dim(SK ′/y(I)) = dim(SK/I) = m.
In the case m = 0 both T (y(I)) and Wm

n are empty, so let m > 0. Let C̊ ∈ GF(y(I)) be a relatively open Gröbner cone
of y(I) such that C̊ ⊄ Wm

n . Choose ω ∈ C̊\Wm
n , so the minimum of the coordinates of ω is attained at most n − m times.

Without loss of generality we may assume that mini {ωi} = 0 and the first r coordinates r ≤ n − m attain the minimum.
Let ≻ be the lexicographic term order induced by x1 ≻ x2 ≻ · · · ≻ xn and let ≻ω be the refinement of the partial order

corresponding to ω with respect to ≻. Then gin≻ω
(I) exists and we have dim(SK/ gin≻ω

(I)) = dim(SK/I) = m. In particular,
gin≻ω

(I) ∩ K [xr , . . . , xn] ≠ {0} ,

since otherwise K [xr , . . . , xn] would be subset of a Noether normalization of the ring K [x1, . . . , xn]/ gin≻ω
(I) and therefore

dim(SK/I) ≥ n − r + 1 ≥ m + 1 which is a contradiction to the assumption dim(SK/I) = m.
Let 0 ≠ u ∈ gin≻ω

(I) ∩ K [xr , . . . , xn] be a monomial of total degree t . Since gin≻ω
(I) is Borel-fixed, this implies

xtr ∈ gin≻ω
(I); see, e.g., [8, Theorem15.23]. Since gin≻ω

(I) and in≻ω (y(I)) have the sameminimal generators by Corollary 3.4,
we also have xtr ∈ in≻ω (y(I)). Let f (y) ∈ y(I) such that in≻ω (f (y)) = xtr . No term of f (y) that has the same ω-weight as xtr
may contain a variable from x1, . . . , xr−1, since then in≻ω (f (y)) ≠ xtr in the chosen lexicographic term order. So every
such term of f (y) apart from xtr must be divisible by one of the variables xr+1, . . . , xn. But then every term of f (y) has
ω-weight greater than zero, except wtω(xtr) = 0. Hence, inω(f (y)) = xtr is a monomial. This implies ω /∈ T (f (y)). Thus
T (f (y)) ⊂ Rn

\C̊ ∪ Wm
n . Repeating this procedure for every Gröbner cone C of y(I) with C̊ ⊄ Wm

n yields finitely many
polynomials f1(y), . . . , fs(y) ∈ y(I) such that

s
i=1 T (fi(y)) ⊂ Wm

n . By Lemma 2.2 this implies T (y(I)) ⊂ Wm
n . �

Corollary 4.3. Let I ⊂ SK = K [x1, . . . , xn] be a graded ideal with dim(SK/I) = m < n. Then there exists a non-empty open
subset U ⊂ GLn(K) such that for every g ∈ U there is a set of polynomials {f1(g), . . . , fs(g)} ⊂ g(I) having the same support for
every g ∈ U with

s
i=1 T (fi(g)) ⊂ Wm

n .
Proof. Let f1(y), . . . , fs(y) ∈ y(I) be as in Lemma 4.2. Choose ∅ ≠ U ⊂ GLn(K) such that no numerator or denominator of
the coefficients of the fi(y) vanishes, when the gij are substituted for the yij. Then {f1(g), . . . , fs(g)} has the same support for
g ∈ U . Moreover,

s
i=1 T (fi(g)) ⊂ Wm

n by Lemma 4.2 as a tropical hypersurface depends only on the support of its generator
in the constant coefficient case. �

The next result is a converse to Corollary 4.3.
Lemma 4.4. Let I ⊂ SK be a graded ideal with dim(SK/I) = m. Then there exists an open subset ∅ ≠ U ⊂ GLn(K) such that
Wm

n ⊂ T (g(I)) for every g ∈ U.
Proof. Let ∅ ≠ U ⊂ GLn(K) be open, such that in≻(inω(g(I))) = gin≻ω

(I) for g ∈ U for any ω ∈ Rn and any term order ≻.
Such a set exists by Corollary 3.5. We will show that the claim of the lemma holds for every g ∈ U .

Let ω ∈ Wm
n . For a fixed g ∈ U let P be a minimal prime of inω(g(I)) with dim(SK/P) = m. Assume that P

contains a monomial. Since P is prime, this implies that P contains a variable xl for some l. Without loss of generality let
ω1 = · · · = ωn−m+1 ≤ ωj for j > n − m + 1. To establish a contradiction let {i1, . . . , in−m} ⊂ {1, . . . , n − m + 1} \ {l}. Let
≻ be a lexicographic term order with

xi1 ≻ xi2 ≻ · · · ≻ xin−m ≻ xj for j /∈ {i1, . . . , in−m} .

By assumption we have gin≻ω
(I) = in≻(inω(g(I))) ⊂ in≻(P) with

dim(SK/ gin≻ω
(I)) = dim(SK/ in≻(P)) = m.

Let Q be a minimal prime of in≻(P). Since the dimensions coincide, Q is also a minimal prime of gin≻ω
(I). But gin≻ω

(I) has
only one minimal prime which is (xi1 , . . . , xin−m) by the choice of the term order ≻ (see for example [8, Corollary 15.25]).
Hence, Q does not contain xl. This is a contradiction to the fact that xl ∈ P and therefore xl ∈ in≻(P) ⊂ Q . Thus, P cannot
contain a monomial. Hence, inω(g(I)) ⊂ P cannot contain a monomial implying ω ∈ T (g(I)). Since this holds for every
g ∈ U , this proves the claim. �
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This implies the following characterization of generic tropical varieties as a set in the constant coefficient case.

Theorem 4.5. Let I ⊂ SK = K [x1, . . . , xn] be a graded ideal with dim(SK/I) = m < n. Then gT(I) exists and as a set

gT(I) = Wm
n .

Moreover, there exists a generic tropical basis for I (as in Definition 2.7).

Proof. Let {f1(g), . . . , fs(g)} ⊂ g(I) be a finite set of polynomials having the same support for every g in a non-empty
open subset U1 ⊂ GLn(K) such that

s
i=1 T (fi(g)) ⊂ Wm

n for every g ∈ U1. This exists by Corollary 4.3. Moreover, let
∅ ≠ U2 ⊂ GLn(K) be open such that Wm

n ⊂ T (g(I)) for g ∈ U2 existing by Lemma 4.4. Then for g ∈ U1 ∩ U2 we have

Wm
n ⊂ T (g(I)) ⊂

s
i=1

T (fi(g)) ⊂ Wm
n

implying T (g(I)) = Wm
n for g ∈ U1 ∩ U2. Since U1 ∩ U2 is open, the generic tropical variety gT(I) exists and as a set is equal

to Wm
n .

In addition, let {h1, . . . , hr} be a set of generators of I . Let U3 ⊂ GLn(K) be a non-empty open set such that the sets
{g(h1), . . . , g(hr)} have the same support for every g ∈ U3. Since g(h1), . . . , g(hr) generate g(I) for every g ∈ GLn(K) and
by the equality T (g(I)) =

s
i=1 T (fi(g)) for g ∈ U1 ∩ U2, the set

{y(h1), . . . , y(hr), f1(y), . . . , fs(y)}

is a tropical basis of I valid on U1 ∩ U2 ∩ U3. �

In particular, in the constant coefficient case the generic tropical variety of an ideal as a set depends only on its dimension.
Moreover, as a Corollary we recover the statement of Bieri and Groves [3] that the Krull dimension of SK/I coincides with
the topological dimension of T (I) in the constant coefficient case in the generic situation.

Corollary 4.6 (Bieri and Groves). Let I ⊂ SK be a graded ideal. Then there exists an open subset ∅ ≠ U ⊂ GLn(K) such that
dim(SK/g(I)) = dim T (g(I)) for every g ∈ U.

5. Examples

We conclude this note with some examples of generic Gröbner fans and generic tropical varieties. We briefly discuss
principal ideals and linear ideals.

To describe the generic tropical variety of principal ideals we first prove a simple auxiliary statement.

Lemma 5.1. For a given homogeneous polynomial 0 ≠ f ∈ SK of total degree d we can find a non-empty Zariski-open set
U ⊂ GLn(K) such that g(f ) contains all terms Pk(g)xdk with non-zero coefficients Pk(g) for all g ∈ U.

Proof. Let f =
∑

ν∈Nn aνx
ν1
1 · · · xνn

n with
∑n

i=1 νi = d. Then

g(f ) =

−
ν∈Nn

aν


n−

j=1

g1jxj

ν1

· · ·


n−

j=1

gnjxj

νn

.

So g(f ) contains the terms (
∑

ν aνg
ν1
1k · · · gνn

nk )x
d
k . Let Pk(g) =

∑
ν aνg

ν1
1k · · · gνn

nk . Because f is not the zero polynomial we can
choose U to be the set of all g ∈ GLn(K) with Pk(g) ≠ 0 for k = 1, . . . , n. �

Proposition 5.2. Let 0 ≠ f ∈ SK be a homogeneous polynomial. Then:

(i) gGF(f ) is equal to the generic tropical fan Wn.
(ii) gT(f ) is equal to Wn−1

n , the (n − 1)-skeleton of the generic tropical fan.

Proof. We consider the Zariski-open set ∅ ≠ U ⊂ GLn(K) such that g(f ) has themaximal number of terms for all g ∈ U , i.e.
g is not a zero of any non-zero coefficient polynomial of the terms in g(f ). In particular, by Lemma 5.1we know Pk(g) ≠ 0 for
k = 1, . . . , n for all g ∈ U . Since g(f ) is homogeneous, this implies that inω(g(f )) is exactly the sum of those terms of g(f ),
that contain only variables xi for which ωi = min


ωj : j = 1, . . . , n


. So for ω, ω′

∈ Rn we have inω(g(f )) = inω′(g(f )) if
and only if

i : ωi = min

ωj : j = 1, . . . , n


=

i : ω′

i = min

ω′

j : j = 1, . . . , n


.

Hence, ω and ω′ are in the same Gröbner cone of g(I) if and only if they are in the same cone Wn for all g ∈ U and we
conclude gGF(f ) = Wn.

For the computation of the generic tropical variety we note that inω(g(f )) is a monomial Pk(g)xdk for g ∈ U , if ωk < ωj
for all j ≠ k. If the minimum on the other hand is attained at least twice, then inω(g(f )) contains at least the terms
Pk(g)xdk corresponding to the minimal coordinates k and therefore is not a monomial. So for all g ∈ U we conclude that
T (g(I)) = Wn−1

n . So gT(I) = Wn−1
n . �
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For linear ideals I ⊂ SK , that is, ideals generated by linear forms, the tropical variety of I just depends on the matroid of I
as observed in [22]. This matroidM(I) on N = {1, . . . , n} is defined by declaring the circuits to be the minimal subsets A of
N such that there exists a linear form in I supported in variables with indices in A. Tropical varieties of matroids have been
studied in [1].

We explicitly compute the generic Gröbner fan and the generic tropical variety of linear ideals I . These just depend on
the dimension of SK/I as fans.

Let I ⊂ SK be linear. Then a matrix A = (aij) ⊂ K t×n will be called a matrix of I , if there exist the linear forms
fi =

∑n
j=1 aijxj, such that I = (f1, . . . , ft). Note that choosing different generators of I by taking linear combinations of

the original ones corresponds to Gaussian operations on a given matrix of I . If I ⊂ SK is a linear ideal and A is a matrix of I ,
then rank A = n − dim(SK/I).

Let dim(SK/I) = m and J ⊂ N = {1, . . . , n} with | J| = n − m. Let A be a matrix of I . If the minor of A corresponding
to the columns indexed by J is non-zero, we can consider the reduced form AJ of A with respect to J . By this we mean the
matrix obtained from A by performing Gaussian elimination such that the square matrix of the columns corresponding to
indices in J is the identity matrix. For example, for J = {1, . . . , n − m} we have

AJ =

 1 · · · 0 ∗ · · · ∗

...
. . .

...
...

...
...

0 · · · 1 ∗ · · · ∗

 ,

where the ∗ represent any element of K .
For the generic situation note that if A ⊂ K r×n is the matrix of I and g ∈ GLn(K), then we can consider g as a matrix

g ∈ K n×n and observe that the matrix product Ag ⊂ K r×n is exactly the matrix of g(I). This is true, since for the generator fi
of I we have

g(fi) =

−
j

aijg(xj) =

−
j

−
k

aijgjkxk =

−
k

−
j

aijgjk


xk,

so the coefficient of xk in g(fi) is exactly the product of the ith row of A and the kth column of g .

Lemma 5.3. Let A ∈ K r×n of rank r. Then there is a non-empty Zariski-open subset U ⊂ GLn(K) such that

(i) every r × r minor of Ag is non-zero for every g ∈ U,
(ii) every entry ∗ on the right hand side of (Ag)J as above is non-zero for g ∈ U for every J ⊂ N with | J| = r.

Proof. The r × r-minors of Ag can be considered as polynomials in the gij. If one of these polynomials was the zero
polynomial, that would mean, that the determinant of the corresponding submatrix is zero for all g ∈ GLn(K), in particular
for permutation matrices in GLn(K) that swap columns of A. This implies that the determinant of all possible r × r-
submatrices of A are zero and thus rank A < r , which is a contradiction. So all r × r-minors of Ag are non-zero polynomials
{f1, . . . , fs} in the gij. Thus we can choose U as the set of all g ∈ GLn(K) with fi(g) ≠ 0 for i = 1, . . . , s.

For the second statement we note that if every r × r-minor of Ag is non-zero, so is every r × r-minor of (Ag)J for a fixed J ,
since Gaussian elimination preserves the rank of a matrix. So for g ∈ U every r × r-minor of (Ag)J is not zero. Now assume
that some entry ∗ij for some j /∈ J of (Ag)J is equal to 0. Consider the submatrix B of (Ag)J consisting of the r columns of (Ag)J
corresponding to J , except that the ith column is replaced by the jth one. Then every entry in ith row of B is zero, and thus
det B = 0. But this is a contradiction to the fact that no r × r-minor of (Ag)J is zero. �

The last statement together with [21, Proposition 1.6] (or [15, Proposition 1.4.4]) shows that for a linear ideal I with
dim(SK/I) = m generically the universal Gröbner basis consists of

 n
m−1


linear forms each supported on a different subset

of size n − m + 1 of N . Equivalently the matroid associated with I is the uniform matroid of rank n − m on N , see
[22, Example 9.13].

Proposition 5.4. Let I ⊂ SK be a linear ideal with dim(SK/I) = m.

(i) The generic Gröbner fan gGF(I) contains the following cones.
(a) For ω ∈ Rn with {i1, . . . , in} = {1, . . . , n} such that

ωi1 , . . . , ωin−m < ωin−m+1 , . . . , ωin
we have

C[ω] =


ω′

∈ Rn
: ω′

i1 , . . . , ω
′

in−m
< ω′

in−m+1
, . . . , ω′

in


.

(b) For ω ∈ Rn with {i1, . . . , in} = {1, . . . , n} such that
ωi1 , . . . , ωin−m−t−1 < ωin−m−t = ωin−m−t+1 = · · · = ωin−m+s < ωin−m+s+1 , . . . , ωin

for t ≥ 0, s ≥ 1 we have that C[ω] is equal to the set
ω′

∈ Rn
: ω′

i1 , . . . , ω
′

in−m−t−1
< ω′

in−m−t
= ω′

in−m−t+1
= · · · = ω′

in−m+s
< ω′

in−m+s+1
, . . . , ω′

in


.

(ii) The generic tropical variety gT(I) is equal to Wm
n as a fan.
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Proof. Let ω ∈ Rn such that after possibly renaming coordinates ω1 ≤ ω2 ≤ · · · ≤ ωn, and ≻ω be a term order with
x1 ≻ x2 · · · ≻ xn which refines ω. Let A be a matrix of I with rank A = r = n − m. By [15, Proposition 1.4.4] the rows of
the matrix (Ag)J for J = {1, . . . , n − m} are a reduced Gröbner basis of g(I). For g ∈ U as defined in Lemma 5.3 the rows of
(Ag)J correspond to linear forms

li = xi +
n−

k=r+1

cikxk

with cik ≠ 0 for i = 1, . . . , r , k = r +1, . . . , n. Nowω′
∈ Rn is in the same Gröbner cone asω, if and only if inω′(li) = inω(li)

for i = 1, . . . , r . Since ω1, . . . , ωn−m ≤ ωn−m+1, . . . , ωn this immediately implies ω′

1, . . . , ω
′
n−m ≤ ω′

n−m+1, . . . , ω
′
n. For

every equality of some ωi = ωk for i ∈ {1, . . . , n − m}, k ∈ {n − m + 1, . . . , n} the vector ω′ has to fulfill the same equality
such that inω′(li) = inω(li). This completes the proof of the first part.

For the second statement we already know that gT(I) = Wm
n as a set. On the other hand gT(I) is a subfan of the Gröbner

fan gGF(I) as computed in Theorem 5.4. But Wm
n is a subfan of gGF(I), since the maximal cones of Wm

n are exactly the cones

C =

ω ∈ Rn

: ωi1 = · · · = ωin−m+1 ≤ ωin−m+2 , . . . , ωin


of gGF(I). Hence gT(I) = Wn

m as a fan. �

Remark 5.5. The second statement also follows from [1], where Bergman fans of matroids are computed. In our case the
matroidM to consider is the uniform matroid of rank n − m on N . The generic tropical variety of gT(I) is then the Bergman
fan B̃(M) of [1] equipped with the coarse subdivision defined there.

One implication of this is that the generic tropical variety of an ideal is generally not them-skeleton of its generic Gröbner
fan, since already for linear ideals I the generic Gröbner fan gGF(I) has more m-dimensional cones than gT(I). In fact, for
example them-dimensional cone C[ω] with

ω1 < ω2 = · · · = ωn−m+2 < ωn−m+3, . . . , ωn

is an element of gGF(I), but not an element of gT(I).
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