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1. Introduction

The purpose of this paper is to prove that certain sets of Liouville numbers are
algebraically independent. For this purpose we define a to be a Liouville series
provided « has a representation as an infinite series of the form

a:l‘zlp“ku

where p > 1 is an integer and k, is a strictly increasing sequence of positive integers
such that

lim ket o,
N-—x kN

The following theorem is proved.

Theorem 1. Let o, = 2., pi*, ax = 2,., pz* and a3 = Z,-, p;* be Liouville series,
where we assume that p, # p, and that P >2 is a prime such that

Plpg, P*p,, P,{/pz and P-—1|k,

for all v large.
Finally we assume there is a strictly increasing sequence N; of positive integers such
that N; has an infinite number of limit points in the P-cdic integers Zp and such that

ordpky, <ordrk. for all v > N;
and
kN‘n-l/OrdpkN’. —> (] 4 00)

Then a., a,, as are algebraically independent.

Kxample. The integers k, = v ! satisfy the hypotheses with N, = — 1+ jP. Thus we
se€ that
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i 2—-v!’ i 4—;’!, i 3—
v=1

v=1 v=1

are algebraically independent.

It was pointed oui to me by David Cantor that with a stronger hypothesis on the
p., the restriction to 3 variables is easily lifted. Namely the following is true.

‘Theorem 2. Let a; = 2,.,p;* be Liouville Series (1<i <n) where p,,...,p. are
ruliiplicatively independent integers larger than 1. Then a,, .. ., a, are algebraically
independent.

The proof proceeds in t+ o stages. First we generalize the usual Liouville criterion
for transcendence [2, p. 121] in the mest naive possible way (Section 2). This
generalization requires a 1 hypothesis concerning the non-vanishing of polynomials
in more than one variilble at certain rational points. This hypothesis is easily
verified to prove Theort m 2. In Section 3 we give a P-adic argument to verify the
hypothesis in order to prove Theorem 1.

There are many other results on the algebraic independence of Liouville
numbers (c.f. [3, 4]). They all concentrate on having approximation hypotheses
strong enough to guarantee in advance that the polynomials involved cannot vanish
at the appropriate rational f oints. These theorems do not seem to be stror:g enough
to prove the results of this paper.

2. A generalized Liouville theorem

Proposition 3. Let a = (a,, ..., a.) be a vector of real numbers which is algebraically
dependent. Let f(x) be any non-zero polynomial in n-variables, with integer
coefficients and degree d; in x, (x = (x,,. .., x.)) such that f(a) = 0. Then there exists a
constant ¢ = c(a, f) such that for all rational n-tuples a/b = (a\/b,,..., an/bs)
(b >0) we have either

()0

”—-au ey @)

Proof. Assumirg f(a/b)# 0 we have
1 a
RENIGIE

= sup  [Jf(9)

£ on line
netween a/b and a

or

f(;,‘f)—f(a)[

il




Algebraic independence of certain Louiville numbers - 43
Either |a/b - a || =1 or there exists C' = C(a, f) such that
Sl;Pfo(E)I =<C
and we are done.
Corollary 4. Leta = (ay, ..., a.) be real. Suppose that for all positive intzger n-tuples

dy,...,d. and that for all non-zero polynomials f(x) with intege~ coefficients in n
variables, there is a rational a/b = (a,/b,,.. ., a./b,) such that

f(3)#0 | ®

and

- <sroe
Then a = (a4, ..., a,) is algebraically independent.
Now suppose that
*= 2 pi* (Isi=n)

are Liouville series. Set

so that b, = p!~. Then
2

D ;‘N+l 4

-;-:-—-a" <Vnmax { -gi—ai”s\/_ri

1<i=n {

where we assume p; < p; (2<i < n). It is then easily verified that (4) is satisfied for
some N sufficiently large, depending on d,,...,d.
Thus we arrive at the following.

Lemma 5. Let p,,...,p. be integers. In order to show that Liouville series
2 Pt 2, pat

ar: algebraiclly independent. it suffices to show that for all non-zero polynomials
f(x) i n-variables with inceger coefficients, there exist infinitely many N such that

N r
f( > Pt 2 p;"~) #0.
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44 W.W. Adams

|p*=pi*le = $l(ai - ak. s ®)

where a,, a, are given in {6).
To prove (a) in Lemma 6, we see that we may take p,=p and p,=1 in (8) to
conclude that

— 0

v—»x

lp™ —1lp<|h.|e

y

since the hypothesis of Theorem 1 guarantees that ordek, — ® (v — ).
To prove (b) in Lemma 6 we see immediately from (8) that the first term
dominates the sum and has the desired form.

4. Proof of Theorem 2

We must show that the hypotheses of Lemma 5 are valid. So assume that

p1, ..., p. are multiphcatively independent and that f(x,,...,X.) is a polynomial
such that for all N large

N N
f( 21 pi*..., Z p;“--) =0. 9)

Setting a; = 2., p;* (1 <i < n) we also have
flan. .. ) = 0.

Ceusider the Taylor Expansion of f about ay, ..., @,

f(xh . . xn) = % C(‘_)(x - ai)ix .o (x —_ a")iu’

for (i) = (i1y. .., in)-
Since p,, ..., p. are multiplicatively independent, the integers ay, = pit-+ - pir are
all different. Choose (io) such that a, is least with C,, # 0. We observe that

a0
p;k~¢|$ z pi—kvg Zp;kN*‘,

v=N+1

Thus from (9) we see that, for d = total degree of f,

—

. kN*l
Col< 3 ICol2(2) "0 (N—w)

i)3¢(ig,

Hence Cy,=0 and we se. f =0, as desired.
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The proof of Lemma 6 will be deferred until we show the impossibility of (5).
Set Xy = (Zo-1p~", -1 p3*). Then by Lemma 6(a)
Xy =(N+amwmN+am) |
where limy...aw = a; exists in Qp. Set
R(xy,x3)=x1—x2—a; + az.
There is an integer ! such that
Q(x, x2) = R (x5, x2)'Q1(x4, X2)
such that R * Q,. From (5)
[Q(Xn)lr = | R(Xn)[p| Q(Xn)]p < P7~.
By Lemma 6(b), for N=N, -1
IR (XN)IP = I(am = a;)— (e — 0‘2)’?

=13 @or-pt ,

v= Nj

= C|kn,|s.

Hence | Qy(Xn)]r < (/C)P "y | ky, |5'— 0 (j — ).

Now, by hypothesis, the sequence Xy = (N + ain, N + a2n) (N = N; — 1) has an
infinite number of distinct limit points. If X is one of them, then R(Xy)—->0 and
Qy(Xn)—0 (j — ) implies R(X)= Q,(X)= 0. Hence the polynomials R and Q,
have an infinite number of distinct zeros in common. Since R is linear, hence
irreducible, this implies that R IQ, violating the definition of Q.. Tkus (5) is
impossible.

It remains only to prove Lemma 6.

Proof of Lemma 6. By Fermat’s little theorem we may write }
p'=1+aP (i=12). | (6)
For v large write k, = (P — 1)k;. Then

p= lPt“"‘P%"lr
= ,(1'!‘ a,P)";-— (1+ azp)";"p

K

D ("‘)(asﬂ-a:{)w

s=1 \ M
Using the well-knowr [1; page 46] result that

[pi*—pz*

™)

P

,M!lp = P -swP-1)

where. if g =so+s:P+ - +sP' with 0<s5 <P, s(u)y=s0+ +-- +5; it is noi
hard to show that the first term in (7) dominates. Thus we conclude that
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3. Proof of Theorem I

We restrict ourselves to n = 3. So suppose that for all N sutﬁciexgly large
N N N ‘
f( 2 pi*s 2 pa* 2 p;"~> =0

where f is a non-zero polyaomial with integer coefficients. V/rite
43

f(xil’ X2, x3) = 2 ’)i(xl, Xz)xg

i=0

with Q;(x,, x,) polynomia:.: with integer coefficients and Qq,(x1, x2) # 0, and d; =0.
As before, write /b, = % - pi*, b= pf"'. Then

d,
Ay G2\ . dy-idk
= Q("" "")a's 32 N
% 9\3,5,)2

j=0

= 4, a:) 4, Ky
- Q"’(bl’bz)a’ (mod P*~).

Since P f a, we obtain

a4 4:) _ Ky
Od:(bl,bz)—o (mod P*~).

Set Q = Q,,. Thus we have a non-zero poiynomial Q(x;, x2) with integer coeffi-
cients such that for all N sufficiently large

Q(Z: p;*v,;: p;*v)so (mod P*~), 6)

We wil: show that (5) is impossible. We will now work in the P-adic field Qp.
Denote the P-adic integers by Z, and the P-adic valuation by |---|,. We will
require the following lemma.

Lemma 6.
(a) For any integer p prime to P the series
> @™

v=1

converges in Zp.
(b) For N, as in Theorern 1 we have

) (p]—k.,__p;'!,,)l?:: Clkn |

veNg A

where C is a non-zero constant depending on p,,p, and P.
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