ON THE ALGEERAIC INDEPENDENCE OF CERTAIN UIOUVILLE NUMBIERS

William W. ADAMS
Department of Mathematics, University of Maryland, College Park, MD 20742, U.S.A.

Received 24 June 1977

Dedicated to the memory of George Cooke

1. Introduction

The purpose of this paper is to prove that certain sets of Liouville numbers are algebraically independent. For this purpose we define α to be a Liouville series provided α has a representation as an infinite series of the form

$$
\alpha=\sum_{\nu=1}^{\infty} p^{-k_{\nu}}
$$

where $p>1$ is an integer and k_{ν} is a strictly increasing sequence of positive integers such that

$$
\lim _{N \rightarrow \infty} \frac{k_{N+1}}{k_{N}}=\infty .
$$

The following theorem is proved.
Theorem 1. Let $\alpha_{1}=\sum_{\nu=1}^{\infty} p_{1}^{-k_{\nu}}, \alpha_{2}=\sum_{\nu=1}^{\infty} p_{2}^{-k_{\nu}}$ ard $\alpha_{3}=\sum_{\nu=1}^{\infty} p_{3}^{-k_{\nu}}$ be. Liouville serier, where we assume that $p_{1} \neq p_{2}$ and that $P>2$ is a prime such that

$$
P \mid p_{3}, \quad P \nmid p_{1}, \quad P \nmid p_{2} \quad \text { and } \quad P-1 \mid k_{\nu}
$$

for all ν large.
Finally we assume there is a strictly increasing sequence N_{j} of positive integers such that N_{j} has an infinite number of limit points in the P-adic integers \mathbb{Z}_{P} and such that

$$
\operatorname{ord}_{P} k_{N_{i}}<\operatorname{ord}_{P} k_{\nu} \quad \text { for all } \nu>N_{i}
$$

and

$$
k_{N_{j-1}^{-1}} / \operatorname{ord}_{P} k_{N_{j}} \rightarrow \infty \quad(j \rightarrow \infty) .
$$

Then $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are algebraically independent.
Example. The integers $k_{\nu}=\nu$! satisfy the hypotheses with $N_{i}=-1+j$. Thus we see that

$$
\sum_{\nu=1}^{\infty} 2^{-\nu!}, \quad \sum_{\nu=1}^{\infty} 4^{-\nu!}, \quad \sum_{\nu=1}^{\infty} 3^{-\nu!}
$$

are algebraically independent.
It was pointed out to me by David Cantor that with a stronger hypothesis on the p_{i}, the restriction to 3 variables is easily lifted. Namely the following is true.

Theorem 2. Let $\alpha_{i}=\sum_{v=1}^{\infty} p_{i}^{-k_{\nu}}$ be Liouville Series $(1 \leqslant i \leqslant n)$ where p_{1}, \ldots, p_{n} are muliplicatively independert integers larger than 1. Then $\alpha_{1}, \ldots, \alpha_{n}$ are algebraically independent.

The proof proceeds in t 'o stages. First we generalize the usual Liouville criterion for transcendence [2, p. 121] in the most naive possible way (Section 2). This generalization requires $a, 2$ hypothesis concerning the non-vanishing of polynomials in more than one variable at certain rational points. This hypothesis is easily verified to prove Theort m 2. In Section 3 we give a P-adic argument to verify the hypothesis in order to prove Theorem 1.

There are many other results on the algebraic independence of Liouville numbers (c.f. [3, 4]). They all concentrate on having approximation hypotheses strong enough to guarantee in advance that the polynomials involved cannot vanish at the appropriate rational r oints. These theorems do not seem to be strorg enough to prove the results of this paper.

2. A generalized Liouville theorem

Proposition 3. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be a vecto: of real numbers which is algebraically dependent. Let $f(x)$ be any non-zero polynomial in n-variables, with integer coefficients and degree d_{i} in $x_{i}\left(x=\left(x_{1}, \ldots, x_{n}\right)\right)$ such that $f(\alpha)=0$. Then there exists a constant $c=c(\alpha, f)$ such that for all rational n-tuples $a / b=\left(a_{1} / b_{1}, \ldots, a_{n} / b_{n}\right)$ ($b_{i}>0$) we have either

$$
\begin{equation*}
f\left(\frac{a}{b}\right)=0 \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\left\|\frac{a}{b}-\alpha\right\| \geqslant \frac{c}{b_{1}^{d_{1}} b_{2}^{d_{2} \cdots b_{n}^{d_{n}}}} . \tag{2}
\end{equation*}
$$

Proof. Assumirg $f(a / b) \neq 0$ we have

$$
\begin{aligned}
\frac{1}{b_{1}^{d_{1} \cdots b_{n}^{d_{n}}}} & \leqslant\left|f\left(\frac{a}{b}\right)\right|=\left|f\left(\frac{a}{b}\right)-f(\alpha)\right| \\
& \leqslant \sup _{\substack{\xi \\
\text { netwe tine } \\
\text { neen } \alpha / b \text { and } \alpha}}|f f(\xi)|\left\|\frac{a}{b}-\alpha\right\| .
\end{aligned}
$$

Either $\|a / b-\alpha\| \geqslant 1$ or there exists $C=C(\alpha, f)$ such that

$$
\sup _{\xi}|D f(\xi)| \leqslant C
$$

and we are done.

Corollary 4. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be real. Suppose that for all positive integer n-tuples d_{1}, \ldots, d_{n} and that for all non-zero polynomials $f(x)$ with intege coefficients in n variables, there is a rational $a / b=\left(a_{1} / b_{1}, \ldots, a_{n} / b_{n}\right)$ such that

$$
\begin{equation*}
f\left(\frac{a}{b}\right) \neq 0 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\frac{a}{b}-\alpha\right\| \leqslant \frac{1}{b_{1}^{d_{1}} \cdots \cdot b_{n}^{d_{n}}} . \tag{4}
\end{equation*}
$$

Then $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is algebraically independent.

Now suppose that

$$
\alpha_{i}=\sum_{\nu=1}^{\infty} p_{i}^{-k_{i}} \quad(1 \leqslant i \leqslant n)
$$

are Liouville series. Set

$$
\frac{a_{i}}{b_{i}}=\sum_{\nu=1}^{N} p_{i}^{-k_{\nu}}
$$

so that $b_{i}=p_{i}^{k_{N}}$. Then

$$
\left\|\frac{a}{b}-\alpha\right\| \leqslant \sqrt{n} \max _{1 \leqslant i \leqslant n}\left\{\left|\frac{a_{i}}{b_{i}}-\alpha_{i}\right|\right\} \leqslant \sqrt{n} \frac{2}{p_{1}^{k_{N+1}}},
$$

where we assume $p_{1} \leqslant p_{i}(2 \leqslant i \leqslant n)$. It is then easily verified that (4) is satisfied for some N sufficiently large, depending on d_{1}, \ldots, d_{n}.

Thus we arrive at the following.

Lemma 5. Let p_{1}, \ldots, p_{n} be integers. In order to show that Liouville series

$$
\sum_{\nu=1}^{\infty} p_{1}^{-k_{\nu}}, \ldots, \sum_{\nu=1}^{\infty} p_{n}^{-k_{\nu}}
$$

are algebraically independent it suffices to show that for all non-zero poiynomials $f(x)$ in in-variables with inieger coeficients, there exist infinitely many N such that

$$
f\left(\sum_{\nu=1}^{N} p_{1}^{-k_{\nu}}, \ldots, \sum_{\nu=1}^{N_{\nu}} p_{n}^{-k_{\nu}}\right) \neq 0 .
$$

$$
\begin{equation*}
\left|p_{1}^{-k_{v}}-p_{2}^{-k_{v}}\right|_{P}=\frac{1}{P}\left|\left(a_{1}-a_{2}\right) k_{\nu}\right|_{P} \tag{8}
\end{equation*}
$$

where a_{1}, a_{2} are given in (6).
To prove (a) in Lemma 6, we see that we may take $p_{1}=p$ and $p_{2}=1$ in (8) to conclude that

$$
\left|p^{-k_{\nu}}-1\right|_{P} \leqslant\left|h_{\nu}\right|_{P} \longrightarrow \nu 0,
$$

since the hypothesis of Theorem 1 guarantees that $\operatorname{ord}_{p} k_{\nu} \rightarrow \infty(\nu \rightarrow \infty)$.
To prove (b) in Lemma 6 we see immediately from (8) that the first term dominates the sum an 1 has the desired form.

4. Proof of Theorem 2

We must show that the hypotheses of Lemma 5 are valid. So assume that p_{1}, \ldots, p_{n} are multiplicatively independent and that $f\left(x_{1}, \ldots, x_{n}\right)$ is a polynomial such that for all N large

$$
\begin{equation*}
\dot{f}\left(\sum_{v=1}^{N} p_{1}^{-k_{v}}, \ldots, \sum_{v=1}^{N} p_{n}^{-k_{v}}\right)=0 . \tag{9}
\end{equation*}
$$

Setting $\alpha_{i}=\sum_{v=1}^{\infty} p_{i}^{-k_{\nu}}(1 \leqslant i \leqslant n)$ we also have

$$
f\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0
$$

Corasider the Taylor Expansion of f about $\alpha_{1}, \ldots, \alpha_{n}$,

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{(i)} C_{(i)}\left(x-\alpha_{i}\right)^{i_{1}} \cdots\left(x-\alpha_{n}\right)^{i_{n}}
$$

for $(i)=\left(i_{1}, \ldots, i_{n}\right)$.
Since p_{1}, \ldots, p_{n} are multiplicatively independent, the integers $a_{(i)}=p_{1}^{i_{1}} \cdots p_{n}^{i_{n}}$ are all different. Choose (i_{0}) such that $a_{\left(i_{0}\right)}$ is least with $C_{\left(i_{0}\right)} \neq 0$. We observe that

$$
p_{i}^{-k_{N+1}} \leqslant \sum_{\nu=N+1}^{\infty} p_{i}^{-k_{\nu} \leqslant 2 p_{i}^{-k_{N+1}} . . . ~}
$$

Thus from (9) we see that, for $d=$ total degree of f,

$$
\left|C_{(i 0)}\right| \leqslant \sum_{(i))^{2} t_{(i 0)}}\left|C_{(i)}\right| 2^{d}\left(\frac{a_{(i 0)}}{a_{(i)}}\right)^{k_{N+1}} \rightarrow 0 \quad(N \rightarrow \infty)
$$

Hence $C_{(i)}=0$ and we ser $f \equiv 0$, as desired.

The proof of Lemma 6 will be deferred until we show the impossibility of (5).
Set $X_{N}=\left(\sum_{v=1}^{N} p^{-k_{v}}, \sum_{v=1}^{N} p_{2}^{-k_{v}}\right)$. Then by Lemma 6(a)

$$
X_{N}=\left(N+\alpha_{1 N}, N+\alpha_{2 N}\right)
$$

where $\lim _{N \rightarrow \infty} \alpha_{i N}=\alpha_{i}$ exists in $\mathbf{Q}_{\text {p }}$. Set

$$
R\left(x_{1}, x_{2}\right)=x_{1}-x_{2}-\alpha_{1}+\alpha_{2} .
$$

There is an integer l such that

$$
Q\left(x_{1}, x_{2}\right)=R\left(x_{1}, x_{2}\right)^{\prime} Q_{1}\left(x_{1}, x_{2}\right)
$$

such that $R \not \backslash Q_{1}$. From (5)

$$
\left|Q\left(X_{N}\right)\right|_{P}=\left|R\left(X_{N}\right)\right|_{P}\left|Q_{1}\left(X_{N}\right)\right|_{P} \leqslant P^{-k_{N}} .
$$

By Lemma 6(b), for $N=N_{j}-1$

$$
\begin{aligned}
\left|R\left(X_{N}\right)\right|_{p} & =\left|\left(\alpha_{1 N}-\alpha_{1}\right)-\left(\alpha_{2 N}-\alpha_{2}\right)\right|_{p} \\
& =\left|\sum_{\nu=N_{i}}^{\infty}\left(p_{1}^{-k_{v}}-p_{2}^{-k_{k}}\right)\right|_{p} \\
& =C\left|k_{N_{1}}\right| p_{p} .
\end{aligned}
$$

Hence $\left|Q_{1}\left(X_{N}\right)\right|_{P} \leqslant(1 / C) P^{-k_{N,-1}}\left|k_{N_{1}}\right|_{P}^{-1} \rightarrow 0(j \rightarrow \infty)$.
Now, by hypothesis, the sequence $X_{N}=\left(N+\alpha_{1 N}, N+\alpha_{2 N}\right)\left(N=N_{j}-1\right)$ has an infinite number of distinct limit points. If X is one of them, then $R\left(X_{N}\right) \rightarrow 0$ and $Q_{1}\left(X_{N}\right) \rightarrow 0(j \rightarrow \infty)$ implies $R(X)=Q_{1}(X)=0$. Hence the polynomials R and Q_{1} have an infinite number of distinct zeros in common. Since R is linear, hence irreducible, this implies that $R \mid Q_{1}$ violating the definition of Q_{1}. Thus (5) is impossible:

It remains only to prove Lemma 6.
Proof of Lemma 6. By Fermat's little theorem we may urite

$$
\begin{equation*}
p_{i}^{p-1}=1+a_{i} P \quad(i=1,2) . \tag{6}
\end{equation*}
$$

For ν large write $k_{\nu}=(P-1) k_{\nu .}^{\prime}$. Then

$$
\begin{align*}
\left|p_{1}^{-k_{v}}-p_{2}^{-k_{v}}\right|_{P} & =\left|p_{1}^{k_{\nu}^{\prime}}-p_{2}^{k_{2}^{\prime}}\right|_{P} \\
& =\left|\left(1+a_{1} P\right)^{k_{i}}-\left(1+a_{2} P\right)^{k_{i}^{\prime}}\right|_{P} \\
& =\left|\sum_{\mu=1}^{k_{1}}\binom{k_{v}^{\prime}}{\mu}\left(a_{1}^{\mu}-a_{2}^{\mu}\right) P^{\mu}\right|_{P} \tag{7}
\end{align*}
$$

Using the well-knowr [1; page 46] result that

$$
|\mu!|_{P}=P^{-(\mu-s(\mu)) /(P-1)}
$$

where. if $\mu=s_{0}+s_{1} P+\cdots+s_{1} P^{\prime}$ with $0 \leqslant s_{i}<P, s(\mu)=s_{0}+\cdots+s_{i}$; it is not hard to show that the first term in (7) dominates. Thus we conclude that

3. Proof of Theorem 11

We restrict ourselves to $n=3$. So suppose that for all \boldsymbol{N} sufficiently large

$$
f\left(\sum_{\nu=1}^{N} p_{1}^{-k_{\nu}}, \sum_{\nu=1}^{N} p_{2}^{-k_{\nu}}, \sum_{\nu=1}^{N} p_{3}^{-k_{\nu}}\right)=0
$$

where f is a non-zero polyiomial with integer coefficients. V/rite

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\sum_{j=0}^{d_{3}} \cdot 2_{j}\left(x_{1}, x_{2}\right) x_{3}^{j}
$$

with $Q_{j}\left(x_{1}, x_{2}\right)$ polynomiai, with integer coefficients and $Q_{d_{3}}\left(x_{1}, x_{2}\right) \neq 0$, and $d_{3} \geqslant 0$. As before, write $a_{i} / b_{i}=\bigcup^{v}{ }_{-1} p_{i}^{-k_{v}}, b_{i}=p_{i}^{k_{N}}$. Then

$$
\begin{aligned}
0 & =p_{3}^{d_{3} k_{N}}\left(\frac{a_{1}}{b_{1}}, \frac{a}{b_{2}}, \frac{a_{3}}{b_{3}}\right) \\
& =\sum_{j=0}^{a_{3}} Q_{i}\left(\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}\right) a_{3}^{j} p_{3}^{\left(d_{3}-j\right) k_{N}} \\
& \equiv Q_{d_{3}}\left(\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}\right) a^{d_{3}}\left(\bmod P^{k_{N}}\right) .
\end{aligned}
$$

Since $P \nmid a_{3}$ we obtain

$$
Q_{d_{3}}\left(\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}\right) \equiv 0 \quad\left(\bmod P^{k_{N}}\right)
$$

Set $Q=Q_{d_{3}}$. Thus we have a non-zero polynomial $Q\left(x_{1}, x_{2}\right)$ with integer coefficients such that for all N sufficiently large

$$
\begin{equation*}
Q\left(\sum_{\nu=1}^{N} p_{1}^{-k_{\nu}}, \sum_{\nu=1}^{N} p_{2}^{-k_{\nu}}\right) \equiv 0 \quad\left(\bmod P^{k_{N}}\right) \tag{5}
\end{equation*}
$$

We will show that (5) is impossible. We will now work in the P-adic field \mathbf{Q}_{P}. Denote the P-adic integers by \mathbb{Z}_{p} and the P-adic valuation by $|\cdots|_{p}$. We will require the following lemma.

Lemma 6.

(a) For any integer p prime to P the series

$$
\sum_{\nu=1}^{\infty}\left(p^{-k_{\nu}}-1\right)
$$

converges in $\mathbb{Z}_{\mathbf{P}}$.
(b) For N as in Theorern 1 we have

$$
\left|\sum_{\nu=N_{l}}^{\infty}\left(p_{1}^{-k_{\nu}}-p_{2}^{-k_{v}}\right)\right|_{P}:=C\left|k_{N_{j}}\right|_{P}
$$

where C is a non-zero constant depending on p_{1}, p_{2} and \mathbb{P}.

References

[1] G. Bachman, Introduction to p-adic Numbers and Valuation Theory (Academic Press, New York, 1964).
[2] W.J. LeVeque, Topics in Number Theory (Addison Wesley, Reading Ma, 1956).
[3] O. Perron, Über mehrfach transzendente Erwütenungen des natürichen Rationalitütsbereichs. S.-B. Bayer. Akad. Wiss. H. 2 (1932) 79-86.
[4] W.M. Schmidt, Simultaneous approximation and algebraic independence of numbers, Biall. Amer. Math. Soc. 68 (1962) 475-478.

