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1. Introaiuction 

The purpose of this paper is to prove that 
algebraically independent. For this purpose 
provided a! has a representation as an infinite series of the form 

certain sets of Liouville numbzrs are 
wt define CY to be a Lisz~ilhr series 

00 

a= c P ‘k” 
u=l 

where p > 1 is an integer and k, is a strictly increasing sequence of positive integers 
such that 

k 
lim F = 00. 
N--J N 

The following theorem is proved. 

T~WF~IEI I. Let al = xz=, p;&u, o2 = ~~=, ~2” arc&i cy3 = .xT=, ,p$ be Lrouville sen’et\, 

where we assume that pl $ p2 and that P > 2 is a prime such that 

1’ I p3, Nh P)p2 and P-l/k, 

for all v large. 
Finally we assume there is a strictly increasing sequence Nj of positive integers stat 

that Ni has an infinite number of limit points in the B-l;tdic integers & aszd slrch that 

and 
ordPkN, < ordp k, for all v > Nj 

k,.-,/ordP k, -+ CXJ (j -=+ 00). 

Then w, cy2, cy3 are algebraically indepen 
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% 
O” 2-u!, “J& 4-u!, 

v=l “$, 3-“! 

are algebraically independent. 

It was pointed out to me by David Cantor that with a stronger hypothesis on the 
pi, the restriction to 3 variables is easily lifted. Namely the following is true. 

Theorem 2. Let ai = xr= 1 p;‘u be Liouville Series (16 i G n) where pl, . , ., pm are 

mul~iplicatively independer”lt integers larger than 1. Then al, . . ., a,, are algebraically 
independent. 

The proof proceeds in t-k ‘0 stages. First we generalize the usual Liouville criterion 

for transcendence [2, p. i21] in the most naive possible way (Section 2). This 
generalization requires a J hypothesis concerning the non-vanishing of polynomials 

in more than one varklble at certain rational points. This hypothesis is easily 
verified to prove Theort m 2. In Section 3 we give a P-adic argument to verify the 
hypothesis in order to prove Theorem 1. 

There are many other results dn the algebraic independence of Liouville 
numbers (c.f. 13, 41). They all concentrate on having approximation hypotheses 
strong enough to guaranke in advance that the polynomials involved cannot vanish 
at the appropriate rational r oints. These theorems do not seem to be stror;g enough 
to prove the results of this paper. 

2. A generalized Liouville theorem 

Proposition 3. Let Q! = (a,, . . ., a, ) be a vecto? of real numbers which is algebraically 
dependent. Let f(x) be any non-zero polynomial in n-variables, with integer 
coefficients and degree di in xi (x = (x 1, . . ., x,)) such that f (a) = 0. Then there exists a 
constant c = c(a,f) such that for all rational n-tuples alb = (aJbl,. . ., rl,Jb,,) 
(b, > 0) we have either 

f( 1 
g =O 

or 

. Assuming f(a/b)# 0 we have 

’ d d if(;)1 = lf(;)-f(al[ &‘I.. . b,m 

(1) 

(2) 
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Either I/a/b - cy 113 1 or there exists C = C(cu,f) such that 

and we are done. 

Corollsary 4. I.et <y = (an,. . ., a,) be real. Su,0pose that for all positive integer n-tuples 
d l,. . ., i& and that for all non-zero polymmials f(x) vsith intei?e- coeflcierots in n 
var:‘ables, there is a ratkmal a jb = (a,/bI, . . ., a,]b,) such that 

P( > ; #O (3) 
and 

These cw = (al,. . ., a,) is algebraically independent. 

Now suppose that 
01 

Cyi = c PFkt (1sEi G n) 
lJ=l 

are Liouville series. Set 

SO that bi = p:“. Then 

a II It -- 
b Q! 

where we assume pI G pi (2 G i s n). It is then easily verified that (4) is satisfied for 
some N sufficiently large, depending on d ,, . . ., (d,. 

Thus we arrive at the following. 

5. Let ~1,. . .,p,, be integers. n order to show that LiouviZle series 

ces go show that 
en@, ere ex 
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Jf.Gk-- pil’+ = f 1 (al - az)k, IP 

where al, a2 are given in (6). 
To prove (a) in Lemma 6, we see that we may take pI = p and p2 = 1 in (8) to 

conclude that 

I$ -Irv- l/P cII&----+o, y-•oD 

since the hypothesis of Theorem 1 guarantees that ord&, +a~ (Y --, m). 
To prove (b) in Le,mna 6 we see immediately from (8) th.at the first term 

dominates the sum an.;1 has the desired form. 

4. Proof of Theorem 2 

We must show that the hypotheses of 

Ply . . ., pn are multiplicatively independent 
such that for all N large 

Lemma 5 are valid. So assume that 
and that f(x,, . . ., x, ) is a polynomial 

Setting Cyi = X:=1 piku (1 g i d n) we also have 

fh , r . ‘$ f&)=0. 

Coyisider the Taylor Expansion of f about acl, . . ., a,, 

for (i) = (&, . . ., in). 

Since pl, . . ., pm are muhiplicatively independent, the integers a(i) = pi1 9 l l p f: are 
all different. Choose (ia) such that a(,, is least with C,,, # 0. We observe that 

pik A’+1 s 2 p;‘LJq++*, 
v=N+l 

Thus from (9) we see that, for d = total degree of f, 

kN+t 



The proof of Lemma 6 wi li be deferred until we show the impossibility of (5). 
Set XN = (E~=,P-~; xr_&“+. Then by Lemma 6(a) 

XN = (N + al& PJ + hl) 

where iimN,, &yiN 

R(x,, x2) = x1 - x2 - at + cx2. 

There is an integer I such that 

Q(x,, x2) = I? (XI, G)*QI(xI, ~2) 

such that R ,/’ Q1. From (5) 

1 0(X& = 1 R(L)I:,I Q,(x,)l~ g rkN. 

By Lemma 6(b), for N = Nj - 1 

IR(x”J)IP = l(alN - al)- (a2N - 4/p 

Hence 1 QI(XN)Ip s (l/C)P-ILNrlI kNj Ii’_* 0 (j --, 0~). 
Now, by hypothesis, the sequence XN = (N + aIN, N t- azN) (F = Ni - 1) has an 

infinite number of distinct limit points. If X is one of them, then R (XN)-+ 0 and 
QI(XN) + 0 (/ + 00) implies R (X) = Ql[X) = 0. Hence the polynomials R and Q1 
have an infinite number of distinct zeros in common. Since R is linear, hence 
irreducible, this implies that R 1 Q 1 violating the definition of Q1. Thus (5) is 
impossible: 

ft remains only to prove Lemma 6. 

Proof of Lemma 6. By Fermat’s little theorem we may whte 

pp” = 1 + aiP (i = 1,2). (6) 

For v large write k, = (P - 1)k :. Then 

IQ’- p;“+ = I+- p:+ 

= I(1 4 aJ+- (If Q*P)k+D 
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3. Proof of Theorem 11 

We resttict ourselves to n = 3. So suppose that for all IV ~ufficier$ly large 

where f is a non-zero polyitomial with integer coefficients. VJrite 

P(r.1, n*, X3) = ,$ +?j(Xl, X*)X4 
*sa 

with Qi (x1, x2) polynomiaL; with integer coefficients and Q&x,, x2) # 0, and d3 3 0. 
AS before, write Ui/bi = ‘3 V=IPrk; bi = Pp. Then 

zs Qd3($$+3 (mod PkN). 

Since P $ n3 we obtain 

Q#&(f$)- 0 (mod PkN). 

Set Q = Qd3. mus we have a non-zero polynomial Q(x,, x2) with integer coeffi- 
cients such that for all N sufficiently large 

Q( i pi’v, g pTku) = 0 (mod P’N). 
u=l 

(5) 

We wil! show that (5) is impossible. We will now work in the P-adic field Qp. 
Denote the P-adic integers by Z, and the P-adic valuation by 1 l l l IP. We will 
require the following lemma. 

6. 
(a) For ar#y integer p prime to P the series 

,r: (p-k’ - 1) 
u-1 

(b) For N, as in Theorem 1. we have 
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