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1. Introduction

Classical tilting theory originated in the 1970s and concerned finitely generated 1-tilting modules over artin algebras.
Since then, many powerful generalizations have been developed. However, these are mainly restricted to artin algebras
and categories with finite dimensional Ext-spaces over a field, or they work with categories of all modules and are more of
theoretical interest. In this paper we develop a computationally feasible method for working with derived equivalences of
abelian categories. We apply it to extend the descriptions of quasi-tilted algebras by Happel et al. [16] to the more general
setting of right coherent and right noetherian rings.

The 1996 Memoir [16] provided a major extension of classical tilting theory, developing tilting theory with respect
to a tilting torsion pair in a locally finite hereditary abelian category. In particular the equivalence of the following three
conditions was proved in [16] for each artin algebra R:

(i) R is quasi-tilted, that is, isomorphic to the endomorphism algebra of a tilting object in a locally finite hereditary abelian
category.

(ii) There is a split torsion pair in mod-R whose torsion-free class Y consists of modules of projective dimension ≤ 1, and
R ∈ Y;

(iii) R is almost hereditary, that is, R has right global dimension≤ 2, and pdM ≤ 1 or idM ≤ 1 for each finitely generated
indecomposable moduleM .

In 2007, Colpi, Fuller, and Gregorio considered analogs of (i)–(iii) for arbitrary modules over arbitrary rings. In [8], a
version of the equivalence between (i) and (ii) was proved for Mod-R, the category of all modules and tilting objects
in hereditary cocomplete abelian categories. The exact relation of (ii) and (iii) in this setting remains, however, an open
problem.

Colpi, Fuller, and Gregorio also suggested considering the equivalence of (ii) and (iii) in the form stated above, but for
arbitrary right noetherian rings R. They proved several results in this direction (see Section 6 for more details), but the
equivalence remained an open problem.
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Here we give a short proof for the equivalence between (ii) and (iii) for all right noetherian rings. The main result of the
paper is then

Main Theorem. The following are equivalent for a right noetherian ring R:

(i) R is isomorphic to the endomorphism ring of a tilting object in a small hereditary abelian category.
(ii) There is a split torsion pair inmod-R whose torsion-free class Y consists of modules of projective dimension≤ 1, and R ∈ Y;
(iii) R is almost hereditary, i.e., R has right global dimension ≤ 2, and pdM ≤ 1 or idM ≤ 1 for each finitely generated

indecomposable module M;

Moreover, (i) is equivalent to (ii) for any right coherent ring R.

Here we call an object T in a small abelian category A tilting if it has projective dimension at most 1, has no self-
extensions, for each X ∈ A, HomA(T , X) = 0 = Ext1A(T , X) implies X = 0, and both HomA(T , X) and Ext1A(T , X) are
finitely generated EndA(T )-modules.

The work of Happel et al. [16] was motivated by obtaining a unified treatment for tilted and canonical artin algebras.
Our results show that one can extend this framework to encompass further examples, for instance the class of serially tilted
rings [6]. Moreover, the proofs of the key statements are quite short.

Our paper is organized as follows. After recalling preliminary facts, we present a general theory for tilting in abelian
categories using torsion pairs in Sections 3–5. The definition and properties of tilting objects are given in Section 4. In
Section 6, we complete the proof of the Main Theorem. Finally, we illustrate it on a couple of examples in Section 7.

2. Preliminaries

In what follows all rings are associative with unit, but not necessarily commutative. For a ring R, we denote by Mod-R
the category of all (right R-) modules, by mod-R its subcategory consisting of all finitely presented modules, and by ind-R
the subcategory of mod-R consisting of all indecomposable modules. Recall that a ring R is right coherent if every finitely
generated right ideal of R is finitely presented. It is well known that R is right coherent if and only if the category mod-R is
abelian. For example, any right noetherian or right artinian ring is right coherent.

LetA be an abelian category. AlthoughAmay not have enough projectives or injectives, one can still define the projective
dimension of X ∈ A as pdAX = n where n ≥ 0 is the minimal m such that Extm+1A (X,−) ≡ 0 or n = ∞ if no such m exists.
Dually, we define the injective dimension of X ∈ A. The global dimension of A is defined by gl.dim.A = sup{pdAX | X ∈ A},
and A is said to be hereditary if gl.dim.A ≤ 1. These concepts have the usual properties that are well known for module
categories. In particular, gl.dim.A = n <∞ if and only if Extn+1A (−,−) ≡ 0 if and only if ExtiA(−,−) ≡ 0 for each i ≥ n+1.

Following the convention in [12], we denote by K b(A) the category of bounded complexes over A modulo the ideal of
null-homotopic chain complex morphisms. This is well known to be a triangulated category where the triangles are formed
using mapping cones. By Db(A), we denote the bounded derived category of A, that is, the localization of K b(A) with respect
to the class Σ of all quasi-isomorphisms.

The idea of localizing triangulated categories and constructing derived categories, studied by Verdier [34] in the 1960’s,
is, nevertheless, muchmore general. A detailed account of this is given in [25, Section 2.1]. A nice overview can also be found
in [21], for example. Let T be a triangulated category and S ⊆ T a triangulated subcategory. Denote by Σ the class of all
morphisms X → Y in T which can be completed to a triangle X → Y → S → X[1] such that S ∈ S. Then we can form a
Verdier quotient T /S described as follows:

(1) The objects of T /S coincide with the objects of T .

(2) The morphisms from X to Y are left fractions X
f
→ Z

σ
← Y (denoted σ−1f for short) such that f ∈ HomT (X, Z) and

σ ∈ Σ , modulo the following equivalence relation: σ−11 f1 and σ−12 f2 are equivalent if one can form a commutative
diagram such that σ ∈ Σ:

Z1

��
X

f1
??�������

f2 ��?
??

??
??

f // Z Y

σ1

__???????

σ2����
��

��
�

σoo

Z2

OO

Equivalently, morphisms in T /S can be expressed as right fractions f σ−1. The way to compose and add fractions is well
known but somewhat technical, we refer for example to [25, Section 2.1]. As with the usual Ore localization, we have
σ−1f = 0 in T /S if and only if τ f = 0 in T for some τ ∈ Σ . If, moreover, S is a thick subcategory of T (that is, triangulated
and closed under those direct summands which exist in T ), then σ−1f is invertible if and only if f ∈ Σ , [25, 2.1.35].
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The categoryT /S inherits a natural triangulated structure fromT such that the localization functorQ : T → T /S which
sends f : X → Y to 1−1Y f is exact. However, Q is neither full nor faithful in general. The construction of the derived category
fits into this framework: Db(A) = K b(A)/K b

ac(A) where K b
ac(A) is the full subcategory given by all acyclic complexes.

The only limitation for this construction is in the possible set-theoretic problems arising out of the fact that there is a
priori no reason why the collection of morphisms between two given objects of T /S should form a set and not a proper
class [25, 2.2]. In many cases, it is obvious or well known that HomT /S(X, Y ) is always a set. In the case of the derived
category Db(A) of an abelian category A, one knows that the Hom-spaces are sets if

(1) A is skeletally small,
(2) A has enough projectives or enough injectives (in particular if A = Mod-R).

Although naturally occurring abelian categories typically are in one of the two cases, it is not very difficult to construct a
categoryAwhere someHom-spaces inDb(A) are proper classes, see [11, Exercise 1, p. 131]. In fact, all Hom-spaces inDb(A)
are sets precisely when ExtnA(X, Y ) are sets for each X, Y ∈ A and n ≥ 1. A more detailed account of the problem and its
unexpected consequences appear in [25, Sections 2.2–2.3] and [5].

In order to avoid the set-theoretic problems, we introduce the following definition:

Definition 2.1. An abelian category is called decent if for each pair of objects X, Y ∈ Db(A) the Hom-space HomDb(A)(X, Y )
is a set.

Next, wewill recall the notions of a torsion pair and a t-structure. LetA be an abelian category.We say that a pair (T , F )
of full subcategories of A is called a torsion pair in A if

(1) HomA(T , F) = 0 for each T ∈ T and F ∈ F ;
(2) For each X ∈ A, there is a short exact sequence 0→ T → X → F → 0 such that T ∈ T and F ∈ F .

Note that the exact sequence in (2) is unique up to a unique isomorphism for each X ∈ A. The class T is referred to as
the torsion class, while F is the torsion-free class.

IfD is a triangulated category, there is a closely related notion of a t-structure as defined in [3, Section 1.3]. Let (D≤0,D≥0)
be a pair of full subcategories of D . By convention, one denotes D≤n = D≤0[−n] and D≥n = D≥0[−n] for each n ∈ Z. Then
the pair is a t-structure.

(1) HomD(X, Y ) = 0 for each X ∈ D≤0 and Y ∈ D≥1;
(2) D≤0 ⊆ D≤1 and D≥0 ⊇ D≥1;
(3) For each Z ∈ D , there is a triangle X → Z → Y → X[1] such that X ∈ D≤0 and Y ∈ D≥1.

Note that it follows from the axioms of a triangulated category that the triangle in (3) is unique up to a unique isomorphism.
In fact, t-structures can be viewed as a generalization of torsion pairs to the setting of triangulated categories, this point of
view is pursued in [2].

Given a t-structure (D≤0,D≥0) on D , the heart of the t-structure is defined as H = D≤0 ∩ D≥0. The following crucial
observation goes back to [3]:

Proposition 2.2. Let D be a triangulated category and (D≤0,D≥0) be a t-structure with the heart H = D≤0 ∩ D≥0. Then:

(1) H is an abelian category which is stable under extensions in D (that is, given X, Z ∈ H and a triangle X → Y → Z → X[1]
in D , then Y ∈ H);

(2) A sequence 0→ X
f
→ Y

g
→ Z → 0 is exact in H if and only if there is a triangle X

f
→ Y

g
→ Z → X[1] in D .

(3) There is an isomorphism Ext1H (X, Y ) ∼= HomD(X, Y [1]) which is functorial in both variables.

Proof. Statement (1) is included in [3, Théorème 1.3.6]. Statement (2) can be easily deduced from [3, Proposition 1.2.2].
Finally, (3) immediately follows from (1) and (2). �

Note that if A is an abelian category, there is a canonical t-structure on Db(A) whose heart is equivalent to A. We refer
to [16, I.2.1] for details.

3. Tilting with respect to torsion pairs

In this section we will present basic facts about a tilting procedure for abelian categories using torsion pairs. The main
idea comes from [16, Sections I.2–I.4]; an alternative approach is presented in [27]. Our aim here is to give a streamlined
and generalized account of this topic, using the same idea as [4, Section 5].

We note that there have already been developed fairly general and powerful methods for tilting and for derived
equivalences, e.g. [28,29,18]. Our aim here is slightly different. Many of the results either require a module category on one
side of the derived equivalence or are fairly difficult to use for direct computations. We would like to collect and develop
enough theory here that will enable us to compute particular derived equivalences of general abelian categories.

We will start with recalling a crucial construction following [16, Section I.2].
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Construction 3.1. Given a decent abelian category A (see Definition 2.1), and an arbitrary torsion pair (T , F ), we can
construct a new abelian category B with a torsion pair (X, Y) such that there are equivalences of full subcategories T ∼= Y
and F ∼= X. We proceed as follows: Let (D≤0,D≥0) be a pair of full subcategories of Db(A) defined by:

D≤0 = {X · ∈ Db(A) | H i(X ·) = 0 for all i > 0 and H0(X ·) ∈ T }

D≥0 = {X · ∈ Db(A) | H i(X ·) = 0 for all i < −1 and H−1(X ·) ∈ F }.

Here, H i(X ·) stands for the ith cohomology object of the complex X ·. That is, given

X · : · · ·
di−2
−→ X i−1 di−1

−→ X i di
−→ X i+1 di+1

−→ · · · ,

we putH i(X ·) = Ker di/Im di−1. It is rather straightforward to check that (D≤0,D≥0) is a t-structure, see [16, I.2.1] for details.
Hence B = D≤0 ∩ D≥0 is an abelian category whose exact structure is described by Proposition 2.2. Note that objects of

B correspond up to isomorphism to complexes X · in Db(A) which are concentrated only in degrees−1 and 0 and such that
Ker d−1 ∈ F and Coker d−1 ∈ T (see the proof of [16, I.2.2]). In fact one can view every object ofB, up to isomorphism, as an
element of Ext2A(T , F) for some T ∈ T and F ∈ F . Morphisms inB are, however, more complicated. They are inherited from
Db(A) and correspond to equivalence classes of left fractions of homotopy chain complex maps. We refer to [16, Chapter I]
or the beginning of [8, Section 4] for a more detailed description.

Lemma 3.2 ([16, I.2.2 (b)]). Let A be a decent abelian category, (T , F ) be a torsion pair in A and B ⊆ Db(A) be as in
Construction 3.1. Then (F [1], T ) is a torsion pair in B .

This inspires the following definition (see [16, p.14]):

Definition 3.3. Let A be a decent abelian category and (T , F ) a torsion pair in A. Let B be as in Construction 3.1, and
let X = F [1] and Y = T (as classes in Db(A)). Then B and (B; (X, Y)) are called (T , F )-tilted from A. We set
Φ(A; (T , F )) = (B; (X, Y)).

The following three natural questions arise: First, whether B is decent, too.
If this is the case, then B is naturally equipped with the torsion pair (X, Y) = (F [1], T ). The second question then is

whether we can reconstruct A from this data. More precisely, whether Φ(B; (X, Y)) ∼= (A; (T , F )).
The third question is whether the two triangulated categories which extendB, namelyDb(A) andDb(B), are equivalent.
We do not know a general answer to the first question, but it turns out that even if B is decent, neither of the other two

questions can be answered affirmatively; see [16, I.2.3]. Themain result of this section, Theorem 3.12, will provide a positive
answer to all the three questions above in the particular setting of tilting and cotilting classes:

Definition 3.4. A torsion class T in an abelian category A is called tilting if it cogenerates A. That is, if for each X ∈ A there
is a monomorphism X → T such that T ∈ T . Dually, a torsion-free class F is called cotilting if it generates A.

Note that if A has enough projectives, then a torsion-free class is cotilting if and only if it contains all the projectives. A
dual condition characterizes tilting torsion classes when A has enough injectives [16, I.3.1]. In particular, we get:

Lemma 3.5. Let R be a right coherent ring and (T , F ) be a torsion pair in mod-R. Then F is a cotilting torsion-free class if and
only if R ∈ F .

Given an abelian category A, we can also form derived categories for subcategories of A relative to A. We make this
precise in the following definition:

Definition 3.6. Let E be a full subcategory of a decent abelian category A such that E is closed under finite coproducts in
A. Then we denote K b

ac(E;A) = K b(E) ∩ K b
ac(A). The derived category of E relative to A is defined as the Verdier quotient

Db(E;A) = K b(E)/K b
ac(E;A).

In other words, we add formal inverses to all morphisms in the homotopy category of complexes K b(E) which are quasi-
isomorphisms in K b(A). Note that again it is not clear in general whether the Hom-spaces in Db(E;A) are sets. We will,
however, show that they are in the situation we are interested in. Ignoring this for the moment and using the universal
localization property, we see that the full embedding K b(E) → K b(A) uniquely extends to a functor Db(E;A) → Db(A).
We will give a criterion for this functor to be a triangle equivalence, but we need one more definition first.

Definition 3.7. Let E be a full subcategory of an abelian category A. We say that A admits finite E-resolutions if for each
X ∈ A there is a finite exact sequence

0→ En → · · · → E1 → E0 → X → 0

such that Ei ∈ E for each 0 ≤ i ≤ n. Similarly, we say that A admits finite E-coresolutions if for each X ∈ A there is a finite
exact sequence

0→ X → E ′0 → E ′1 → · · · → E ′m → 0

such that E ′j ∈ E for each 0 ≤ j ≤ m.
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Lemma 3.8. LetA be a decent abelian category and E be a full subcategory closed under finite coproducts. Suppose thatA admits
finite E-resolutions or coresolutions. Then the full embedding K b(E)→ K b(A) induces a triangle equivalence F : Db(E;A)→
Db(A). In particular, all Hom-spaces in Db(E;A) are sets.

Proof. We will prove only the case when A admits finite E-coresolutions, the other case being dual. Since the result is
central for the considerations below, we prefer to give a detailed proof.

Following [17, I.4.6], we will first show that for any complex X · ∈ K b(A) there is a quasi-isomorphism t : X · → Y · in
K b(A) such that Y · ∈ K b(E). If X · is a complex of objects of A such that X i

= 0 for i < p and i > q, we first construct
morphisms t i : X i

→ Y i by induction for i < q. Let Y i
= 0 and t i = 0 for i < p, and tp : Xp

→ Y p be a monomorphism into
some Y p

∈ E . Such a monomorphism must exist by assumption. Given t i, we construct t i+1 by composing the morphism in
the second column of the pushout diagram

Coker di−1X −−−−→ X i+1

t̄ i
 

Coker di−1Y −−−−→ P i+1

with a monomorphism P i+1
→ Y i+1 such that Y i+1

∈ E . Here, di−1Y : Y
i−1
→ Y i is the obvious morphism coming from the

preceding step of the construction, and t̄ i is the cokernel morphism constructed using the diagram

X i−1
di−1X
−−−−→ X i

−−−−→ Coker di−1X −−−−→ 0

t i−1
 t i

 t̄ i


Y i−1
−−−−→

di−1Y

Y i
−−−−→ Coker di−1Y −−−−→ 0

Finally, we complete the complex Y · by a finite E-coresolution 0 → Pq
→ Y q+1

→ Y q+2
→ · · · → Y s

→ 0, and put
Y j
= 0 for all j > s. Note that all the components of t : X · → Y · are monomorphisms in A and t is easily seen to be a

quasi-isomorphism. This in particular shows that the functor F is dense.
Next we use the same argument as in the proof of [16, I.3.3] to show that F is full. Let σ−1f : X · → Y · be a morphism in

Db(A) such that X ·, Y · ∈ K b(E), f : X · → Z · is a morphism in K b(A), and σ : Y · → Z · is a quasi-isomorphism. Since F is
dense, there exists a quasi-isomorphism t : Z · → W · such thatW · ∈ K b(E). Then F((tσ)−1(tf )) = (tσ)−1(tf ) = σ−1f .

To prove that F is faithful, assume that F(σ−1f ) = 0 where X ·
f
→ Z ·

σ
← Y · is a morphism in Db(E;A). This is precisely

to say that there is a quasi-isomorphism s : Z · → V · in K b(A) such that sf = 0. Again, there is a quasi-isomorphism
t : V · → W · withW · ∈ K b(E). Consequently tsf = 0 and ts : Z · → W · is a quasi-isomorphismwhich is contained in K b(E).
This precisely says that σ−1f = 0. Hence F is a triangle equivalence.

Finally, since A is decent and we have constructed the isomorphisms

HomDb(E;A)(X, Y )→ HomDb(A)(X, Y )

for each pair of objects X, Y ∈ Db(E;A), the Hom-spaces HomDb(E;A)(X, Y ) must be sets. �

Remark 3.9. In the proof above, the functor F was shown to be fully faithful and dense. In order to construct a quasi-inverse
of F in case A is not skeletally small, one needs the Axiom of Choice for proper classes, hence has to work in the von
Neumann–Bernays–Gödel axiomatic set theory rather than ZFC. For more details, we refer to [30, Section 1].

If E is closed under extensions in A, it is, together with the exact sequences inherited from A, an exact category — a
concept originally defined by Quillen and well described in [19, Appendix A]. In this case, one can define the bounded
derived category of E in the sense of [26]. The following easy lemma shows that if E is a torsion or a torsion free class,
then this derived category coincides with Db(E;A) and, in particular, to construct Db(E;A) one only needs to be able to
identify short exact sequences in E .

Lemma 3.10. Let A be an abelian category and E be either a torsion or a torsion-free class. Consider a complex

X · : · · ·
di−2
−→ X i−1 di−1

−→ X i di
−→ X i+1 di+1

−→ · · · ,

in K b
ac(E;A). Then Coker di ∈ E for each i ∈ Z.

Proof. This is obvious. �

Before stating the main result of this section, we will need an important statement, originally from [16]:

Proposition 3.11 ([16, I.3.2]). Let A be a decent abelian category, (T , F ) be a torsion pair in A, and Φ(A; (T , F )) =
(B; (X, Y)) as in Definition 3.3.
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(1) If T is a tilting torsion class, then Y is a cotilting torsion-free class.
(2) If F is a cotilting torsion-free class, then X is a tilting torsion class.

Proof. Although this result has been shown in [16] or [8, Section 4], we prefer to give a simple direct proof here. Thuswe also
avoid a minor omission at the beginning of page 18 in [16] — one needs an extra argument for making π an epimorphism
in B there. We will prove only (1), the statement of (2) is dual.

Assume that T cogenerates A and recall that T = Y by definition. Let X · ∈ B; we can without loss of generality assume
that X i

= 0 for all indices i except for i = −1 and 0, as discussed before. In this case, X · is completely given by a morphism
d−1 : X−1 → X0. Let us denote F = Ker d−1 and T = Coker d−1; then T ∈ T and F ∈ F by assumption. We can further
assume that both X−1 and X0 are in T . If they are not, we pass to a quasi-isomorphic complex X̃ · by taking an embedding
f : X−1 → X̃−1 in A with X̃−1 ∈ T and forming the following push-out in A:

X−1
d−1
−−−−→ X0

f

 
X̃−1

d̃−1
−−−−→ X̃0

Notice that automatically X̃0
∈ T since clearly Im d̃−1, Coker d̃−1 ∈ T . The argument just presented is in fact a short account

on [8, Lemma 4.4]. But now, if X−1, X0
∈ T = Y, then the obvious triangle in Db(A):

X−1
d−1
−−−−→ X0

−−−−→ X · −−−−→ X−1[1]

induces, using Proposition 2.2, the short exact sequence

0 −−−−→ X−1
d−1
−−−−→ X0

−−−−→ X · −−−−→ 0
in B. Hence every X · ∈ B is an epimorphic image of an object from Y in the category B, and Y is a cotilting torsion-free
class in B. �

Nowwe are in a position to state themain result of this sectionwhich gives a positive answer to the three questions above
in the tilting and cotilting cases. It is a generalization of [16, I.3.3 and I.3.4] which have some extra assumptions regarding the
existence of projective or injective objects. These assumptions turn out to be unnecessary which makes applications of the
theoremconsiderably easier. In fact, the same idea aswe are going to present belowwas used in [4, Section 5] for equivalence
of unbounded derived categories. For the convenience of the reader, we provide here more details for the bounded case.

Wewill use the notation (A; (T , F )) ∼= (A′; (T ′, F ′)) for two abelian categoriesA, A′ with the respective torsion pairs
such that there exists an equivalence F : A→ A′ which by restriction induces equivalences T → T ′ and F → F ′.

Theorem 3.12. Let A be a decent abelian category and (T , F ) a torsion pair in A. Let B be the (T , F )-tilted abelian category
as in Definition 3.3, and let (X, Y) = (F [1], T ). If either T is tilting or F is cotilting, then:

(1) There is a triangle equivalence functor F : Db(A)→ Db(B) extending the identity functor on B; that is, F � B = idB .
(2) Φ(B; (X, Y)) ∼= (A; (T , F )); that is, A is (X, Y)-tilted from B .

Proof. We will only give a proof for the case when T is a tilting torsion class in A. The other case is dual.
(1) If T is tilting, then there is an exact sequence 0 → X → T0 → T1 → 0 such that T0, T1 ∈ T for each X ∈ A. In
particular, A admits finite T -coresolutions. Similarly, B admits finite T -resolutions since T ⊆ B is a cotilting torsion-free
class by Proposition 3.11. Note also that a sequence 0→ X → Y → Z → 0 in T is exact in A if and only if it is exact in B
by Proposition 2.2. Hence K b

ac(T ;A) = K b
ac(T ;B) by Lemma 3.10. Consequently, we obtain triangle equivalences

Db(A)
∼
←− Db(T ;A) = Db(T ;B)

∼
−→ Db(B)

by Lemma 3.8. This yields a triangle equivalence F : Db(A)→ Db(B) which, without loss of generality, acts as the identity
functor on the full subcategory given by complexes with components in T . But, as shown in [8, 4.4] and recalled in the proof
of Proposition 3.11, each X · ∈ B is isomorphic to such a complex. Hence we may take F such that F � B = idB .
(2) A detailed proof for Φ(B; (F [1], T )) ∼= (A; (T , F )) is given in [16, I.3.4]. We just have to substitute the use of
[16, I.3.3] in that proof by the first part of this theorem. In fact, if A′ is (F [1], T )-tilted from B and G : Db(B)→ Db(A) is a
quasi-inverse of F , it is shown in [16, p.20] that the restriction of G to A′ induces an equivalence A′ → A[1]which respects
the corresponding torsion pairs. �

4. Tilting objects

Having defined and described the tilting process via torsion pairs, we shall consider the case when the tilted category is
a module category. This leads to the concept of a tilting object. We will consider only skeletally small abelian categories in
this context, although there is an analogue for non-small abelian categories, too. We will shortly discuss this at the end of
the section.
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Definition 4.1. Let A be a skeletally small abelian category. Then T is a tilting object in A if there is a tilting torsion class
T ⊆ A such that T becomes a projective generator in the (T , F )-tilted abelian category B. That is:

(1) T is contained in B and is projective there,
(2) B = gen T , where gen T stands for the full subcategory formed by all epimorphic images of finite coproducts of copies

of T .

Note that T ∈ T by Lemma 3.5 since T is a cotilting torsion-free class in B. Moreover, the functor HomB(T ,−) : B →
mod-S, where S = EndA(T ) = EndB(T ), is a category equivalence, [1, II.2.5]. As a consequence, S must be right coherent
and we get the triangle equivalence

F : Db(A)
∼
−→ Db (mod-S).

In fact, one can show that F ∼= RHomA(T ,−); we refer to [20, Section 3] for introduction to derived functors.
In view of Theorem 3.12 we have, for a given right coherent ring S, a description (up to equivalence) of all small abelian

categories A with a tilting object T such that EndA(T ) ∼= S. Namely, every such category is tilted from mod-S by a torsion
pair (T , F ) in mod-S with S ∈ F . Then T = S[1] is the corresponding tilting object in A. To illustrate this, we classify all
small abelian categories A with an (indecomposable) tilting object T such that EndA(T ) ∼= Z.

Example 4.2. Let S = Z. Then the cotilting torsion-free classes in mod-Z are parametrized by subsets of the set P of all
prime numbers. More precisely, if Q ⊆ P, we take the torsion pair (XQ , YQ ) such that XQ is the class of all finite abelian
groups whose orders have prime factors only in Q .

Let us denote by AQ the (XQ , YQ )-tilted category frommod-Z. In this way we obtain a continuum of abelian categories.
It is easy to see that they are mutually non-equivalent and it will be shown in the next section that they are all hereditary.
Moreover, one can easily describe isomorphism classes of all objects of each AQ and morphisms between them.

Opposed to the purpose-oriented Definition 4.1, one can also determine tilting objects in an abelian category A directly.
The conditions given in the following proposition extend the definition used by Happel in [13] for locally finite hereditary
abelian categories.

Proposition 4.3. Let A be a small abelian category and T ∈ A. Then T is a tilting object if and only if

(1) pdAT ≤ 1,
(2) Ext1A(T , T ) = 0,
(3) HomA(T , X) = 0 = Ext1A(T , X) implies X = 0.
(4) HomA(T , X) and Ext1A(T , X) are finitely generated as EndA(T )-modules.

In (3) and (4), X runs over all objects in A.

Proof. Most of the arguments here have been used by several authors before, but we recall the whole proof for the reader’s
convenience. Condition (4) is clearly equivalent to the fact that for each X ∈ A there exist:

(a) a morphism pX : T nX → X such that HomA(T , pX ) is surjective;
(b) an exact sequence 0→ X → EX → TmX → 0 such that the connecting homomorphism HomA(T , TmX )→ Ext1A(T , X)

is surjective.

Assume that T ∈ A satisfies conditions (1)–(4). Using (1) and (2), one easily checks that all Ext1A(T , Im pX ),
Ext1A(T ,Ker pX ) and Ext1A(T , EX ) vanish. Let us define full subcategories of A as follows:

T = {U | pU : T nU → U is an epimorphism in A},

F = {F | HomA(T , F) = 0}.

We claim that (T , F ) is a tilting torsion pair in A and T = {U | Ext1A(T ,U) = 0}. Clearly HomA(U, F) = 0 for each U ∈ T
and F ∈ F . Moreover, T can easily be shown to be closed under extensions using the same idea as for the horseshoe lemma.
It follows that for each X ∈ A, there is a short exact sequence 0 → tX → X → fX → 0 such that tX = Im pX ∈ T and
fX ∈ F . Hence (T , F ) is a torsion pair in A. Clearly, Ext1A(T ,U) = 0 for each U ∈ T . On the other hand, if Ext1A(T , X) = 0,
then HomA(T , fX) = 0 = Ext1A(T , fX), so fX = 0 and X ∈ T by (3). Finally, (b) shows that each X ∈ A embeds into some
EX ∈ T . This proves the claim.

Let B be (T , F )-tilted from A. Theorem 3.12 yields isomorphisms

Ext1B(T , F [1]) ∼= HomDb(A)(T , F [2]) = Ext2A(T , F) = 0

Ext1B(T ,U) ∼= HomDb(A)(T ,U[1]) = Ext1A(T ,U) = 0

for eachU ∈ T and F ∈ F . Hence T is projective inB since (F [1], T ) is a torsion pair inB by Lemma 3.2. It remains to prove
that T generates B. We know that T generates B by Proposition 3.11. Moreover, for any U ∈ T the short exact sequence

0 −−−−→ Ker pU −−−−→ T nU
pU

−−−−→ U −−−−→ 0
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in A has all terms in T , so it is also a short exact sequence in B. Hence T generates B and, consequently, T is a tilting object
in A in the sense of Definition 4.1.

The converse statement that every tilting object T ∈ A satisfies conditions (1)–(4) is straightforward. One uses Theo-
rem 3.12 and the triangle equivalences

Db(A)
∼
−→ Db(B)

∼
−→ Db (mod-S),

where S = EndA(T ). We just note that the S-modules HomA(T , X) and Ext1A(T , X) are realized as homologies in degrees
0 and 1, respectively, of the image of X under the equivalence F : Db(A)

∼
−→ Db (mod-S). This is because F(T ) = S and

HomDb(A)(T , X[i]) ∼= HomDb (mod-S)(S, FX[i]) ∼= H i(FX). �

There are two main sources of examples of tilting objects according to our definition, which appear in the literature:

(1) If T is a tilting object in a locally finite abelian category A in the sense of Happel, Reiten and Smalø [16, I.4], then T is
also a tilting object according to Definition 4.1.

(2) If T is a 1-tilting R-module in the sense of Miyashita [24] and R is right noetherian, then T is a tilting object in mod-R in
the sense of Definition 4.1 (see [32, Theorem 2.5(ii)]).

Remark 4.4. In fact, 1-tilting R-modules in the sense of Miyashita are tilting objects in the sense of 4.1 even in the more
general case when both R and S = EndR(T ) are right coherent. This can be proved using [28, Proposition 8.1].

Now, we shall briefly discuss decomposition properties of objects in abelian categories with a tilting object.

Lemma 4.5. Let R be a right noetherian ring. Then

(1) Any chain X ·0 → X ·1 → X ·2 → · · · of split epimorphisms in Db (mod-R) stabilizes.
(2) Any X · ∈ Db (mod-R) decomposes to a finite coproduct of indecomposable objects.

Proof. It is rather well known that (1) implies (2). If we have a chain as in (1), we get chains of split epimorphisms of
homologies:

H i(X ·0) −→ H i(X ·1) −→ H i(X ·2) −→ · · ·

All but finitely many of those chains consist only of zero objects and each of those finitely many non-zero chains stabilizes
since R is right noetherian. Hence, there is some N > 0 such that H i(X ·j )→ H i(X ·j+1) is an isomorphism for each i ∈ Z and
j > N . Consequently, X ·j → X ·j+1 is an isomorphism in Db (mod-R) for each j > N since it induces isomorphisms on all
homologies. �

If the endomorphism ring of the tilting object is right noetherian, we have the following:

Proposition 4.6. Let A be a small abelian category with a tilting object T such that EndA(T ) is right noetherian. Then

(1) Every chain of split epimorphisms in A stabilizes.
(2) Every object X ∈ A decomposes into a finite coproduct of indecomposables.

Proof. This follows immediately from Lemma 4.5, using the triangle equivalence Db(A) → Db (mod-S) where S =
EndA(T ). �

Note that the decomposition given by Lemma4.5 or Proposition 4.6 is in general not unique in the sense of Krull–Schmidt.
Moreover, neither of the two statements hold true for general coherent rings. To see this, let R be any von Neumann regular
(hence coherent) ring which is not artinian. Then there is always a strictly descending chain of split epimorphisms of the
form

R −→ e1R −→ e2R −→ e3R −→ · · ·

However, there are cases when every chain of split epimorphisms stabilizes even for non-noetherian objects, as we show in
the following examples:

Example 4.7. Let R be a right noetherian ring with a 1-tilting module T ∈ mod-R whose endomorphism ring S is right
coherent, but not right noetherian. Then Db (mod-R) and Db (mod-S) are equivalent, so mod-S has the chain condition on
split epimorphisms by Proposition 4.6. Examples of this kind were constructed by Valenta [33] using [31, Example to 3.7]
(see also [32, Example 2.8]).

Example 4.8. LetQ be a non-empty set of prime numbers andAQ be the abelian category from Example 4.2. Let T = Z[1] ∈
AQ be the tilting object. Then for any p ∈ Q the triangle Z

p
→ Z→ Z/pZ→ Z[1] in Db (mod-Z) induces, via Theorem 3.12

and Proposition 2.2, the short exact sequence

0 −−−−→ Z/pZ −−−−→ T −−−−→ T −−−−→ 0

in AQ . Hence T definitely is not a noetherian object in AQ , but AQ still has the chain condition on split epimorphisms.
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We conclude the section with a short remark on tilting objects for non-small abelian categories.

Remark 4.9. We can adjust Definition 4.1 for the case when A is a decent AB4 abelian category. We can call T ∈ A a tilting
object if T becomes a self-small projective generator in some (T , F )-tilted category B. Then necessarily B is equivalent
to Mod-S for S = EndA(T ). It can be shown that this definition is equivalent to Colpi’s and Fuller’s definition from [8]. In
particular, any abelian category with a tilting object in the sense of [8] is AB4 and decent; see also [9, 3.2].

5. Tilting from hereditary categories

Asmentioned in the Introduction, themain result of [16] characterizes all artin algebras whosemodule categories can be
tilted from (or to) a locally finite hereditary abelian category. We aim to extend this characterization to all right noetherian
rings. However, in this section, we actually pursue a more general goal of characterizing all decent abelian categories which
can be tilted to a hereditary abelian category.

Recall that a torsion pair (X, Y) in an abelian category B is split if Ext1B(Y, X) = 0. That is, for each Z ∈ B the exact
sequence 0→ X → Z → Y → 0 with X ∈ X and Y ∈ Y splits. We start with an easy lemma.

Lemma 5.1. Let B be an abelian category and (X, Y) be a torsion pair in B such that Y is cotilting and pdBY ≤ 1 for each
Y ∈ Y. Then gl.dim.B ≤ 2.

Proof. Let Z ∈ B. Since Y is a cotilting torsion-free class, there is a short exact sequence 0 → Y1 → Y0 → Z → 0 such
that Y0, Y1 ∈ Y. Applying HomB(−,W ) for any W ∈ B, we get an exact sequence:

0 = Ext2B(Y1,W )→ Ext3B(Z,W )→ Ext3B(Y0,W ) = 0.

Hence Ext3B(−,−) ≡ 0 and gl.dim.B ≤ 2. �

Now we can state and prove the main result of the section. Note that there is also a dual version with the tilting torsion
class replaced by a cotilting torsion-free class and projective dimension by injective dimension.

Theorem 5.2. Let A be a decent abelian category and (T , F ) a torsion pair in A such that T is a tilting torsion class. Let B be
the (T , F )-tilted abelian category and denote (X, Y) = (F [1], T ). Then the following are equivalent:

(1) A is a hereditary abelian category (that is, Ext2A(−,−) ≡ 0).
(2) (X, Y) is a split torsion pair in B and pdBY ≤ 1 for each Y ∈ Y.

Proof. Let Φ(A; (T , F )) = (B; (X, Y)) be as in the premise. Consider T1, T2 ∈ T = Y and F1, F2 ∈ F . Note that then
F1[1], F2[1] ∈ F [1] = X. Using Proposition 2.2 and Theorem 3.12 we deduce the following formulas:

(i) ExtnA(T1, T2) ∼= HomDb(B)(T1, T2[n]) = ExtnB(T1, T2)

(ii) ExtnA(T1, F2) ∼= HomDb(B)(T1, F2[1][n− 1]) = Extn−1B (T1, F2[1])

(iii) ExtnA(F1, T2) ∼= HomDb(B)(F1[1], T2[n+ 1]) = Extn+1B (F1[1], T2).

If A is hereditary then (ii) used for n = 2 implies that (X, Y) = (F [1], T ) is a split torsion pair in B. It follows
immediately from (i) and (ii) that Ext2B(T1, Y) = 0 and Ext2B(T1, X) = 0. Since (X, Y) is a torsion pair in B, we get
pdBT1 ≤ 1. This finishes the proof of (1) =⇒ (2).

Conversely, assume (2). As (T , F ) is a torsion pair inA, we onlymust prove that Ext2A(Z,W ) = 0whenever Z is either in
T or inF andW is either inT or inF .We are, therefore, leftwith four cases. First note that gl.dim.B ≤ 2by Proposition 3.11
and Lemma 5.1, so Ext2A(F , T ) = 0 by (iii). Ext2A(T , T ) = 0 and Ext2A(T , F ) = 0 follow immediately by the assumption
on B using (i) and (ii), respectively. Finally, consider F1, F2 ∈ F . Since T is a tilting torsion class in A, there is an exact
sequence 0→ F1 → T → T ′ → 0 in A such that T , T ′ ∈ T . Applying HomA(−, F2) we obtain the exact sequence:

Ext2A(T , F2)→ Ext2A(F1, F2)→ Ext3A(T ′, F2).

Now, we have already proved that the first term vanishes, and Ext3A(T ′, F2) ∼= Ext2B(T ′, F2[1]) = 0 by (ii) and by the
assumption of pdBT ′ ≤ 1. Consequently Ext2A(F1, F2) = 0. Hence A is hereditary and (2) =⇒ (1) is proved. �

In view of our results in Section 3, the latter theoremmight be restated as follows: Assume that we start with an abelian
category B with a cotilting torsion-free class Y. Then we get a hereditary category by (X, Y)-tilting B precisely when
(X, Y) is a split torsion pair in B and all objects in Y have projective dimension at most 1. Hence we have the following
corollary, proving the equivalence (i)⇐⇒ (ii) of the Main Theorem for all coherent rings:

Corollary 5.3. The following are equivalent for a right coherent ring R:

(1) R is isomorphic to the endomorphism ring of a tilting object in a skeletally small hereditary abelian category.
(2) There is a split torsion pair inmod-R whose torsion-free class Y consists of modules of projective dimension≤ 1, and R ∈ Y.

Example 5.4. All the categories AQ , Q ⊆ P, from Example 4.2 are hereditary because all the torsion pairs (XQ , YQ ) in
mod-Z are split. The condition of pdZY ≤ 1 for each Y ∈ YQ is trivially satisfied since Z is a hereditary ring.
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6. Almost hereditary rings

The aim of this section is to prove the equivalence of conditions (ii) and (iii) of the Main Theorem. We start with the
easier implication.1 Recall that we call a right noetherian ring R almost hereditary if R has right global dimension ≤ 2, and
pdM ≤ 1 or idM ≤ 1 for each finitely generated indecomposable moduleM .

Lemma 6.1 (Colpi, Fuller, Gregorio). Let R be a right noetherian ring with a split torsion pair (X, Y) in mod-R such that R ∈ Y
and Y consists of modules of projective dimension≤ 1. Then R is almost hereditary.

Proof. Our assumptions imply gl.dim.(mod-R) ≤ 2 by Lemma 5.1. By the Auslander Lemma, the right global dimension of
R is the supremum of projective dimensions of cyclic right R-modules, so r.gl.dim.R = gl.dim.(mod-R).

Since R is right noetherian, each module M ∈ mod-R is a finite (but not necessarily unique) direct sum of modules from
ind-R.

Now assume there is M ∈ ind-R such that pdRM = idRM = 2. Then M ∈ X. Since idRM = 2, Baer’s Criterion gives a
right ideal I of R such that Ext1R(I,M) ≠ 0.

This is a contradiction to (X, Y) being split since I must, as a submodule of R, belong to Y. �

Nowwe startwith the proof of the implication (iii) =⇒ (ii) of theMain Theorem. This is trivial when r.gl.dim.R ≤ 1 (just
take X = {0} and Y = mod-R). For the rest of this section, we will assume that R is a right noetherian ring with r.gl.dim.R = 2.

In particular, ifP1 denotes the class of all modules of projective dimension≤ 1, thenP1 will be closed under submodules.
By induction on n, we define the classes of indecomposable modules Cn as follows: C0 is the class of all M ∈ ind-R with

pdRM = 2, and Cn+1 the class of all modules M ∈ ind-R such that HomR(P,M) ≠ 0 for some P ∈ Cn. Let C =


n<ω Cn.
Notice that this construction has the property that for eachM ∈ ind-R we haveM ∈ C if and only if HomR(C,M) ≠ 0.

Let Y0 = {M ∈ mod-R | HomR(C,M) = 0} and X0 = {N ∈ mod-R | HomR(N, Y0) = 0}. Then (X0, Y0) is a torsion pair
with C ⊆ X0.

Lemma 6.2 (Colpi, Fuller, Gregorio). (X0, Y0) is a split torsion pair in mod-R such that X0 = addC and pdRY ≤ 1 for each
Y ∈ Y0.

Proof. If M ∈ ind-R and M /∈ C(⊆ X0), then HomR(C,M) = 0, so M ∈ Y0, hence X0 = addC, and the torsion pair
(X0, Y0) is split. Since C0 ⊆ X0 and r.gl.dim.R = 2, we have pdRY ≤ 1 for each Y ∈ Y0. �

It remains to show that R ∈ Y0. We do this in several steps. The first one generalizes [16, Lemma II.1.5]:

Lemma 6.3. C = C1.

Proof. Suppose there exists X ∈ C2 \ C1. Then there are the R-modules and non-zero R-homomorphisms

Z0
g0

−−−−→ Y0
f0

−−−−→ X

such that Y0 ∈ C1 \ C0 and Z0 ∈ C0.
We will construct sequences with nonzero maps

Zi
gi

−−−−→ Yi
fi

−−−−→ X

such that Yi ∈ C1 \ C0 and Zi ∈ C0, and Yi+1 is either a proper factor module or a proper submodule of Yi.
Assume that the R-modules Yi, Zi and non-zero R-homomorphisms fi, gi are defined as above. We proceed by induction

on i as follows:
Since HomR(C0, X) = 0, we have figi = 0, so Im gi ⊆ Ker fi. Note that X and Yi have projective dimension ≤ 1, and the

same holds for all their submodules. We distinguish two cases:
Case (I) Yi+1 = Yi/Im gi is indecomposable.

Since HomR(Yi+1, X) ≠ 0, we have Yi+1 ∈ P1. In particular Ext2R(Yi+1,Ker gi) = 0, so the exact sequence

E : 0 −−−−→ Im gi −−−−→ Yi −−−−→ Yi+1 −−−−→ 0

can be obtained by a pushout of an exact sequence of the form

F : 0 −−−−→ Zi −−−−→ Ni
hi

−−−−→ Yi+1 −−−−→ 0

along the projection Zi � Im gi. Since Zi ∈ C0, we have pdRNi = 2 because P1 is closed under submodules.
Since Yi is indecomposable, E is non-split, hence so is F. Moreover Zi is indecomposable, so there is Zi+1 ∈ C0 which is a

direct summand of Ni and gi+1 = hi � Zi+1 ≠ 0.

1 After proving the equivalence of (ii) and (iii) in the Main Theorem, we learned that the first part of our proof, Lemmas 6.1 and 6.2, had independently
and earlier been obtained by Colpi, Fuller, and Gregorio. So we credit these two results to them.
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There is a unique fi+1 ∈ HomR(Yi+1, X) such that fi+1π = fi where π : Yi → Yi+1 is the projection, and we obtain the
R-modules and non-zero R-homomorphisms

Zi+1
gi+1
−−−−→ Yi+1

fi+1
−−−−→ X

with Yi+1 ∈ C1 \ C0 and Zi+1 ∈ C0.
Case (II) Yi/Im gi is decomposable.

Then there is a decomposition Yi/Im gi = Ai ⊕ Bi with Ai = Di/Im gi ∈ ind-R, Bi = Ei/Im gi ≠ 0, and fi � Di ≠ 0. Note
that Yi = Di + Ei with Di ∩ Ei = Im gi.

Since Yi is indecomposable, the sequence 0→ Im gi → Di → Ai → 0 is non-split. Let Yi+1 be an indecomposable direct
summand of Di such that fi+1 = fi � Yi+1 ≠ 0. Then the composition hi : Im gi → Yi+1 of the inclusion Im gi → Di with a
split projection Di � Yi+1 cannot be zero since Ai is indecomposable. Let Zi+1 = Zi and put gi+1 = higi. Then we have the
indecomposable R-modules and non-zero R-homomorphisms

Zi+1
gi+1
−−−−→ Yi+1

fi+1
−−−−→ X

with Yi+1 ∈ C1 \ C0 and Zi+1 ∈ C0. Moreover, if Qi is a complement of Yi+1 in Di (so Yi ) Di = Yi+1 ⊕ Qi), it is easy to check
that exactly one of the following two possibilities occurs:
(1) Yi+1 = Di, and so Yi+1/Im gi+1 = Yi+1/Im gi ∼= Ai is indecomposable. Hence the next step in the construction will be

Case (I).
(2) Qi ≠ 0. Hence we have 0 ≠ Qi ⊆ Yi such that Qi ∩ Yi+1 = 0.

We claim that in the inductive construction above, Case (I) occurs only finitelymany times. Indeed, in Case (I), Yi+1 is taken
as a proper factor (homomorphic image) of Yi while in Case (II), Yi+1 is a proper submodule of Yi. So if Case (I) occurs infinitely
many times, the preimages in Y0 of the kernels of the factorizations yield a strictly increasing sequence of submodules of Y0,
contradicting its noetherianity.

So without loss of generality, we can assume that only Case (II) occurs. But then we find 0 ≠ Qi ⊆ Yi such that
Qi ∩ Yi+1 = 0 for each i, so

Q0 ( Q0 ⊕ Q1 ( Q0 ⊕ Q1 ⊕ Q2 ( · · ·

is a strictly increasing chain of submodules of Y0, a contradiction.
This proves that C2 \ C1 = ∅, so C = C1. �

Lemma 6.4. HomR(M, R) = 0 for each M ∈ C0.
Proof. Suppose there exists M ∈ C0 with 0 ≠ f : M → R. For N = f (M) and K = Ker f , we get the following non-split
exact sequence in mod-R:

E : 0 −−−−→ K −−−−→ M −−−−→ N −−−−→ 0.

Since r.gl.dim.R = 2, N has projective dimension≤ 1, so pdRK = 2.
From the data (M, f ) we will construct M̃ ∈ C0 and 0 ≠ f̃ : M̃ → R such that all indecomposable direct summands of

K̃ = Ker f̃ have projective dimension 2.
We have K = K ′ ⊕ K̄ where K̄ ∈ P1 and 0 ≠ K ′ has no indecomposable direct summands of projective dimension≤ 1.
Suppose K̄ ≠ 0. Then the pushout of E along the split projection ρ : K � K ′ yields an exact sequence (with M ′ a proper

factor module ofM)

F : 0 −−−−→ K ′
ν

−−−−→ M ′
π

−−−−→ N −−−−→ 0.

This sequence does not split since otherwise K ′ would be a direct summand of M . Since 0 ≠ K̄ ∈ P1, we have pdRM ′ = 2.
Also M ′ = M ′′ ⊕ M̄ where M̄ ∈ P1 and 0 ≠ M ′′ has no indecomposable direct summands of projective dimension ≤ 1.
If M ′′ ⊆ ν(K ′), then M ′′ = ν(K ′) (because otherwise K ′ has a non-zero direct summand isomorphic to a submodule of M̄ ,
hence of projective dimension≤ 1), so F splits, a contradiction. This shows thatM ′′ has an indecomposable direct summand
M1 such that pdRM1 = 2 and π(M1) ≠ 0. Replacing N by the non-zero submodule N1 = π(M1), we get a short exact
sequence

E1 : 0 −−−−→ K1
ν1

−−−−→ M1
π1

−−−−→ N1 −−−−→ 0.
Again pdRK1 = 2, and M1 ∈ C0 is a proper factor module ofM .

Iterating this procedure if necessary, we get short exact sequences 0 → Ki → Mi → Ni → 0 with Mi ∈ C0, Ni a right
ideal in R, pd Ki = 2 and proper epimorphismsMi−1 � Mi.

This reduction stops after i steps, if all indecomposable direct summands of Ki have projective dimension 2. The reduction
has to stop, sinceM is noetherian andM � M1 � · · · is a chain of proper epimorphisms. So we have a non-split short exact
sequence

G : 0 −−−−→ K̃ −−−−→ M̃ −−−−→ Ñ −−−−→ 0,

with M̃ ∈ C0, Ñ a right ideal and K̃ a direct sum of indecomposable modules of projective dimension 2.
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Since R is almost hereditary, idRK̃ ≤ 1. Applying HomR(−, K̃) to the exact sequence 0 → Ñ → R → R/Ñ → 0, we
obtain the exact sequence

0 = Ext1R(R, K̃) −−−−→ Ext1R(Ñ, K̃) −−−−→ Ext2R(R/Ñ, K̃) = 0.

So Ext1R(Ñ, K̃) = 0 and G splits, a contradiction. �

Proof of the Main Theorem. It only remains to finish the proof of the implication (iii) =⇒ (ii); the rest is covered by
Corollary 5.3 and Lemma 6.1. To this end, since HomR(C0, R) = 0 by the previous lemma, no indecomposable direct
summand of R is in C1 = C. Since the torsion pair (X0 = add(C), Y0) splits, all indecomposable direct summands of
R, hence also R itself, are contained in Y0. �

Remark 6.5. Let (X, Y) be any split torsion pair such that pdY ≤ 1. Then Y ⊆ Y0 and X0 ⊆ X: since C0 ∩ Y = ∅, we
have C0 ⊆ X, and by induction, C ⊆ X. So Y ⊆ Y0.

7. Examples

We finish by providing examples of right noetherian rings that are almost hereditary, but neither hereditary nor artin
algebras.

Generalizing from artin algebras to the right noetherian rings, we normally encounter some classical examples of
commutative noetherian rings. It may come as a surprise that these, however, do not fit our setting unless they are
hereditary:

Lemma 7.1. Let R be a commutative noetherian ring of gl.dim.R = 2. Then R is not almost hereditary.

Proof. Suppose R is almost hereditary. Then R is a regular ring of Krull dimension 2, so id R = 2, and there is a prime ideal q of
height 2. By Bass’ Theorems [22, 18.7 and 18.8], the localization Rq is also regular of Krull dimension 2, and the Bass invariant
µ2(q, R) = dimk(q) Ext2Rq(k(q), Rq) = dimk(q) Ext2R(R/q, R)q = 1 where k(q) = Rq/qq is the residue field. In particular, R/q is
an indecomposable module of projective dimension 2, so id R/q ≤ 1 since R is almost hereditary. Then also idRqk(q) ≤ 1 by
[22, Lemmas 5 and 6]. This contradicts the equality idRqk(q) = depth Rq = dim Rq = 2 of [10, 9.2.17]. �

Fortunately, a class of non-commutative noetherian examples can be obtained by applying some of the results of
Colby and Fuller [6]. If S is a left and right noetherian serial ring and T ∈ mod-S is a tilting module then the ring
R = EndS(T ) is called serially tilted (from S). By [6, Section 3], serially tilted rings are semiperfect and noetherian. Non-
artinian indecomposable serially tilted rings that are not serial were characterized in [6, Section 4] as the rings R from the
following example:

Example 7.2. Let n be a positive integer,D be a local noetherian non-artinian serial ringwith the radicalM and the associated
division ring C = D/M , and let S = UTMn(D : M) denote the subring of the full matrix ring Mn(D) consisting of those
matrices all of whose entries below the main diagonal are in M . Then S is a noetherian hereditary semiperfect serial ring.
(In fact each indecomposable noetherian semiperfect serial ring which is not artinian is Morita equivalent to such S by [35,
Theorem 5.14], see also [23, Theorem 6.1].)

The structure of mod-S is rather completely described in [7, Appendix B]. Namely, any finitely generated module
over S decomposes into a direct sum of uniserial modules, which are either projective or of finite length. Therefore, any
indecomposable finitely generated module has a local endomorphism ring and the decompositions into indecomposables
are unique in the sense of the Krull–Schmidt theorem. It follows easily that the non-isomorphisms between indecomposable
modules generate the unique maximal two-sided ideal of mod-S containing no non-zero identity morphisms. This ideal,
which we call rad-S, is nothing but the Jacobson radical of mod-S, that is, the intersection of all left (or right) maximal ideals
of mod-S.

At this point, there are many similarities with the representation theory of artin algebras. Each indecomposable module
X ∈ mod-S admits aminimal right almost splitmorphism f : E → X in the sense of [1, Section V.1] and rad-S is generated by
irreducible morphisms (see [1, Section V.5]) as a right ideal of mod-S. Moreover, one can draw the Auslander–Reiten quiver
of S with isomorphism classes of indecomposable S-modules as vertices and arrows whenever there exists an irreducible
morphism:
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There are, however, substantial differences from artin algebras, too. The indecomposable projectives do not admit any left
almost split morphisms in mod-S and they form a cycle in the Auslander–Reiten quiver.

Let now l,m andmj (j = 1, . . . , l)bepositive integers such that l ≤ m andn = m+
∑l

j=1 mj. LetA = UTMm(D : M), and for
each j = 1, . . . , l, letAj = UTMmj(C) be the upper triangularmatrix ring of degreemj over C . Let further Tj = T ′j⊕Uj be a basic
tilting right Aj-module with Uj the minimal faithful (= indecomposable projective injective) Aj-module. Let Bj = EndAj(Tj),
and B = B1 × · · · × Bl (the ring direct product).

Finally, let AX be semisimple, with orthogonal idempotents g1, . . . , gl ∈ A such that XB ∼=


j gjXB, and gjXB ∼=

HomAj(Uj, Tj) as C–B-bimodules for each j = 1, . . . , l. By [6, Theorem 4.5], the ring

R =

A X
0 B


is serially tilted (from S), and R is indecomposable, but neither serial nor artinian. Moreover, each serially tilted ring with
the latter properties is isomorphic to some R as above. Since R is not serial, it is not right hereditary.

By the Main Theorem, the rings R from Example 7.2 yield the desired examples of non-artinian non-hereditary almost
hereditary rings.

In [16], for any artin algebra R, two classes of indecomposable modules, L and R, were defined as follows:

L = {M ∈ ind-R | pdN ≤ 1 for all N  M}

and

R = {M ∈ ind-R | idN ≤ 1 for all M  N}

where X  Y means that there is a finite sequence of indecomposable modules X = X0, X1, . . . , Xs = Y such that
HomR(Xi, Xi+1) ≠ 0 for each i < s.

In [16, p. 36] and [14, p. 61], the question of whether always L∩R ≠ ∅was raised as the main open problem for quasi-
tilted artin algebras; a positive answer was obtained by Happel in 2000 (see [15, Corollary 2.8]). In the next example wewill
see that in our general setting of quasi-tilted noetherian rings, a negative answer is possible even for serially tilted rings.
So unlike Section 6 which as byproduct gives a simpler module-theoretic proof even in the artin algebra case, our approach
does not yield any module-theoretic proof of L ∩R ≠ ∅ for artin algebras.

Example 7.3. Let p be a prime integer, Zp the field with p elements, and Z(p) the localization of Z at pZ. Let

R =


Zp Zp
0 Z(p)


.

By [6, Section 4], R is serially tilted from the ring

H =


Z(p) Z(p)
pZ(p) Z(p)


.

Indeed, for e1 =

1 0
0 0


∈ H , e2 =


0 0
0 1


∈ H , and Pi = eiH , one has the short exact sequence 0→ P2 → P1 → S1 → 0 with

S1 simple. Using this short exact sequence it is easy to see that T = P1 ⊕ S1 is a finitely generated tilting H-module with
EndH(T ) ∼= R. This shows that R is right noetherian, almost hereditary, but not hereditary, and not artinian.

Let e =

1 0
0 0


∈ R, f =


0 0
0 1


∈ R, and g =


0 1
0 0


∈ R.

Note that arbitrary right R-modulesM can be identified with the triples (L,N, ϕ) where L is a linear space over Zp, N is a
Z(p)-module, and ϕ : L→ Soc(N) is a Zp-linear map (in fact, L = Me, N = Mf , and ϕ is induced by the multiplication by g;
in short, we shall not distinguish between ϕ and the corresponding Z(p)-linear map from L to N). R-homomorphisms then
correspond to the pairs (α, β) where α is Zp-linear, and β is a Z(p)-homomorphism and the obvious diagram commutes
(see e.g. [1, III.2]).

Note that the simple module S = eR/gR corresponds to the triple (Zp, 0, 0), so an embedding of S into anymodule splits,
and S is injective.

We claim that for each module M , pdRM = 2 if and only if M contains a direct summand isomorphic to S. The if-part is
clear since S has projective dimension 2. Conversely, let M be with pdRM = 2 and let (L,N, ϕ) be the corresponding triple.
If N = 0 then M = Me is semisimple, and contains S.

Assume N ≠ 0. If ϕ is not monic, then S embeds into M , hence is its direct summand, because S is injective. Assume the
map ϕ is monic. Let M ′ be the submodule of M corresponding to the triple (L, Im(ϕ), ϕ). Then M ′ is isomorphic to a direct
sum of copies of the module eR = (Zp, Zp, id); in particular, M ′ is projective, so the module M̄ = M/M ′ has projective
dimension 2. However, M̄ = M̄f , so M̄ has projective dimension≤ 1, a contradiction. This proves our claim.

Next, we describe the elements of ind-R. By the above,M ∈ ind-R has projective dimension 2 if and only ifM ∼= S if and
only ifM is simple and injective.
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If M = (L,N, ϕ) ∈ ind-R has projective dimension ≤ 1, then ϕ is monic, and N = Nt ⊕ Nf where Nt is torsion and Nf
is free (as fRf -modules). Since Soc(Nf ) = 0, this yields a decomposition M = (L,Nt , ϕ)⊕ (0,Nf , 0) in mod-R. Hence either
M ∼= (0,Nf , 0) ∼= fR is projective, or Nf = 0. In the latter case, there are two possibilities:
1. L = 0. Then M ∼= (0, Zpr , 0) for some r ≥ 1.
2. L ≠ 0. Then M ∼= (Zp, Zps , ϕ) for some s ≥ 1. This follows from the well known fact that the cyclic group generated by
any element of maximal order in an abelian p-group splits off.

Note that all indecomposable modules M non-isomorphic to S have injective dimension 2, because Ext1R(gR,M) ≠ 0, so
Ext2R(R/gR,M) ≠ 0.

Now it is easy to compute the classes L and R in our setting: L = ind-R \ {S}, and R = {S}, so clearly L ∩R = ∅.
Finally, note that there is only one split torsion pair (X, Y) in mod-R such that Y consists of modules of projective

dimension≤ 1 and R ∈ Y, namely (X0, Y0) (see Remark 6.5). Here X0 = add(S) and Y0 = add(L).
Indeed, letM ∈ X\X0. W.l.o.g.M ∈ ind-R, so by the classification of ind-R given above eitherM ∼= fR (which contradicts

R ∈ Y) or M has a factor-module isomorphic to gR, so eR ∈ X because of the exact sequence 0 → gR → eR → S → 0
(which again contradicts R ∈ Y).
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