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For a 3-connected binarymatroidM, let dimA(M) be the dimension

of the subspace of the cocycle space spanned by the non-separating

cocircuits of M avoiding A, where A ⊆ E(M). When A = ∅, Bixby
and Cunningham, in 1979, showed that dimA(M) = r(M). In 2004,

when |A| = 1, Lemos proved that dimA(M) = r(M) − 1. In this pa-

per, we characterize the 3-connected binary matroids having a pair

of elements that meets every non-separating cocircuit. Using this

result, we show that 2 dimA(M) � r(M) − 3, whenM is regular and

|A| = 2. For |A| = 3,we exhibit a family of cographicmatroidswith

a3-element set intersectingeverynon-separatingcocircuit.Wealso

construct the matroids that attains McNulty and Wu’s bound for

the number of non-separating cocircuits of a simple and cosimple

connected binary matroid.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

We say that a cocircuit C∗ of a matroid M is non-separating when M\C∗ is connected. Note that a

cocircuit of a matroid M is non-separating if and only if its complement is a connected hyperplane

of M. For a connected graphic matroid, a non-separating cocircuit corresponds to the star of a vertex

whose deletion from the associated graph yields a 2-connected matroid.

Non-separating circuits and cocircuits play an important role in the understanding of the structure

of graphic matroids. For example, with the aid of these cocircuits, Kelmans [6] gave an elegant proof

of Whitney’s 2-Isomorphism Theorem (see [18]) and Tutte [16] obtained a nice characterization of the

3-connected graphs which are planar. Bixby and Cunningham [2] generalized Tutte’s result for the

class of binary matroids by proving Edmonds’s Conjecture, namely: a 3-connected binary matroid is

graphic if and only if each element belongs to exactly two (or at most two) non-separating cocircuits.

∗ Corresponding author.

E-mail addresses: manoel@dmat.ufpe.br (M. Lemos), trbm@dmat.ufpe.br (T.R.B. Melo).

0024-3795/$ - see front matter © 2009 Elsevier Inc. All rights reserved.

doi:10.1016/j.laa.2009.08.007

http://www.sciencedirect.com/science/journal/00243795


260 M. Lemos, T.R.B. Melo / Linear Algebra and its Applications 432 (2010) 259–274

Moreover, Bixby and Cunningham also proved that each element of a 3-connected binary matroid

belongs to at least two non-separating cocircuits. Kelmans [5] and, independently, Seymour (see [12])

proved that every simple and cosimple connected binary matroid has a non-separating cocircuit. It

is somewhat striking that every connected binary matroid which is simple and cosimple has at least

four non-separating cocircuits as proved byMcNulty andWu [10]. Moreover, McNulty andWu’s result

is sharp: there is an infinite family of matroids that attains the bound. In general, even a 3-connected

matroidmaynot have a non-separating cocircuit. This is true, for example, forUr,n provided 2 < r < n.

Theorem 1.2 reduces the problem of finding non-separating cocircuits of a simple and cosimple

connected binary matroid to the problem of finding non-separating cocircuits of some 3-connected

binary matroids avoiding some elements. We present its proof in Section 2. To state it, we need to

describe a decomposition for a connected matroid due to Cunningham and Edmonds [3].

For matroid notation and terminology, we follow Oxley [14]. Let M be a connected matroid such

that |E(M)| � 3. A tree decomposition ofM is a tree T with edges labeled by e1, e2, . . . , ek−1 and vertices

labeled by matroidsM1,M2, . . . ,Mk such that

(i) eachMi is 3-connected with at least four elements or is either a circuit or cocircuit with at least

three elements;

(ii) E(M1) ∪ E(M2) ∪ · · · ∪ E(Mk) = E(M) ∪ {e1, e2, . . . , ek−1};
(iii) if the edge ei joins the vertices Mj1 andMj2 , then E(Mj1) ∩ E(Mj2) = {ei};
(iv) if no edge joins the vertices Mj1 andMj2 , then E(Mj1) ∩ E(Mj2) is empty;

(v) M is the matroid that labels the single vertex of the tree T/e1, e2, . . . , ek−1 at the conclusion of

the following process: contract the edges e1, e2, . . . , ek−1 of T one by one in order; when ei is

contracted, its ends are identified and the vertex formed by this identification is labeled by the

2-sum of the matroids that previously labeled the ends of ei.

Cunningham and Edmonds [3] proved the following result.

Theorem 1.1. Every connected matroid M has a tree decomposition TM in which no two adjacent vertices

are both labeled by circuits or are both labeled by cocircuits. Furthermore, the tree TM is unique to within

relabeling of its edges.

Wecall TM the canonical tree decomposition ofM. LetΛu
2(M) be the set ofmatroids that label vertices

of TM . We set

Λt
2(M) = {H ∈ Λu

2(M) : H is not a circuit or a cocircuit}.
For a connected matroid M and A ⊆ E(M), we denote the set of non-separating cocircuits of M

avoiding A by R∗
A(M). When A = ∅, we use R∗(M) instead of R∗

A(M).

Theorem 1.2. Suppose that M is a simple and cosimple connected binary matroid. If M is not 3-connected,

then

R∗(M) = R∗
A1

(M1) ∪ R∗
A2

(M2) ∪ · · · ∪ R∗
An

(Mn),

where Λt
2(M) = {M1,M2, . . . ,Mn} and, for i ∈ {1, 2, . . . , n}, Ai is the set of edges of TM incident to Mi.

(That is, Ai = E(Mi) − E(M).)

From this result, when M is a simple and cosimple connected binary matroid,

|R∗(M)| = ∑
H∈Λt

2(M)

|R∗
E(H)−E(M)(H)|. (1.1)

To obtain a lower bound for |R∗(M)|, it is enough tofindone for |R∗
E(H)−E(M)(H)|, for someH ∈ Λt

2(M).

When |E(H) − E(M)| = 1, that is, when H labels a terminal vertex of TM , Lemos [8] got a lower bound

for |R∗
E(H)−E(M)(H)|. Moreover, when |E(H) − E(M)| � 2, he constructed an infinite family ofmatroids

to show that the best general lower bound that one obtains for |R∗
E(H)−E(M)(H)| is 0.
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LetM bea3-connectedbinarymatroid. For a subsetAofE(M),wedenotebydimA(M) thedimension

of the subspace of the cocycle space spanned by the non-separating cocircuits ofM avoiding A. When

A = ∅, we use dim(M) instead of dimA(M). The main result of Lemos [8] is:

Theorem 1.3. Let M be a 3-connected binary matroid such that r(M) � 1. If A is an 1-element subset of

E(M), then

|R∗
A(M)| � dimA(M) = r(M) − 1.

Using (1.1) and Theorem 1.3, one can obtain McNulty and Wu [10] bound for the number of non-

separating cocircuits of a matroidM that satisfies the hypothesis of Theorem 1.2, since there is at least

twoH ∈ Λt
2(M) such that |E(H) − E(M)| = 1. (That is, TM has at least two terminal vertices.)WhenM

is a 3-connected binary matroid, Bixby and Cunningham [2] proved thatM has at least r(M) + 1 non-

separating cocircuits. To accomplish this task, they showed that dim(M) = r(M). Observe that there

is a huge gap between the bounds for the number of non-separating cocircuits obtained by McNulty

and Wu [10], for a simple and cosimple connected binary matroid, and by Bixby and Cunningham

[2], for a 3-connected binary matroid. Lemos [8] proved that M has at least r(M) − 1 non-separating

cocircuits, when M is a simple and cosimple connected binary matroid having just one 2-separation.

He also constructed an infinite family of matroids to show that the bound given by McNulty and Wu

[10] is sharp when the matroid has exactly two 2-separations.

Now, we resume the known bounds for the number of non-separating cocircuits that have been

discussed in the previous paragraph. IfM is a simple and cosimple connected binary matroid, then

|R∗(M)| �

⎧⎪⎪⎨
⎪⎪⎩
r(M) + 1, when M is 3�connected;
r(M) − 1, when M has just one 2�separation;
4, when M has just two 2�separations;
4, in general.

Moreover, any of these bounds is sharp.

In this paragraph, we describe a family of matroids that plays an important role in the theory of

non-separating cocircuits in binary matroids. For a positive integer n, let On be the vector matroid of

the matrix [In|An] over GF(2), where An = (aij) is an n × nmatrix such that

aij =
{
0, when i = j and 1� i � n − 1;
1, when i /= j or i = j = n.

.

For example, the matrix [I5|A5] is equal to:⎡
⎢⎢⎢⎢⎣
1 0 0 0 0 0 1 1 1 1

0 1 0 0 0 1 0 1 1 1

0 0 1 0 0 1 1 0 1 1

0 0 0 1 0 1 1 1 0 1

0 0 0 0 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎦ .

If the2n columnsof [In|An]are labeledbya1, a2, . . . , an−1, a, b1, b2, . . . , bn−1, b respectively, then,when

n� 2, On/an−1\bn−1 = On−1. As AT
n = An, it follows that On

∼=O∗
n . More precisely, (a1b1)(a2b2) · · ·

(an−1bn−1)(ab) is an isomorphism between On and O∗
n . We say that b is the tip and a is the cotip of

On. When n� 4, On/a is the binary spike having n − 1 legs (see [13]). When n� 3, On is 3-connected.

(Observe thatO3
∼=M(K4).)Moreover, for i ∈ {1, 2, . . . , n − 1}, {ai, bi, b} is a triangle ofOn and {ai, bi, a}

is a triad of On. At last, for any 2-subset {i, j} of {1, 2, . . . , n − 1}, (aiaj)(bibj) is an automorphism of

On known as a t-automorphism. (The matrix [In|An] remains invariant after the permutation of: the

columns labeled by ai and aj; the columns labeled by bi and bj; and the ith and jth lines.)

Lemos [8] observed that every non-separating cocircuit of On meets {a, b}, where b and a are re-

spectively the tip and cotip ofOn. In this paper, we show thatOn is the only obstruction to the existence

of non-separating cocircuits avoiding a 2-element set of a 3-connected binary matroid, namely:

Theorem 1.4. Let M be a 3-connected binary matroid without a minor isomorphic to On, for an integer n

exceeding two. If A is a 2-subset of E(M), then
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|R∗
A(M)| � dimA(M) �

r(M) + 1 − n

2
.

For an integer n exceeding two, label the maximal stable sets of K3,n by V1 and V2 so that |V1| = 3.

LetK ′′
3,n andK ′′′

3,n begraphsobtained fromK3,n byadding respectively twoor threepairwisenon-parallel

edges joining vertices in V1. (An edge of K ′′
3,n or K ′′′

3,n which is incident only to vertices belonging to V1

is called an added edge.)

Now, we give examples to show that the bound for dimA(M) given in Theorem 1.4 is the best

possible. Let α and β be constants such that

dimA(M) � αr(M) + β , (1.2)

for every 3-connected binary matroid M without a minor isomorphic to On and 2-subset A of E(M).
First, we show that α � 1

2
. TakeM = M∗(K ′′

3,m), for an integerm exceeding two. If A is the set of added

edges of K ′′
3,m, then dimA(M) = m − 1. As r(M) = 2m, it follows that

α + β

r(M)
�

dimA(M)

r(M)
= m − 1

2m
= 1

2
− 1

2m
.

Therefore α � 1
2
. If α = 1

2
, then β � − n−1

2
because (1.2) holds for On−1.

The next result is a consequence of Theorem 1.4, for n = 4, because O4 is not regular. (Observe that

O4/a∼= F7, where a is the cotip of O4.)

Corollary 1.1. Let M be a 3-connected regular matroid. If A is a 2-subset of E(M), then

|R∗
A(M)| � dimA(M) �

⌈
r(M) − 3

2

⌉
.

Observe that Corollary 1.1 is sharp, since M∗(K ′′
3,m) attains the bound for dimA(M), when m� 3. It

may be possible to obtain a better bound for |R∗
A(M)|.

The bound obtained in Theorem 1.4 can be substantially improved provided we assume that M

does not have also a minor isomorphic to M∗(K ′′
3,n−1). The bound given in Theorem 1.5 is very closed

to the bound for the class of graphic matroids, namely: |R∗
A(M)| � dimA(M) � r(M) − 3, when M is a

3-connected graphic matroid and A is a 2-subset of E(M). (This happens because the non-separating

cocircuits of a 3-connected graphic matroid are the stars of the vertices of the associated graph.)

Theorem 1.5. Let M be a 3-connected binary matroid without a minor isomorphic to On or to M
∗(K ′′

3,n−1),
for an integer n exceeding two. If A is a 2-subset of E(M), then

|R∗
A(M)| � dimA(M) � r(M) + 1 − n.

Now, we give an example to show that Theorem 1.5 is sharp. Let m be an integer such that m� 3.

Choose a triangle T of On−1, for n� 4. If b and a are respectively the tip and the cotip of On−1, then

b ∈ T , say T = {b, c, d}. Suppose that T is also a triangle of the rank-m wheel Wm so that b and d

are spokes. Moreover, assume that E(On−1) ∩ E(Wm) = T . Let M be the matroid obtained from the

generalized parallel connection of On−1 and M(Wm) by deleting c. Observe that r(M) = r(On−1) +
r(Wm) − 2 = n + m − 3. Note that every triad ofM(Wm) that does not include c is a non-separating

cocircuit of M. Moreover, these are the only non-separating cocircuits of M avoiding A = {a, b}. That
is, |R∗

A(M)| = dimA(M) = m − 2 and both bounds of Theorem 1.5 are attained byM.

The next result was proved by Ding et al. in [4]. It gives a list of unavoidable minors of a large

3-connected binary matroid. Observe that On and M∗K ′′
3,n are the only non-graphic matroids in their

list. It is intriguing thatweneed toexclude thenon-graphicmatroids in their list toobtaina lowerbound
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to the number of non-separating cocircuits of a 3-connected binary matroid avoiding a 2-element set

that is close to the bound for 3-connected graphs.

Theorem 1.6. For every integer n greater than two, there is an integer N(n) such that every 3-connected bi-

narymatroidwithmore thanN(n)elements containsaminor isomorphic tooneofM(K
′′
3,n),M

∗(K ′′
3,n),M(Wn)

and On.

The next result plays a very important role in the proofs of Theorems 1.4 and 1.5. It characterizes

the 3-connected binary matroids without a non-separating cocircuit avoiding a fixed 2-element set.

We prove it in Section 3.

Theorem 1.7. Suppose that M is a 3-connected binary matroid such that r(M) � 3. Then, for a 2-subset A

of E(M), the following statements are equivalent:
(i) Every non-separating cocircuit of M meets A.
(ii) For an integer n exceeding two, there is an isomorphism Ψ of M into On such that Ψ (A) = {a, b},

where b is the tip and a the cotip of On.

For a 3-subset A of E(M), it seems difficult to obtain a similar characterization of the matroids

satisfying (i) of Theorem 1.7. In this case, we have an example belonging to the class of cographic

matroids. For an integer n exceeding one, ifM = M∗(K ′′′
3,n) and A is the set of added edges of K ′′′

3,n, then

every non-separating cocircuit of M meets A.

In Section 3, we use Theorems 1.2, 1.3, and 1.7 to construct all the simple and cosimple connected

binary matroids that have just four non-separating cocircuits. That is, we construct all the matroids

that attain the bound obtained byMcNulty andWu [10]. This paper is based on part of the Ph.D. Thesis

of Melo [11].

2. Reduction to the 3-connected case

In this section, we prove Theorem 1.2. The next lemma plays a fundamental role in its proof. Its

dual describes the behavior of a non-separating cocircuit of a connected matroid with respect to a

2-separation.

Lemma 2.1. Let C be a circuit of a connected matroid M such that M/C is also connected. If {X , Y} is a

2-separation of M, then there is Z ∈ {X , Y} such that Z ⊆ C or C ⊆ Z. Moreover, when M is cosimple,

C ⊆ Z , for some Z ∈ {X , Y}.
Proof. For Z ∈ {X , Y}, let CZ = C ∩ Z . If CZ = ∅, for some Z ∈ {X , Y}, say Z = X , then C ⊆ Y and the

result follows. Wemay assume that CZ /= ∅, for each Z ∈ {X , Y}. In particular, CZ is a proper subset of

C and so CZ is independent inM. Hence there is a basis BZ ofM|Z such that CZ ⊆ BZ . Because {X , Y} is
a 2-separation ofM, BX ∪ BY contains just one circuit ofM which must be C. Moreover, (BX ∪ BY ) − e

is a basis ofM, for every e ∈ C.

Now, we prove that, for Z ∈ {X , Y},
rM/C(Z − CZ) = r(Z) − |CZ |. (2.1)

Without loss of generality, we may assume that Z = X . First, we show that

r(X ∪ CY ) = r(X) + |CY | − 1. (2.2)

As BX ∪ CY spans X ∪ CY and contains C, it follows that (BX ∪ CY ) − e spans X ∪ CY , when e ∈ CY .

But (BX ∪ CY ) − e is contained in the basis (BX ∪ BY ) − e of M. Hence (BX ∪ CY ) − e is a basis of

M|(X ∪ CY ) and so (2.2) follows. By (2.2),

rM/C(X − CX) = r(X ∪ CY ) − r(C) = [r(X) + |CY | − 1] − [|C| − 1] = r(X) − |CX |.
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Thus (2.1) holds. As r(M/C) = r(M) − [|C| − 1], it follows, by (2.1), that

rM/C(X − CX) + rM/C(Y − CY ) − r(M/C) = r(X) + r(Y) − r(M) − 1 = 0.

By hypothesis,M/C is connected and so {X − CX , Y − CY } is not a 1-separation ofM/C. Thus there is a
Z ∈ {X , Y} such that Z − CZ = ∅. That is, Z ⊆ C. Moreover, Z is contained in a non-trivial series class

ofM. �

In thenext lemma,weuse the followingdefinition for 2-sumofmatroids. LetM1 andM2 bematroids

such that |E(M1) ∩ E(M2)| = 1, say E(M1) ∩ E(M2) = {e}. (Note that Mi may have less than three

elements and emay be a loop or coloop ofMi.) When e is not a loop of bothM1 andM2, we define the

2-sum M1 ⊕2 M2 ofM1 andM2 as the matroid over [E(M1) ∪ E(M2)] − e having

C(M1\e) ∪ C(M2\e) ∪ {(C1 ∪ C2) − e : e ∈ Ci ∈ C(Mi), for i ∈ {1, 2}}
as its family of circuits. When e is a loop of M1 or M2, say M1, we define the 2-sum M1 ⊕2 M2 of M1

and M2 as (M1\e) ⊕ (M2/e). (Observe that our definition is different from that given in [14].) This

new definition for 2-sum keeps all the nice properties that the usual definition of 2-sum has: it is

commutative, it commutes with the operations of duality, deletion and contraction; and, when each

factor has at least two elements, its result is connected if and only if each factor is connected.

Lemma 2.2. Suppose that M is a simple and cosimple connected matroid. If M is not 3-connected, then

R∗(M) ⊆ R∗
A1

(M1) ∪ R∗
A2

(M2) ∪ · · · ∪ R∗
An

(Mn),

where Λt
2(M) = {M1,M2, . . . ,Mn} and, for i ∈ {1, 2, . . . , n}, Ai = E(Mi) − E(M).

Proof. If C∗ ∈ R∗(M), then, by the dual of Lemma 2.1, C∗ ⊆ E(H), for some H ∈ Λu
2(M). Hence C∗ is

a cocircuit of H. We have two cases to consider:

Case 1. |E(H) − C∗| � 2.

As the operation of 2-sum commutes with the operation of deletion, it follows that M\C∗ is the

2-sum of the matroids belonging to the set [Λu
2(M) − {H}] ∪ {H\C∗}. By hypothesis, M\C∗ is

connected and so H\C∗ is connected. Therefore C∗ ∈ R∗(H). The result follows provided H ∈ Λt
2(M).

Wemay assume thatH is a circuit or a cocircuit. In both possibilities forH, we arrive at a contradiction,

since H\C∗ is a connected matroid having at least two elements.

Case 2. |E(H) − C∗| � 1.

As M is not 3-connected, it follows that E(H) − E(M) /= ∅. (That is, H must have as an element

a label of an edge of T(M).) Thus E(H) = C∗ ∪ b, where b labels an edge of T(M). Hence r(H) =
r({b}) + 1 = 2. As M is simple and cosimple, it follows that H ∼=U2,n, for some n� 4. In particular,

H ∈ Λt
2(M) and C∗ ∈ R∗{b}(H). �

Proof of Theorem 1.2. By Lemma 2.2, we need to show only that R∗
Ai
(Mi) ⊆ R∗(M), for every i ∈

{1, 2, . . . , n}. As Mi is a 3-connected binary matroid having at least four elements, it follows that

r(Mi) � 3. If C∗ ∈ R∗
Ai
(Mi), then Mi\C∗ is a connected matroid having at least three elements. Hence

M\C∗ is the 2-sum of the matroids belonging to the set [Λu
2(M) − {Mi}] ∪ {Mi\C∗}. ThereforeM\C∗

is connected because every matroid in this set is connected. That is, C∗ ∈ R∗(M) and so R∗
Ai
(Mi) ⊆

R∗(M). �

3. A characterization of On

In this section, we show thatM is isomorphic to On, for some integer n exceeding two, providedM

is a 3-connected binary matroid such that R∗
A(M) = ∅, for some 2-subset A of E(M). Moreover, this

isomorphism maps the elements of A into the tip and the cotip of On.
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In the next lemma, we show that every 3-connected 1-element binary lift or extension of On, for

n� 3, has a non-separating cocircuit avoiding both the tip and cotip of On.

Lemma 3.1. Let n be an integer exceeding two. If M is a 3-connected binary 1-element extension of On and

A = {a, b}, where b and a are respectively the tip and the cotip of On, then

(i) there is a cocircuit C∗ of M such that M\C∗ is connected and C∗ ∩ A = ∅; and
(ii) there is a circuit C of M such that M/C is connected and C ∩ A = ∅.

Proof. Bydefinition,On is thevectormatroidof thematrix [In|An]overGF(2).Moreover, the2n columns

of thismatrix are labeled respectively by a1, a2, . . . , an−1, a, b1, b2, . . . , bn−1, b. IfM\e = On, then there

is a column vector v = (v1, v2, . . . , vn)
T such thatM is the vector matroid of the matrix [In|An|v] over

GF(2)and e labels the last columnof thismatrix.Applyinganappropriate sequenceof t-automorphisms

ofOn to thematrix [In|An|v], wemay assume that there is a integer s such that v1 = v2 = · · · = vs = 1

and vs+1 = vs+2 = · · · = vn−1 = 0. Now, we divide the proof into two cases:

Case 1. vn = 0.

Observe that C1 = {a1, a2, . . . , as, e} and C2 = {as+1, as+2, . . . , an−1, a, b, e} are circuits of M.

(If s = n − 1, thenC2 = {a, b, e}.) Inparticular, s� 2.AsC∗ = {a1, b1, a2, b2} = {a1, b1, a} � {a2, b2, a}
is a cocircuit ofOn, e ∈ C1 and |C∗ ∩ C1| is even, it follows that C∗ is a cocircuit ofM. Observe thatM\C∗
is connected because: for each integer i such that 3� i � n − 1, {ai, bi, b} is a circuit of M\C∗; and C2
is a circuit ofM\C∗. Thus (i) follows. To conclude (ii), we need to prove only thatM/C1 is connected. But
M/C1 = (M\e)/{a1, a2, . . . , as} = On/{a1, a2, . . . , as}. As On/{a1, a2, . . . , as} ∼=On/{an−s, an−(s−1),

. . . , an−1} and On/{an−s, an−(s−1), . . . , an−1} is obtained from On−s by adding all the elements be-

longing to {bn−s, bn−(s−1), . . . , bn−1} in parallel to b, it follows that On/{a1, a2, . . . , as} is connected.

HenceM/C1 is connected and (ii) also follows.

Case 2: vn = 1.

Observe that C3 = {a1, a2, . . . , as, a, e} is a circuit of M. In particular, s� 1. Note that s� n − 3

because v is not equal to the column of An labeled by bn−1 or by b. As D∗ = {an−2, an−1, bn−2, bn−1} is
a cocircuit of On, e ∈ C3 and |D∗ ∩ C3| is even, it follows that D∗ is a cocircuit ofM. Observe thatM\D∗
is connected because: for each integer i such that 1� i � n − 3, {ai, bi, b} is a circuit ofM\D∗; and C3 is

a circuit ofM\D∗. Thus (i) follows. Observe that C4 = {bs+1, as+2, as+3, . . . , an−1, e} is a circuit ofM. To

conclude (ii), we need to prove only thatM/C4 is connected. ButM/C4 = (M\e)/{bs+1, as+2, as+3, . . . ,
an−1} = [On/{as+2, as+3, . . . , an−1}]/bs+1. As On/{as+2, as+3, . . . , an−1} is obtained from Os+2 by

adding all the elements belonging to {bs+2, bs+3, . . . , bn−1} in parallel to b and Os+2 is 3-connected,

it follows that [On/{as+2, as+3, . . . , an−1}]/bs+1 is connected. Hence M/C4 is connected and (ii) also

follows. �
It may be possible that the next lemma is already known but we do not have a reference for it.

Lemma 3.2. If T∗ is a triad of a 3-connected matroid M that meets a triangle T , then,

(i) T∗ is a non-separating cocircuit of M; and
(ii) si(M/e) is 3-connected, for e ∈ T∗ − T .

Proof. The proof of (i) will be omitted since it is straightforward. To prove (ii), it is enough to show that

every 2-separation ofM/e is trivial. This is the case, when |E(M)| � 6.Wemay assume that |E(M)| � 7.

As {T∗ − e, E(M) − T∗} is a 2-separation of M\e, T∗ − e ⊆ T and T∗ − e spans T in M, it follows that

{T , E(M) − (T ∪ e)} is a 2-separation of M\e. Hence M\e has a non-trivial 2-separation. By the main

result of Bixby [1], every 2-separation ofM/e is trivial. �
To prove Theorem 1.7, we need the next two lemmas from Bixby and Cunningham [2].

Lemma 3.3. Suppose that M is a 3-connected binary matroid such that r∗(M) � 3. If e ∈ E(M),M\e is

3-connected and C∗ ∈ R∗(M\e), then C∗ or C∗ ∪ e belongs to R∗(M).
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Lemma 3.4. Suppose that M is a 3-connected binary matroid such that r∗(M) � 3. If e ∈ E(M),M/e is

3-connected and C∗ ∈ R∗(M/e), then

(i) C∗ ∈ R∗(M); or
(ii) there are C∗

1 , C
∗
2 ∈ R∗(M) such that C∗

1 ∩ C∗
2 = {e}, C∗

1 ∪ C∗
2 = C∗ ∪ e and C∗

1 � C∗
2 = C∗.

The next result shows that (i) implies (ii) in Theorem 1.7. Therefore Theorem 1.7 follows because

Lemos [8] pointed out that (ii) implies (i). To prove Proposition 3.1, we use a structure called fan. (For

definitions and results about chains and fans, we use Oxley and Wu [15].)

Proposition 3.1. Suppose that M is a 3-connected binary matroid such that r(M) � 3. If, for a 2-subset

A of E(M), every non-separating cocircuit of M meets A, then there is an integer n exceeding two and an

isomorphism Ψ of M into On such that Ψ (A) = {a′, b′}, where b′ is the tip and a′ the cotip of On.

Proof. Suppose this result is not true and choose a counter-exampleM such that |E(M)| is minimum.

First,weshowthat r(M) � 4. If r(M) = 3, thenM is isomorphic toM(K4)or toF7. Inbothcases,wearrive

at a contradiction. IfM ∼= F7, then there is a triangle T ofM such that A ⊆ T . Hence C∗ = E(M) − T is

a cocircuit of M such that M\C∗ = M|T is connected and C∗ ∩ A = ∅; a contradiction. If M ∼=M(K4),
then A meets the star of each vertex of K4. Therefore A is a matching of K4; a contradiction because

there is an isomorphism betweenM(K4) and O3 that maps the edges of this matching into the tip and

the cotip of O3. Thus r(M) � 4 and so |E(M)| � 7.

In this paragraph, we show that every element belonging to E(M) − A is essential. Suppose that

e ∈ E(M) − A is non-essential. By definition,M\e orM/e is 3-connected. In both cases, we will arrive

at a contradiction. If M\e is 3-connected, then, by Lemma 3.3, every non-separating cocircuit of M\e
meets A. By the choice of M, there is an isomorphism of M\e into On, for some n� 3, that maps the

elements ofA into the tip and cotip ofOn; a contradiction to Lemma3.1(i) and soM/e is 3-connected. By
Lemma3.4, every non-separating cocircuit ofM/emeetsA. By the choice ofM, there is an isomorphism

between M/e and On, for some n� 3, that maps A into {a, b}, where b and a are respectively the tip

and cotip of On. Taking the dual, there is an isomorphism between M∗\e and On that maps A into

{a, b}. By Lemma 3.1(ii), there is a circuit C of M∗ such that C ∩ A = ∅ and M∗/C is connected. But

(M∗/C)∗ = M\C; a contradiction because C is a cocircuit of M. Thus every element belonging to

E(M) − A is essential.

As r(M) � 4 and |A| = 2, it follows that M is not graphic. In particular, M is not isomorphic to a

wheel. By Theorem 1.6 of [15], M has at least two non-essential elements. Hence A is the set of non-

essential elements of M. By Theorem 1.6 of [15], for each e ∈ E(M) − A, there is a fan Fe of M having

e as an element. Moreover, A is the set of terminal elements of Fe. By Lemma 3.2(i), every triad of Fe

meets A. If ne denotes the number of links of Fe, then ne � 3. Moreover,

(i) ne = 1 and the link of Fe is a triangle; or

(ii) ne = 1 and the link of Fe is a triad; or

(iii) ne = 2; or

(iv) ne = 3 and two links of Fe are triads.

By orthogonality, when (i) happens for some e ∈ E(M) − A, then (i) occurs for every e ∈ E(M) − A.

Therefore A spans E(M) − A in M; a contradiction. Hence (i) never happens.

By orthogonality, when (iii) occurs for some e∈E(M)−A, then (iii) happens for every e∈E(M)−A.

By Corollary 1.7 of [15], there is a partition A1, A2, . . . , An−1 of E(M) − A such that, for every i ∈
{1, 2, . . . , n − 1}, Ai ∪ b is a triangle ofM and Ai ∪ a is a triad ofM, where A = {a, b}. Let C be a circuit

of M such that {a, b} ⊆ C. As, by orthogonality, |C ∩ (Ai ∪ a)| is even, for every i ∈ {1, 2, . . . , n − 1},
it follows that |C ∩ Ai| = 1, say C ∩ Ai = {ai}. So C = {a1, a2, . . . , an−1, a, b}. If Ai = {ai, bi}, for i ∈
{1, 2, . . . , n − 1}, then {ai, bi, b} is a triangle of M. So C spans bi in M. Hence C spans M. In particular,

r(M) = r(M∗) = n. Let [In|B] be a matrix that represents M in GF(2). Suppose that the columns of

[In|B] are labeled by a1, a2, . . . , an−1, a, b1, b2, . . . , bn−1, b. Using respectively the circuits {a1, b1, b},{a2, b2, b}, . . . , {an−1, bn−1, b} and {a1, a2, . . . , an−1, a, b}, one concludes that B = An. Hence M ∼=On
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and b and a are mapped by this isomorphism into the tip and cotip of On; a contradiction. Thus (iii)

does not occur.

Suppose that (iv) occurs for some e ∈ E(M) − A. If Fe is equal to T∗
1 , T , T

∗
2 , then (T∗

1 − T) ∪
(T∗

2 − T) = A. Now, we show that T∗
1 and T∗

2 are the unique triads ofM meeting T . If T∗
3 is a triad ofM

such that T∗
3 /∈ {T∗

1 , T
∗
2 } and T∗

3 ∩ T /= ∅, then T∗
3 ∩ A = ∅ because T∗

3 − T /= T∗
i − T , for i ∈ {1, 2}.

By Lemma 3.2(i), T∗
3 is a non-separating cocircuit of M; a contradiction. Thus T∗

3 does not exist. As T∗
1

and T∗
2 are the unique triads ofMmeeting T , it follows, by the dual of Theorem1.8(i) of [15], thatM/f\g

is 3-connected, where f ∈ T∗
1 ∩ T∗

2 and g ∈ T − f . Observe that (T∗
1 ∪ T∗

2 ) − {f , g} is a triad ofM/f\g
that contains A. Therefore there is no isomorphism betweenM/f\g and On, for some n� 3, that maps

the elements belonging to A into the tip and cotip of On. By the choice of M, there is a non-separating

cocircuit C∗ ofM/f\g avoiding A. AsM/f is obtained fromM/f\g by adding g in parallel with the ele-

ment belonging to T − {f , g}, it follows that D∗ = C∗, when C∗ ∩ T = ∅, or D∗ = C∗ ∪ (T − f ), when

C∗ ∩ T /= ∅, is a non-separating cocircuit of M/f avoiding A. By hypothesis, M\D∗ is not connected.

SoM\D∗ has two connected components, namely: (M/f )\D∗ andM|f . Hence D∗ = C∗ ∪ (T − f ). We

arrive at a contradiction because A ∪ f is contained in a series class of M\(T − f ). Therefore (iv) also

does not occur.

Hence (ii) happens for every e ∈ E(M) − A. Thus A spans E(M) − A in M∗. We arrive at a contra-

diction and the result follows. �

We say that a simple and cosimple connected binary matroid M is MW provided TM is a path such

that:

(i) If H labels a terminal vertex of TM , then H is isomorphic to M(K4).
(ii) If H does not label a terminal vertex of TM and H ∈ Λt

2(M), then there is an isomorphism Ψ of

H into On, for some integer n exceeding two, that maps the elements belonging to E(H) − E(M)
into the tip and cotip of On.

(Observe that every circuit or cocircuit that labels a vertex of TM must have three elements because

M is simple and cosimple and TM is a path.)

Now,wecharacterizewhich simple andcosimple connectedbinarymatroids attain the lowerbound

for the number of non-separating cocircuits given by McNulty and Wu [10].

Corollary 3.1. Let M be a simple and cosimple connected binary matroid. Then, the following statements

are equivalent:
(i) M has exactly four non-separating cocircuits.
(ii) M is MW.

Proof. First, we show that (i) implies (ii). If M is 3-connected, then, by a theorem of Bixby and

Cunningham [2], M has at least r(M) + 1 non-separating cocircuits. Hence r(M) = 3 and M is iso-

morphic to M(K4) or F7. Therefore M is isomorphic to M(K4) because F7 has seven non-separating

cocircuits. Thus M is MW and the result follows. We may assume that M is not 3-connected. If

M1,M2, . . . ,Mn are the terminal vertices of TM , then n� 2. As M is simple and cosimple, it follows

that {M1,M2, . . . ,Mn} ⊆ Λt
2(M). Moreover, r(Mi) � 3, for i ∈ {1, 2, . . . , n}. By (1.1) and Theorem 1.3,

|R∗(M)| � r(M1) + r(M2) + · · · + r(Mn) − n. Therefore n = 2 and r(M1) = r(M2) = 3. Moreover,

M1 and M2 must be isomorphic to M(K4) because F7 has three non-separating cocircuits avoiding an

element. By (1.1), |R∗
E(H)−E(M)(H)| = 0, for every H ∈ Λt

2(M) − {M1,M2}. By Theorem 1.7, H ∼=On,

for some n� 3, and this isomorphism maps the elements of E(H) − E(M) into the tip and cotip of On.

ThusM is MW. Observe that (ii) implies (i) by (1.1). �

4. Some auxiliary lemmas

The next lemma generalizes Lemma 3.4.
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Lemma 4.1. Suppose that M is a 3-connected binary matroid such that r(M) � 4. Let e be an element of

M such that si(M/e) is 3-connected. If A ⊆ E(M) and X ⊆ E(M) − e is chosen so that si(M/e) = M/e\X
and A′ = A − (X ∪ e) has maximum cardinality, then, for each C∗ ∈ R∗

A′(si(M/e)), there is D∗ ∈ C(M∗)
such that C∗ ⊆ D∗ ⊆ C∗ ∪ X and

(i) D∗ ∈ R∗
A(M); or

(ii) D∗ = D∗
1 � D∗

2, for some D∗
1,D

∗
2 ∈ R∗

A−e(M) so that D∗
1 ∩ D∗

2 = {e}.
Moreover, when (ii) happens, M\D∗ has just one coloop, namely e.

Proof. Suppose that C∗ ∈ R∗
A′(si(M/e)). Let D∗ be the cocircuit ofM/e obtained from C∗ by replacing

each one of its elements by the parallel class ofM/e that contains it. Note that H = E(M/e) − D∗ is a

connected hyperplane ofM/e because C∗ ∈ R∗
A′(si(M/e)). As C∗ ∩ A′ = ∅, it follows thatD∗ ∩ A = ∅,

by the choice of X . Note also that C∗ ⊆ D∗ ⊆ C∗ ∪ X . IfM|(H ∪ e) is connected, thenD∗ ∈ R∗
A(M) and

(i) follows. Assume that M|(H ∪ e) is not connected. As [M|(H ∪ e)]/e = (M/e)|H is connected, it

follows that e is a coloop ofM|(H ∪ e). ThusD∗ spans e inM∗ and, sinceM is binary, there is a partition

{X1, X2} ofD∗ such thatD∗
i = Xi ∪ e is a cocircuit ofM, for i ∈ {1, 2}. AsM is 3-connected, it follows that

min{|X1|, |X2|} � 2. Now, we show that M\D∗
i is connected, for i ∈ {1, 2}, say i = 1. As e is a coloop

of M|(H ∪ e), it follows that M|H is connected and M\D∗
1 has a connected component N such that

H ⊆ E(N). If f ∈ X2, then r(H ∪ f ) = r(H) + 1 = r(M) − 1 and so H ∪ f spans X2. For g ∈ X2 − f ,

let Cg be a circuit of M such that g ∈ Cg ⊆ H ∪ {f , g}. Note that Cg ∩ H /= ∅ because |Cg | � 3. Hence

E(N) = H ∪ X2, since X2 − f /= ∅. That is,M\D∗
1 is connected. To conclude (ii), we need to prove only

that e is the unique coloop of M\D∗. This follows becauseM\D∗ has just two connected components,

one of them being M|H, and r(H) � r(M) − 2� 2. �

Lemma 4.2. Suppose that M is a 3-connected binary matroid such that r(M) � 4. Let e be an element of

M such that si(M/e) is 3-connected. If A ⊆ E(M) and X ⊆ E(M) − e is chosen so that si(M/e) = M/e\X
and A′ = A − (X ∪ e) has maximum cardinality, then:

(i) If e /∈ A, then

dimA(M) � dimA′(si(M/e)),

with equality only if R∗
A(M) = R∗

A∪e(M).
(ii) If there is a chain T1, T2, T3 of M such that e ∈ T1 ∩ T2 ∩ T3, T2 is a triangle of M and e ∈ A, then

dimA(M) � dimA′(si(M/e)) − 1.

Proof. Fix a basis B for the subspace of the cocycle space of si(M/e) spanned by R∗
A′(si(M/e)). For

C∗ ∈ B, we define two subsetsΩ ′
C∗ andΩ

′′
C∗ of C∗(M/A). LetD∗ be a cocircut satisfying the conclusions

of Lemma4.1.We setΩ ′
C∗ = {D∗}.When Lemma 4.1(i) happens, we defineΩ

′′
C∗ = {D∗}.When Lemma

4.1(ii) happens, we define Ω
′′
C∗ = {D∗

1,D
∗
2}, when e /∈ A, or Ω

′′
C∗ = ∅, when e ∈ A. (Observe that Ω

′′
C∗

spans Ω ′
C∗ in the cocycle space ofM, when e /∈ A or Lemma 4.1(i) holds for C∗.) If

B′ = ⋃
C∗∈B

Ω ′
C∗ and B

′′ = ⋃
C∗∈B

Ω
′′
C∗ ,

then

B′ is a set of linearly independent cocircuits in the cocycle space of M and (4.1)

B
′′ ⊆ R∗

A(M). (4.2)

Now, we prove (i). As e /∈ A, it follows that B
′′
spans B′ in the cocycle space ofM. By (4.1) and (4.2),

dimA(M) � |B′| = |B| = dimA′(si(M/e)). (4.3)
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If there is D′∗ ∈ R∗
A(M) such that e ∈ D′∗, then the equality in (4.3) does not occurs, since e /∈ D∗, for

every D∗ ∈ B′. Thus, when equality holds in (4.3), R∗
A(M) = R∗

A∪e(M).
To prove (ii), we need to show that:

If Lemma 4.1(ii) happens for C∗ ∈ R∗
A′(si(M/e)), then C∗ ⊆ T1 � T3. (4.4)

Let D∗
1 and D∗

2 be as described in Lemma 4.1(ii). By orthogonality, T2 − e ⊆ D∗
1 ∪ D∗

2. So T2 − e ⊆ D∗.
But S = (T1 ∪ T3) − (T2 − e) is a series class or a set of coloops of M\(T2 − e). By Lemma 4.1(ii), e is

a coloop ofM\D∗. So S − D∗ is a set of coloops ofM\D∗. By Lemma 4.1(ii),M\D∗ has just one coloop,

namely e, and so S − e ⊆ D∗. That is, T1 � T3 is a subset of D∗. Thus D∗ = T1 � T3 and (4.4) follows.

By (4.4), B
′′
spans B′ − {T1 � T3} in the cocycle space of M. The result follows by (4.1) and (4.2). �

The results proved in this section are used in [9].

5. A minimal counter-example

Throughout this section, we suppose that:

(a) α and β are real numbers such that 0 < α � 1 and β � −3α;

(b) A is a 2-element set; and

(c) F is a class of binary matroids closed under minors.

We define

Fα,β = {M ∈ F : A ⊆ E(M),M is 3�connected and dimA(M) < αr(M) + β}.
Our goal is to prove the following result:

Theorem 5.1. Let M be a member of Fα,β with the minimum number of elements. If R∗
A(M) /= ∅, then

there is an isomorphism from M to M∗(K ′′
3,n), for some n� 2, mapping the elements of A into the added

edges of K
′′
3,n.

Proof. Observe that r(M) � 5 because

1� dimA(M) < αr(M) + β � α[r(M) − 3] � r(M) − 3. (5.1)

We divide the proof of this result in a sequence of lemmas.

Lemma 5.1. If e ∈ E(M) − A, then M\e is not 3-connected.
Proof. Suppose thatM\e is 3-connected. By hypothesis, M\e /∈ Fα,β and so

dimA(M\e) � αr(M\e) + β = αr(M) + β > dimA(M).

If C∗ ∈ R∗
A(M\e), then, by Lemma 3.3, R∗

A(M) ∩ {C∗, C∗ ∪ e} /= ∅. Thus dimA(M) � dimA(M\e); a
contradiction. �

Lemma 5.2. Suppose that T is a triangle of M such that A� T . If e ∈ T − A, then there is a triad T∗ of M

such that e ∈ T∗.

Proof. By Lemma 5.1,M\f is not 3-connected, for every f ∈ T − A. As |T − A| � 2, it follows, by Tutte’s

Triangle Lemma [17], that every element of T − A belongs to a triad of M. �

Lemma 5.3. If e ∈ E(M) − A and si(M/e) is 3-connected, then R∗
A(M) = R∗

A∪e(M).
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Proof. Choose the simplification of M/e so that A′ = A ∩ E(si(M/e)) has maximum cardinality. Sup-

pose that si(M/e) = M/e\X . There are two cases to be considered.We dealwith them simultaneously.

First, we determine a lower bound for dimA′(si(M/e)). If |A′| = 1, then, by Theorem 1.3 and (5.1),

dimA′(si(M/e)) � r(si(M/e)) − 1 = r(M) − 2� αr(M) + β + 1.

If |A′| = 2, then, by hypothesis, si(M/e) /∈ Fα,β and so

dimA′(si(M/e)) � αr(si(M/e)) + β = αr(M) + β − α � αr(M) + β − 1.

By Lemma 4.2(i),

dimA(M) � dimA′(si(M/e)).

We have a contradiction, unless |A′| = |A| and
dimA(M) = dimA′(si(M/e)).

Again, by Lemma 4.2(i), we have that R∗
A(M) = R∗

A∪e(M). �

Lemma 5.4. If T∗ is a triad of M that meets at least one triangle of M, then T∗ ∩ A /= ∅.

Proof. Suppose that T∗ ∩ A = ∅. Let T be a triangle of M such that T ∩ T∗ /= ∅. If e ∈ T∗ − T , then,

by Lemma 3.2(ii), si(M/e) is 3-connected. So, by Lemma 5.3, R∗
A(M) = R∗

A∪e(M). Hence T∗ /∈ R∗(M);
a contradiction to Lemma 3.2(i). Thus T∗ ∩ A /= ∅. �

Lemma 5.5. If T∗
1 , T , T

∗
2 is a chain of M such that T is a triangle, then

(i) T∗
1 ∩ T ∩ T∗

2 � A; or
(ii) there is a triad T∗

3 of M such that T∗
3 /∈ {T∗

1 , T
∗
2 }, T∗

3 ∩ T /= ∅ and A ⊆ T ∪ T∗
3 .

Proof. Let a be the element belonging to T∗
1 ∩ T ∩ T∗

2 . Suppose that a ∈ A. If si(M/a) is 3-connected,
then, by Theorem 1.3 and (5.1),

dimA−a(si(M/a)) � r(si(M/a)) − 1 = r(M) − 2� αr(M) + β + 1;
a contradiction because, by Lemma 4.2(ii),

dimA(M) � dimA−a(si(M/a)) − 1.

Hence si(M/a) is not 3-connected. By the dual of Theorem 1.8 of [15], T meets a third triad of M, say

T∗
3 . By Lemma 5.4, T∗

3 ∩ A /= ∅. Thus A − a ⊆ T∗
3 , since a /∈ T∗

3 . We have (ii). �

Let T be the set of triangles T of M such that T ∩ C∗ /= ∅, for some C∗ ∈ R∗
A(M).

Lemma 5.6. If T ∈ T , then there are triads T∗
1 and T∗

2 of M such that T∗
1 , T , T

∗
2 is a fan FT of M. Moreover,

(i) T ∩ A = ∅;
(ii) A = (T∗

1 − T) ∪ (T∗
2 − T);

(iii) T meets exactly two triads of M; and
(iv) t does not belong to a non-separating cocircuit of M avoiding A, where t ∈ T∗

1 ∩ T ∩ T∗
2 .

Proof. LetC∗ beanon-separatingcocircuit ofM avoidingA so thatT ∩ C∗ /= ∅. ByLemma5.4, |C∗| � 4.

By orthogonality, |C∗ ∩ T| = 2. Observe that there is no triad T∗ of M such that T∗ ∩ T = C∗ ∩ T ,

otherwise T∗ − T is a coloop of M\C∗. (In particular, there is at most two triads of M meeting T .) By

Lemma 5.2, there are different triads T∗
1 and T∗

2 of M meeting T and (iii) follows. If t ∈ T∗
1 ∩ T ∩ T∗

2 ,

then t ∈ T − C∗. By Lemma 5.5, t /∈ A, since T meets exactly two triads ofM. Hence T ∩ A = ∅ and (i)

follows. By Lemma 5.4, T∗
i ∩ A /= ∅, for each i ∈ {1, 2}, say ai ∈ T∗

i ∩ A. Hence ai ∈ T∗
i − T because

T ∩ A = ∅, by (i). Therefore A = {a1, a2}, since a1 /= a2, by Theorem 1.6 of [15]. We have (ii).
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Now, we show that T∗
1 , T , T

∗
2 is a fan of M. If T∗

1 , T , T
∗
2 is not a fan of M, then there is a triangle T ′

ofM such that T /= T ′ and T ′ ∩ T∗
i /= ∅, for some i ∈ {1, 2}, say i = 1. By orthogonality, a1 ∈ T ′ and

t /∈ T ′. Hence T ′ ∩ (T − t) /= ∅ and so T ′ ∩ C∗ /= ∅. That is, T ′ ∈ T and T ′ ∩ A /= ∅; a contradiction
to (i). Hence T∗

1 , T , T
∗
2 is a fan of M. To finish the proof of this lemma, we need to show that t /∈ D∗,

when D∗ ∈ R∗
A(M). If t ∈ D∗, then, by the previous paragraph applied to the pair (T ,D∗) instead of

(T , C∗), T meets a third triad of M; a contradiction to (iii). �

Lemma 5.7. If C∗ ∈ R∗
A(M), then there are triangles T1 and T2 of M meeting C∗ such that C∗ = (T1 ∩

C∗) ∪ (T2 ∩ C∗). Moreover, |C∗| = 4 and |T | � 2.

Proof. By Lemma 5.3, M/e is not 3-connected, for every e ∈ C∗. By the dual of Theorem 1 of [7],

there are different triangles T1 and T2 of M meeting C∗. In particular, {T1, T2} ⊆ T and so |T | � 2. By

Lemma 5.6, for i ∈ {1, 2}, there are triads T∗
1i and T∗

2i of M such that T∗
1i, Ti, T

∗
2i is a fan of M. Moreover,

if ti ∈ Ti − C∗, then ti ∈ T∗
1i ∩ Ti ∩ T∗

2i and A = (T∗
1i − Ti) ∪ (T∗

2i − Ti). Hence

[T∗
11 � T∗

21] � [T∗
12 � T∗

22] = [A ∪ (T1 ∩ C∗)] � [A ∪ (T2 ∩ C∗)] = (T1 ∩ C∗) � (T2 ∩ C∗)
is a union of cocircuits of M. Therefore C∗ = (T1 ∩ C∗) � (T2 ∩ C∗). As M is 3-connected, it follows

that |C∗| � 3 and so (T1 ∩ C∗) ∩ (T2 ∩ C∗) = ∅. Thus |C∗| = 4. �

For T ∈ T , let XT be the set of elements of FT . If X = ∪T∈T XT , then, by Lemma 5.7, C∗ ⊆ X , for

every C∗ ∈ R∗
A(M). Assume that T = {T1, T2, . . . , Tn}. If, for i ∈ {1, 2, . . . , n}, Ti = {ei, fi, gi}, then, by

Lemma 5.6, we can suppose that T∗
1i = {a, ei, gi} and T∗

2i = {gi, fi, b} are triads of M, where A = {a, b}.

Lemma 5.8. If n = |T |, then there is an isomorphism from M∗|X into M(K
′′
3,n) mapping the elements

of A into the added edges of K
′′
3,n. Moreover, B∗ = {a, b, g1, g2, . . . , gn} is a basis of M∗|X and, when

E(M) − X /= ∅,
(i) {X − A, E(M) − (X − A)} is a 3-separation of M∗; and
(ii) {X − A, E(M) − X} is a 1-separation of M∗/A.

Proof. Observe thatB∗ spansX inM∗ andB = {e1, e2, . . . , en, f1, f2, . . . , fn} spansX − A inM. Therefore

rM(X − A) + rM∗(X − A) − |X − A| � [2n] + [n + 2] − [3n] = 2 (5.2)

and so {X − A, E(M) − (X − A)} is a 3-separation ofM∗ and (i) follows. Moreover, when E(M) − X /=
∅, we have equality in (5.2). Therefore r(M∗/A)∗(X − A) = rM\A(X − A) = rM(X − A) = 2n. We also

have that rM∗/A(X − A) = rM∗(X) − rM∗(A) = n. (The last equality follows by the equality in (5.2).)

Hence

rM∗/A(X − A) + r(M∗/A)∗(X − A) − |X − A| = [n] + [2n] − [3n] = 0

and so (ii) also holds.

Now, we show that B∗ is a basis of M∗|X . If B∗ contains a cocircuit C∗ of M, then gi ∈ C∗, for some

i ∈ {1, 2, . . . , n}, since |C∗| � 3. Observe that C∗ ∩ Ti = {gi}; a contradiction to orthogonality. Thus B∗
is a basis ofM∗|X .

Let [In+2|Bn+2] be amatrix that representsM∗|X over GF(2), where Bn+2 is a (n + 2) × 2nmatrix.

Label thecolumnsof In+2 bya, b, g1, g2, . . . , gn. Ifv = (v1, v2, . . . , vn+2)
T andw = (w1,w2, . . . ,wn+2)

T

are respectively the columns of Bn+2 labeled by ei and fi, for some i ∈ {1, 2, . . . , n}, then vj = 1 if and

only if j ∈ {1, i + 2} andwj = 1 if and only if j ∈ {2, i + 2}. Hence [In+2|Bn+2] also representsM(K
′′
3,n)

over GF(2), where the edges incidents to the vertex of degree n + 2 label the columns of In+2 (with

the first two columns labeled by the added edges of K ′′
3,n). �

Lemma 5.9. If T∗ is a triad of M, then A� T∗.



272 M. Lemos, T.R.B. Melo / Linear Algebra and its Applications 432 (2010) 259–274

Proof. Assume that A ⊆ T∗. By Lemma 5.7, |T | � 2. If T ∈ T , then, by Lemma 5.6, T meets exactly two

triads T∗
1 and T∗

2 of M. If D∗ = T∗
1 � T∗

2 , then |D∗| = 4 and so D∗ is a cocircuit of M. Observe that

A ⊆ D∗. As D∗ � T∗ has cardinality three, it follows that D∗ � T∗ is a third triad of M meeting T; a

contradiction to Lemma 5.4. Therefore A� T∗. �

Lemma 5.10. Theorem 5.1 follows unless E(M) − X /= ∅. Moreover, |E(M) − X| � 3.

Proof. If E(M) − X = ∅, then, by Lemma 5.8, Theorem 5.1 follows. Wemay assume that E(M) − X /=
∅. Now, we show that clM∗(X) = X . Suppose that e ∈ clM∗(X) − X . There is a cocircuit C∗ of M such

that e ∈ C∗ ⊆ B∗ ∪ e because B∗ = {a, b, g1, g2, . . . , gn} is a basis of M∗|X . By orthogonality with

{ei, fi, gi}, gi /∈ C∗. Hence C∗ = A ∪ e; a contradiction to Lemma 5.9. Thus clM∗(X) = X . In partic-

ular, X is contained in a hyperplane of M∗. Therefore |E(M) − X| � 3, since E(M) − X contains a

circuit ofM. �

By Lemma 5.10, we may assume that |E(M) − X| � 3. Let N be an 1-element binary extension of

M∗ such that A is contained in a triangle T of N, say T = A ∪ t. By Lemma 5.9, N is 3-connected and

M∗ = N\t. If N1 = N|[(X − A) ∪ T] and N2 = N|[(E(M) − X) ∪ T], then, by Lemma 5.8(i) and (ii), N

is the generalized parallel connection of N1 and N2. Moreover, by Lemma 5.8, N1
∼=M(K

′′′
3,n), where

n = |T |, and N2 is 3-connected. Now, we need an auxiliary lemma whose proof is omitted because it

is straightforward.

Lemma 5.11. Let T be a triangle of a connected binary matroid H. If X ⊆ E(H) − T and rH/X(T) � 1, then

H/X is not connected.

Lemma 5.12. If C is a circuit of N2 such that N2/C is connected, then C ∩ A /= ∅.

Proof. Assume that C ∩ A = ∅. First, we show that t ∈ C. If t /∈ C, then C ∩ T = ∅. By Lemma 5.11,

rN2/C(T) = 2.HenceN/C is thegeneralizedparallel connectionofN1 andN2/C. AsbothN1 andN2/C are

connected, it follows thatN/C is connected. Observe that [N/C]\t is connected because t ∈ T ⊆ E(N1)
and [N/C]|E(N1) = N1 is 3-connected. But [N/C]\t = [N\t]/C = M∗/C. Thus C is a non-separating

cocircuit ofM avoiding A; a contradiction because C ∩ X = ∅. Therefore t ∈ C.

If T ′ ∈ T , then, by Lemma 5.6, there is t′ ∈ T ′ such that t′ does not belong to a non-separating

cocircuit of M avoiding A. Moreover, (T ′ − t′) ∪ A is a cocircuit of M. Hence [(T ′ − t′) ∪ A] � (A ∪
t) = (T ′ − t′) ∪ t is a circuit of N1 and so D = (T ′ − t′) ∪ (C − t) is a circuit of N. In particular, D is a

cocircuit ofM.

Choose e ∈ T ′ − t′ and f ∈ C − t. Note that t is a loop of N2/(C − t) and N2/(C − t)\t = N2/C is

connected. Therefore: (a) N2/(C − {f , t})\t is connected; or (b) f is a loop or coloop of N2/
(C − {f , t})\t. But {f , t} is a circuit of N2/(C − {f , t}) and so, when (b) occurs, {f , t} is a connected

componentofN2/(C − {f , t}); a contradictionbecauseN2 is cosimple.Hence (a) occurs. ByLemma5.11,

T is a triangle and {f , t} is a parallel class ofN2/(C − {f , t}). Note that T is a triangle and {e, t} a parallel
class ofN1/(T

′ − {e, t′}). ThusN/(D − {e, f }) is the generalizedparallel connectionofN1/(T
′ − {e, t′})

andN2/(C − {f , t}).Moreover, {e, f , t} is aparallel classofN/(D − {e, f }).HenceN/(D − {e, f })/{e, f , t}
is the parallel connection of N1/(T

′ − {e, t′})/{e, t} and N2/(C − {f , t})/{f , t}. (These two matroids

have T − t as a pair of parallel elements in common.) As both N1/(T
′ − {e, t′})/{e, t} and N2/(C− {f , t})/{f , t} = N2/C are connected, it follows thatN/(D − {e, f })/{e, f , t} = (N/D)/t is connected.

But t is a loop of N/D and so (N/D)/t = (N/D)\t = (N\t)/D = M∗/D. That is, D is a non-separating

cocircuit ofM avoiding A; a contradiction because D� X .

By Lemma 5.12, every non-separating cocircuit of N∗
2 meets A. By Theorem 1.7, there is an isomor-

phism Ψ of N∗
2 into Om, for some m� 3, mapping the elements belonging to A into the tip and cotip

of Om. We arrive at a contradiction because A is contained in a triad of N∗
2 and there is no triad of Om

that contains both the tip and the cotip of Om. Therefore Theorem 5.1 follows. �
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6. Proofs of Theorems 1.4 and 1.5

In this section, we prove the other two main results of this paper. Theorems 1.4 and 1.5 are,

respectively, consequences of Theorems 6.1 and 6.2.

Theorem 6.1. Suppose that M is a 3-connected binary matroid. Let A be a 2-subset of E(M). If there is no
isomorphism between a minor H of M using A and On, for n� 3,mapping the elements of A into the tip and

cotip of On, then

|R∗
A(M)| � dimA(M) �

r(M) + 1 − n

2
.

Proof. First, we define a class of matroids F . A matroid N does not belong F if and only if N has a

minor H such that A ⊆ E(H) and there is an isomorphism of H into On mapping the elements of A into

the tip and cotip of On. Observe that F is closed under minors. Take α = 1
2
and β = 1−n

2
.

If Fα,β = ∅, then the result follows. Assume that Fα,β /= ∅. Choose N ∈ Fα,β such that |E(N)|
is minimum. If R∗

A(N) = ∅, then, by Theorem 1.7, there is an isomorphism of N into Om, for m� 3,

mapping the elements of A into the tip and cotip of Om. As N ∈ Fα,β , it follows thatm < n. We arrive

at a contradiction, since

0 = dimA(N) < αr(N) + β = mα + β = m + 1 − n

2
� 0.

Therefore R∗
A(N) /= ∅. By Theorem 5.1, there is an isomorphism between N and M∗(K ′′

3,m), for some

m� 2, mapping the elements of A into the added edges of K ′′
3,m. But

m − 1 = dimA(N) < αr(N) + β = 2mα + β = m + 1 − n

2

and so n < 3; a contradiction. �

Theorem 6.2. Suppose that M is a 3-connected binary matroid. Let A be a 2-subset of E(M) and let n be

an integer exceeding two. If there is no isomorphism between a minor H of M using A and

(i) On mapping the elements of A into the tip and cotip of On; or
(ii) M∗(K ′′

3,n−1) mapping the elements of A into the added edges of K
′′
3,n−1,

then,

|R∗
A(M)| � dimA(M) � r(M) + 1 − n.

Proof. First, we define a class of matroids F . A matroid N does not belong F if and only if N has a

minor H such that A ⊆ E(H) and there is an isomorphism of H into

(i) On mapping the elements of A into the tip and cotip of On; or

(ii) M∗(K ′′
3,n−1) mapping the elements of A into the added edges of K

′′
3,n−1.

Observe that F is closed under minors. Take α = 1 and β = 1 − n.

If Fα,β = ∅, then the result follows. Assume that Fα,β /= ∅. Choose N ∈ Fα,β such that |E(N)|
is minimum. If R∗

A(N) = ∅, then, by Theorem 1.7, there is an isomorphism of N into Om, for m� 3,

mapping the elements of A into the tip and cotip of Om. As N ∈ Fα,β , it follows thatm < n. We arrive

at a contradiction, since

0 = dimA(N) < αr(N) + β = mα + β = m + 1 − n� 0.

Therefore R∗
A(N) /= ∅. By Theorem 5.1, there is an isomorphism between N into M∗(K ′′

3,m), for some

m� 2, mapping the elements of A into the added edges of K ′′
3,m. AsN ∈ Fα,β , it follows thatm < n − 1

orm + 1 < n. But
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m − 1 = dimA(N) < αr(N) + β = 2mα + β = 2m + 1 − n

and so n < m + 2; a contradiction. �
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