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A b s t r a c t - - T h e  capabilities of polymer science and computational chemistry are reaching a point 
of convergence. New computer hardware and novel computational methods have created opportunities 
to investigate new polymeric materials, as well as to model and predict their properties. The recent 
arrival of massively parallel computers and new algorithms for sharing computational tasks among 
many processors now bring simulation sizes on the order of 109 atoms to within reasonable time 
limits and will allow for new studies in emerging fields such as molecular nanotechnology. 

K e y w o r d s - - M o l e c u l a r  dynamics, Symplectic integration, Geometric statement function method. 

1. I N T R O D U C T I O N  

E n o r m o u s  improvemen t s  in s imula t ion  m e t h o d o l o g y  and in c o m p u t e r  ha rdware  have recen t ly  cre- 

a t ed  o p p o r t u n i t i e s  to  inves t iga te  new po lymer ic  mater ia l s ,  as well as to  model  and  p red ic t  the i r  

p roper t i e s .  Po lymer  s imula t ions  involving hundreds  of t housands  of  a t o m s  m a y  now be accom- 

p l i shed  wi th in  reasonab le  t ime  l imi ts  on s t a n d a r d  works ta t ions ;  t he  adven t  of  para l le l  c o m p u t i n g  

has e x t e n d e d  th is  l imi t  into the  bil l ions [1]. Because  m a n y  de ta i l s  of  po lyme r  d y n a m i c s  are  not  

d i r ec t ly  observable ,  t he  molecu la r  dynamics  [2,3] (MD) m e t h o d  is crucial  for the  u n d e r s t a n d i n g  

of po lymers .  

Recent  progress  t oward  min i a tu r i za t i on  has d e m a n d e d  new ways of  t h ink ing  a b o u t  mechan-  

ical devices.  This  is pa r t i cu l a r l y  t rue  in the  technologies  of sensors-on-a-chip  and  in fo rma t ion  

s torage,  where  micro-e lec t romechanica l  sys tems  (MEMS)  are  recognized as ma jo r ,  new areas  for 

deve lopment .  The  logical ex tens ion  of  th is  technology  is into the  a rea  of nano-sca le  devices such 

as bea r ings  and  gears,  in which the  whole componen t  is compr i sed  of  only  a few hundreds  or 

t h o u s a n d s  of  a toms.  This  a rea  of s tudy,  of ten referred to  as molecular  nanotechnology,  has  the  

po t en t i a l  to  revolu t ionize  chemistry,  ma te r i a l s  science, biology, and  m a n y  o the r  fields by  c rea t ing  

an en t i r e ly  new set  of  a tomica l ly  precise mechanica l  devices and  molecular  machines .  Molecu la r  
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nanotechnology proposes to exploit a bottom-up approach to constructing nano-scaled objects, 
that is, assembling components atom-by-atom. In principle, any arrangement of atoms that is 
consistent with the laws of chemistry and physics can be made. Based on this premise, Drexler [4] 
and Merkle have proposed a number of possible designs that represent essential components of 
machines that perform specific operations. 

While molecular nanotechnology is not a present reality, the surprising capabilities of the 
Atomic Force Microscope, laser lithothgraphy and the optical tweezers give credibility to predic- 
tions of molecular control of complex structures near its atomic limit. Simulation of the internal 
dynamics and performance of molecular-based materials will provide much of the needed data 
for developing and testing fundamental concepts and designs of nanomachines or components. 
Many proposed nanodevices have several million atoms and are thus too large to conveniently 
simulate on a standard workstation. In addition, in order to examine details pertaining to the 
operation of such devices, the simulation time must be comparable to their expected operation 
time. Thus, it is clear that new avenues to the molecular dynamics (MD) method, which has 
traditionally been plagued by a size-time scale bottleneck, are needed to make the fundamental 
foundation of the method useful. 

At long simulation times, there is often an additional problem. Most integration algorithms 
exhibit small drift rates in energy and other conserved quantities, which at large times would 
lead to unacceptably large total drifts in energy. Although velocity rescaling would remove this 
drift, there is no guarantee that the resulting dynamics would be realistic. This issue could be 
especially important in treating, for example, an interface between two polymer surfaces, where 
errors in the dynamics could cause disproportionally large surface effects. 

In this paper, we will discuss two enhancements to traditional MD methods: geometric state- 
ment functions [5,6] (for producing faster MD codes) and symplectic integration [7] (for generating 
stable long time trajectories). An important aspect of these techniques is that the simulations 
are very efficient (orders of magnitude faster than previous methods) and exact (classical con- 
stants of the motion, such as energy and momentum, are conserved). The use of these techniques 
is illustrated for nanotechnology and polymer science applications, and issues involving parallel 
computation discussed. 

2. M O L E C U L A R  D Y N A M I C S  M E T H O D  

MD essentially consists of integrating, over small time steps, Hamilton's equations of mo- 
tion [8,9]: 

OH OH 
P i -  Oqi' qi = Opi' (1) 

where qi refers to a component of position, Pi its conjugate momentum, the dot to a time deriv- 
ative, and H to the classical Hamiltonian consisting of the sum of kinetic and potential energies. 
Although the above equations are valid for any set of conjugate positions and momenta, MD 
simulations are usually performed in Cartesian coordinates because this greatly simplifies (in 
fact, completely decouples) the kinetic energy term. In polymer systems, the potential energy is 
usually written as a sum of interactions: 

v = Z V(r,) + V(ej)+ V(cos k)+ VN.(rm ), (2) 
i j k m < n  

where i, j ,  and k denote sums over stretch, bend, and torsion interactions, and m and n nonbonded 
interactions between atoms m and n. Stretch potential energy terms are typically of the Morse 
functional form: 

where D, ~, and re are constants. This is a reasonable approximation for a chemical bond with 
equilibrium length re which may dissociate. Bend and torsion potential energy terms are typically 
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polynomials in the bend or torsion angles. Cross terms (for example, bend-stretch interactions) 
may also be included. 

To perform an MD simulation requires initial conditions (positions and momenta) .  Positions 
are often initially set to an equilibrium conformation. Momenta  are set so as to yield an initial 
t empera ture  or some other desired initial condition. If momenta  are set randomly, center of mass 
translational (and sometimes rotational) motion are usually subtracted out to fix the frame of 
reference. If  the system under s tudy has more than one independent bond network (for example, 
two polymer crystals in close proximity), translational and rotational motion is usually removed 
from each piece separately. 

At each t ime step, depending on the algorithm, one or more force evaluations are required. 
The forces on particle i for a potential energy term V(¢), where ¢ is some internal coordinate, 
may be writ ten 

ov o¢ 
Fqi - 0¢ Oqi' (4) 

where Fqi refers to the q (x, y, or z) component of the force acting on particle i. Force calculations 
are the most expensive and difficult to program part  of an MD simulation, with derivatives of 
internal coordinates taking most of the computational  effort. 

3. O P T I M I Z A T I O N  O F  F O R C E  C A L C U L A T I O N S  

The computat ional  effort for an MD simulation is directly proportional to the simulation t ime 
and, if nonbonded interaction cutoff distances are implemented, to the number of particles. For 
simulations in the nanosecond range (typically millions of t ime steps), this can prove impractical. 
The size-time scale bottleneck can be especially severe for polymers and other systems with 
highly connected bond networks, because the number of three- and four-body interactions is large 
and three- and four-body forces can be time-consuming to calculate. The geometric s ta tement  
function method [5,6], which has been continually developed over the past five years, minimizes 
the effort for force evaluations and is eminently suitable for systems with highly connected bond 
networks. This method is now illustrated for a fully atomistic 100 monomer unit polyethylene 

chain, (CH2)100. 
In the polyethylene chain (CH2)1o0, there are 299 CC and CH bond stretches, 396 CCC, HCH, 

and CCH bends, 97 CCCC torsions, and nonbonded interactions. To calculate the forces for a 
stretch interaction between atoms 1 and 2 requires the bond distance/'12, which requires a square 
root. Derivatives of/'12 may be calculated from 

0/'12 ql - q 2  

Oql /'12 
(5) 

for which it is convenient to store 1/r12 as an intermediate. 
Each bond may be a part  of as many as six bends. It  therefore makes sense to use bond distances 

and their derivatives as intermediates for bend angles and their derivatives. For example,  the 
usual dot product  expression for an angle 0 for a bond sequence 123 can be rewritten 

Or12 0/'23 0/'12 0/'23 0/'12 0/'23 
cos O = Ox~ Ox~ + Oyl Oy3 + Ozl Oz3 (6) 

and thus, to calculate a bend angle from stretch intermediates requires only a few multiplications 
and divisions. Similarly, derivatives of cos 0 may be calculated as follows: 

Oql - r l --2 I k Oql cos 0 + 0q2 } ' (7) 

a cos 0 1 {'0/'~3 0/'12 
Oq--~-- r23 \ Oq2 cosO+  Oqx ,]" (8) 
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In some potential energy surfaces, bend potential energy terms are parameterized by 0 rather 
than cos 0. Derivatives of 0 may be simply calculated from derivatives of cos 0 

O0 1 0 cos 0 
Oqi sin 0 0 q ~  (9) 

which requires a square root for the factor of sin 0. 
We now turn to torsion angles. A torsion angle for a bond sequence 1234 may be simply 

calculated from 

1 ( Or120r34 0r120r34 0r120r34) (10) 
c o s T :  sin0123sin0234 C0S0123C080234 0Xl 0X3 Oyl Oy3 OZl OZ3 " 

The first derivatives for the end atoms are 

0 COS 7" ( 00123 00234 "~ (II) 
Oq----~ -a123 COST Oq3 ~q2 7 '  

0 COS.___~T ( 00234 00123) (12) 
0q4 =4432 COST Oq2 Oq3 ' 

where 
r23 r23 (13) 

a123 -- r12 sin 0123 a432 -- • ' r34 sin 0234 

Middle atom derivatives can be written as linear combinations of bend angle derivatives. In 
addition to being up to 60 times faster, these formulas are more accurate than the corresponding 
Cartesian formulas because of the smaller number of operations• Savings are even greater for 
second derivatives, whose formulas are more complex and which are used in molecular mechanics 

and normal coordinate analysis calculations. 
Further effort is saved by noting that  internal forces are translationally invariant, i.e., for an 

internal force acting on atoms 1 through n, we have 

F1 -}- F2 -}- "'" -}- Fn  = 0. (14) 

For a bend interaction, this means that  forces on the center atom may be calculated from those 
on the two end atoms. We choose the center atom because the formulas for bend forces on the 
center atom are more complicated. This strategy cuts the effort for calculating bend forces by 
an additional 50%. All of these methods are conveniently implemented as FORTRAN statement 
functions, which is why we call them the geometric statement function method. 

4 .  L O N G  S I M U L A T I O N  T I M E S  

The current practical limits on simulation times are beginning to approach the microsecond 
range• At such long simulation times, many integration algorithms introduce unacceptably large 
drifts in energy and other conserved quantities. Over short time scales, for example, high-order 
predictor-corrector methods [9] can be made to conserve energy as accurately as desired. However, 
the energy (and angular momentum) tend to have some steady linear drift rate with time. At 
long times, even a small drift rate can yield an unacceptably large energy or angular momentum 
drifts. As discussed in the Introduction, velocity or other rescaling does not guarantee correct 
dynamics. As a side issue, high-order predictor-corrector calculations are expensive. 

A common numerical integration algorithm in MD simulations is the Verlet method. It has the 
advantage of being easy to program and is very robust, i.e., it often generates stable, long time 
trajectories. The Verlet method is a second-order symplectic integrator (SI), and its reliability 
is now understood to be in part due to this. Sis are special algorithms for solving the classical 
equations of motion that  are guaranteed to preserve certain dynamical properties that  the exact 
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trajectories are know to exhibit. Over the past ten years, Sis have been demostrated to provide 
reliable long time trajectories which exhibit small deviations of conserved quantities about a 
steady average rather than linear drift. 

The basic symplectic integration algorithm is to divide a single time step into several interme- 
diate time steps as follows: 

do k =  1,M, 

p(k) __ p(k-1)+bkdtF(q(k-1) ) ,  

q(k) = q(k-1) + akdtG (p(k)) , 

end do, 

where dt is the time step, ak and bk are numbers corresponding to fractions of a time step, q and p 
are coordinates and their conjugate momenta, and G and F are, respectively, their derivatives. 
Judiciously choosing (ak, bk) guarantees conservation of energy and angular momentum to some 
desired order. Our simulations typically use a fifth-order symplectic integrator which requires 
4 force evaluations per 1 fs time step; this usually leads to energy and angular momentum con- 
servation to better than five figures for simulation times exceeding 2 ns (two million time steps), 
with undetectable drift. 

As increasing computer power and improved simulation techniques increase the practical sim- 
ulation time range into the microsecond region and beyond, long time stability will become an 
increasingly important issue. To keep the drift in energy and other conserved quantities within 
reasonable limits, and also, at such long times will probably require only increasing the order of 
symplectic integrators rather than the development of any new integration algorithms. 

In some cases, an integration algorithm that is nonoptimal for serial machines may prove 
optimal on parallel machines. For example, using a high-order symplectic integrator enables 
using a larger time step to obtain accurate dynamics. On a serial machine, a point of diminishing 
returns will rapidly be reached (doubling the order of symplectic integration, and therefore, 
the number of force evaluations, will not double the time step allowable for equally accurate 
dynamics). On a parallel machine, however, lengthening the time step would drastically reduce 
the total communication traffic for a given total simulation time. Although this may increase the 
total number of operations, depending on the communication speed, it could greatly decrease the 
real (wall clock) simulation time. 

5. N A N O T E C H N O L O G Y  A P P L I C A T I O N S  

In order to understand the dynamics of nanomachine operation, we first seek to understand the 
dynamics of individual components. To this end, we have undertaken several studies involving 
individual carbon nanotubes [10], rotational friction of carbon nanotubes [11], the introduction 
of controlled motion [12], and fluid flow [13,14]. Issues involving parallel computing are discussed 
in the context of several nanotechnology applications. 

Various types of molecular bearings have recently been proposed in the growing nanotechnology 
literature. Using novel molecular dynamics methods, we have recently simulated several model 
carbon nanotube bearings. This system was chosen in part because carbon nanotubes have 
already been synthesized in a variety of sizes and shapes and manipulating them into bearings 
seems plausible. The bearings varied in size from an inner shaft of between 4 and 16/~ in diameter 
and up to 120 A in length, and an outer cylinder of between 10 and 23/~ in diameter and up to 
40/~ in length. Figure 1 shows the basic construction of a nanobearing at the beginning of a 
simulation. Both the shaft (inner cylinder) and sleeve (outer cylinder) are centered about a 
common rotational axis, denoted the z axis, and the shaft extends symmetrically out of the 
sleeve. 
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Figure  1. Basic shaf t -s leeve cons t ruc t ion  of a nanobea r ing  a t  t he  beg inn ing  of a 
s imula t ion .  

Typical results are shown in Figure 2. The shaft and sleeve are given equal and opposite initial 
rotational velocities corresponding to 10000 h (1054 maJ ps); no external torque is applied. Shaft- 
sleeve nonbonded interactions excite vibrational modes in each nanotube and lead to rotational 
friction. Drag coefficients are obtained from a linear fit to the angular momentum during the first 
2 ps of simulations; these drag coefficients usually follow expected trends in velocity, temperature,  
and bearin~ clearance (difference between shaft and sleeve diameters~. 
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Figure  2. Ro ta t iona l  d rag  in a s table  mode l  g raph i t e  molecular  bear ing.  

Results of one particularly interesting simulation are shown in Figure 3. This run is identical 
to Figure 2 except that  the sleeve is shorter. From the shaft angular momentum in this figure, 
the first 15 ps of the simulation are similar to those of most of the other simulations in this 
study: slow, steady loss of angular momentum with fairly small oscillations. Between about  15 ps 
and about  60 ps, however, there are three beats with oscillations of several thousand h (several 
hundred maJ ps). After 60 ps, the shaft once again steadily loses angular momentum; however, 
the oscillations are much larger than in the first 15 ps. At times, the shaft (and therefore, the 
sleeve, since in this case the total angular momentum is zero) briefly reverse direction. Computer  



C o m p u t e r  S imula t ion  of  Complex  99 

10000 

8000 

60OO 
e- 

4000 

2000 

0 

20 40 60 80 100 

t, ps 

Figure  3. Ro ta t iona l  mo t ion  (angular  m o m e n t u m )  bea t  p a t t e r n s  in an  uns t ab le  
model  g raph i t e  molecular  bear ing.  

animations and detailed analysis of the simulation data  show that  the beats occur because a 
shaft S mode resonates with a sleeve breathing mode, and so the shaft shimmies up and down 
the sleeve several times. The large magnitude of the shaft-sleeve interaction is related t;o a 
dynamic instability in the individual nanotubes, which in turn is controlled by the nanotube 
geometry (length/diameter ratio). Changing this ratio even by a small amount makes individual 
nanotubes more stable and the bearing performance more ideal. 

While a few simulations are sufficient to study the most essential features of carbon nanotube 
bearings, designing a nanomachine using these bearings would require ensembles of simulations 
covering a large parameter space (nanotube sizes and temperatures, rotational velocities, and 
external load). Such a study would be an excellent candidate for the so-called master-worker 
calculation, where a master controls several workers, in this case a set of independent trajectories 
typically run one per processor. Since the trajectories are independent, there is no need for 
interprocessor communication. 

Both memory and processor speed limit the size of systems that  may be simulated on standard 
workstations. To perform a single simulation on a large nanomachine (millions or hundreds of 
millions of atoms) would today require a massively parallel computer. Although issues such as 
load balancing and data  distribution/redistribution are well studied for regularly distributed data  
(such as solids or Lennard-Jones liquids), treating irregularly spaced data  or complex interactions 
between chemically bonded atoms, especially different species, introduces additional complexities. 
For example, it is fairly easy to find a spatial decomposition for a regular polymer crystal for 
which the computations are optimally efficient. To simulate the laser ablation of a spot on 
the crystal would require allowing bonds to break. This would require not only complicated 
potential energy terms, which would slow down force calculations, but also an irregular and 
rapidly changing spatial decomposition in the vicinity of the laser beam. Similar problems could 
occur at liquid/solid phase boundaries or in nanomachines with large numbers of moving parts. 

6. C O N C L U S I O N S  

Programming an MD simulation on a massively parallel computer requires considering a num- 
ber of issues related to data  distribution across and communication between processors. Right 
now, much of this programming must be done by hand. The development of High Performance 
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Fortran and other automatically parallelizing compilers will simplify and speed code development 
and increase code portability across parallel platforms. To optimize a serial MD simulation code 

for use on a parallel machine may also entail changing details of the MD algorithm such as the 
order of symplectic integration; this issue merits further study. 

The last decade has seen enormous improvements in both the speed and long-time stability of 

MD techniques. Our geometric statement function method greatly speeds up force calculations, 
the most expensive part of an MD simulation, and is eminently suitable for polymers and other 

systems with highly interconnected bond networks. Symplectic integration ensures long-time 

stability for integration. These techniques allow simulation of materials with complex bond 

networks and hundreds of thousands of atoms to be performed on standard workstations. The 
advent of parallel computing allows this limit to be extended into the billions of atoms, making 
possible the simulation of materials on the size scale of 0.1 micron and fully atomistic design and 

modeling of complex nanomachines. 
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