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Abstract This article employs three soft computing techniques, Support Vector Machine (SVM);

Least Square Support Vector Machine (LSSVM) and Relevance Vector Machine (RVM), for pre-

diction of liquefaction susceptibility of soil. SVM and LSSVM are based on the structural risk min-

imization (SRM) principle which seeks to minimize an upper bound of the generalization error

consisting of the sum of the training error and a confidence interval. RVM is a sparse Bayesian ker-

nel machine. SVM, LSSVM and RVM have been used as classification tools. The developed SVM,

LSSVM and RVM give equations for prediction of liquefaction susceptibility of soil. A comparative

study has been carried out between the developed SVM, LSSVM and RVM models. The results

from this article indicate that the developed SVM gives the best performance for prediction of liq-

uefaction susceptibility of soil.
� 2014 Production and hosting by Elsevier B.V. on behalf of Ain Shams University.
1. Introduction

There is a lot of engineering problems that require the analysis
of uncertain and imprecise information. Generally, the devel-

opment of proper model to explain past behaviors or predict
future ones is a difficult task due to incomplete understanding
of the problem. Soft computing technique is generally used to

solve this type of problem. This technique is developed by
Zadeh Iizuka [1]. The most commonly used soft computing
technique is Artificial Neural Network (ANN). ANN has been
used to solve different problems in engineering [2–6]. However,
ANN has the following limitations.

� Unlike other statistical models, ANN does not provide
information about the relative importance of the various
parameters [7].

� The knowledge acquired during the training of the model is
stored in an implicit manner and hence it is very difficult to
come up with reasonable interpretation of the overall struc-
ture of the network [8].

� In addition, ANN has some inherent drawbacks such as
slow convergence speed, less generalizing performance,
arriving at local minimum and over-fitting problems.

This article adopts three soft computing techniques
{Support VectorMachine (SVM), Least Square Support Vector

Machine (LSSVM) and Relevance VectorMachine (RVM)} for
prediction of liquefactions susceptibility of soil. Geotechnical
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engineers use the different soft computing techniques for predic-
tion of seismic liquefaction potential of soil [9–13]. The data-
base has taken from the work of Hanna et al. [14]. The

dataset contains information about depth of the soil layer (z),
corrected standard penetration blow numbers (N1,60), percent
finest content less than 75 lm (F 6 75 lm,%), depth of ground

water table (dw), total and effective overburden stresses
(rvo; r0vo), threshold acceleration (at), cyclic stress ratio
(sav=r0v0), shear wave velocity (Vs), internal friction angle of soil

(/0), earthquakemagnitude (Mw), maximum horizontal acceler-
ation at ground surface (amax) and status of soil (status of soil
means the condition of soil after earthquake). SVM is a new soft
computing technique introduced by Vapnik [15]. There are lots

of applications of SVM in engineering [16–20,11–15]. LSSVM is
a modified version of SVM [21]. Researchers have successfully
used LSSVM for solving different problems [22–26]. RVM

was introduced by Tipping [27]. The application of RVM is
demonstrated in various literatures [16,28–31]. This article gives
equations for prediction of liquefaction susceptibility of soil

based on the developed SVM, LSSVM and RVM models. A
comparative study has been presented between the developed
SVM, LSSVM and RVM models.

2. Details of SVM

SVM was developed based on Structural Risk Minimization

Principle [15]. Let us consider the following training dataset
(D)

D ¼ ðx1; y1Þ; ðx2; y2Þ; . . . ; ðxl; ylÞ; xi 2 RN and yi 2 fþ1;�1g
ð1Þ

where x is input, RN is N-dimensional vector space, and y is
output.

In this article, a value of �1 is assigned to the liquefied sites
while a value of +1 is assigned to the non-liquefied sites so as
to make this a two-class classification problem. This study uses

z, N1,60, F 6 75 lm, dw; rvo; r0vo; at; sav=r
0
v0, Vs, /0, Mw, and amax

as input variables. So, x ¼ ½z;N1;60;F 6 75lm; dw; rv0; r0v0; at;
sav=r0vo;Vs;/

0;Mw; amax�.
SVM uses the following form for prediction of y.

y ¼ signðw:/ðxÞ þ bÞ ð2Þ

/(x) represents a high-dimensional feature space which is non-

linearly mapped from the input space x, w is weight and b is
bias. The following optimization problem has been used to
determine the value of w and b [15].

Minimize :
1

2
kwk2 þ C

Xl

i¼1
ni

Subjected to : yiðw:xi þ bÞP 1� ni ð3Þ

The constant 0 < C<1, a parameter defines the trade-off
between the number of misclassification in the training data
and the maximization of margin and ni is called slack variable.

This optimization problem (4) is solved by Lagrangian Multi-
pliers [15] and its solution is given by,

y ¼ sign
Xl

i¼1
aiyiKðxi; xÞ þ b

 !
ð4Þ

where ai is Lagrange multipliers and K(xi,x) is kernel function.
This article uses the above SVM for prediction of liquefac-
tion susceptibility of soil. To develop SVM, the data have been
divided into the following two groups:

Training Dataset: This is required to construct the SVM
model. This article uses 434 datasets out of 620 as training
dataset.

Testing Dataset: This is used to verify the developed SVM.
The remaining 185 datasets have used a testing dataset.

Polynomial function (K(xi, x) = {(xi.x) + 1}d, d= degree

of polynomial) has been used as a kernel function. Input vari-
ables have been normalized between 0 and 1. The program of
SVM has been constructed by MATLAB.
3. Details of LSSVM

This section will describe a brief introduction of LSSVM. The

details of LSSVM have been given by Suykens and Vandewalle
[21]. The main difference between SVM and LSSVM is that
LSSVM uses a set of linear equations for training while
SVM uses a quadratic optimization problem [31].

Let us consider the following training dataset (D)

D ¼ ðx1; y1Þ; ðx2; y2Þ; . . . ; ðxl; ylÞ; xi 2 RN and yi 2 fþ1;�1g
ð5Þ

where x is input, RN is N-dimensional vector space, and y is
output.

In LSSVM, a value of �1 is assigned to the liquefied sites

while a value of +1 is assigned to the non-liquefied sites so
as to make this a two-class classification problem. This study
uses z, N1,60, F 6 75 lm, dw; rvo; r0vo; at; sav=r

0
v0, Vs, /0, Mw,

and amax as input variables. So, x ¼ ½z;N1;60;F 6 75lm;dw;
rv0; r0v0; at; sav=r

0
vo;Vs;/

0;Mw; amax�.
LSSVM uses the following equation for prediction of y.

y ¼ sign½wT/ðxÞ þ b� ð6Þ

/(x) represents a high-dimensional feature space which is non-
linearly mapped from the input space x, w is weight and b is
bias.

LSSVM adopts the following optimization problem for
determination of w and b.

Min :
1

2
wTwþ c

2

Xl

i¼1
e2i

Subject to : ei ¼ yi � ðwTuðxiÞ þ bÞ; i ¼ 1; . . . ; l ð7Þ

This optimization problem (4) is solved by Lagrangian Multi-

pliers [21], and its solution is given by

y ¼ sign
Xl

i¼1
aiyiKðxi; xÞ þ b

 !
ð8Þ

where ai is Lagrange multipliers and K(xi.x) is kernel function.
This study adopts radial basis function (Kðxi; xÞ ¼
exp � ðxi�xÞ

Tðxi�xÞ
2r2

n o
where r is width of radial basis function)

as kernel function.
It should be noted that for model calibration and verifica-

tion using LSSVM, the same training data sets, testing data
sets and normalization technique previously used for the
SVM modeling are utilized and LSSVM is implemented using

the MATLAB software.
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Figure 1 Variation in testing performance (%) and number of
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4. Details of RVM

RVM was developed to introduce the Bayesian principle to the
SVM model [32]. Let us consider a set of example of input vec-

tors fxigNi¼1 is given along with a corresponding set of targets

y ¼ fyig
N
i¼1. In this study, yi should be 0 for ‘‘Liquefaction’’

and +1 for ‘‘No Liquefaction’’. RVM uses the following equa-

tion for prediction of yi.

yi ¼ wTwðxiÞ þ ei and ei � Nð0; r2Þ ð9Þ

where w(xi) is basis function.
Assuming a Bernoulii distribution for P(y/x), the likelihood

is written as [28]:

Pðy=wÞ ¼
YN
i¼1

rfyðxi;wÞgyi ½1� rfyðxi;wÞg�1�yi ð10Þ

We cannot integrate the weights analytically. The RVM
adopts the following separable Gaussian prior, with a distinct

hyper-parameter, ai, for each weight,

pðw=aÞ ¼
YN
i¼1

Nðwi=0; a
�1
i Þ ð11Þ

The optimal parameters of the model are then derived by min-
imizing the penalized negative log-likelihood,

logfPðy=wÞpðw=aÞg ¼
XN
i¼1
½yilogyi þ ð1� yiÞlogð1� yiÞ�

� 1

2
wTAw ð12Þ

If we differentiate twice Eq. (10), the expression is given below

[33]:

rwrwlogpðw=y; aÞ ¼ �ðUTBUþ AÞ ð13Þ

where B = diag(b1, . . . ,bN) is a diagonal matrix with

bn = r{y(xn)}[1 � r{y(xn)}]
The following equation has been used for updating hyper-

parameter

anew
i ¼

1� ai

X
ii

l2
i

ð14Þ

where li is the ith posterior mean weight,
P

ii is the ith diago-
nal element of the posterior weight covariance. The process is
repeated until the ultimate goal is met. The property of this

optimization problem is that the value of many w will be zero.
The nonzero weights are called relevance vectors.

RVM uses the same training dataset, testing dataset and

normalization technique as used by SVM and LSSVM. Radial
basis function has been used as basis function. RVM has been
developed by MATLAB.

5. Results and discussion

The performance of developed SVM, LSSVM, and RVM has

been assessed by using the following equation.

Testing=Training performance ð%Þ

¼ Noof data predicted accurately by SVM; LSSVMandRVM

Total data

� �
�100 ð15Þ
For SVM, the design value of C and d has been determined by

trail and error approach. Fig. 1 shows the fluctuation of testing
performance and number for support vector with C. From
Fig. 1, it is clear that the number of support vectors is decreas-

ing with an increase in C. For the best SVM model, the less
number of support vector as well as high testing performance
(%) is desirable. SVM produces best testing performance (%)
and lowest number of support vector for C= 130 and d = 4.

The design value of C(C= 130) and d(d = 4) produces
96.32% training performance, 86.49% testing performance
and 112 support vectors. The developed SVM gives the follow-

ing equation (by putting K(xi, x) = {(xi.x) + 1}d, d = 4,
b= 0 and l= 435 in Eq. (4)) for prediction of liquefaction
susceptibility of soil.

y ¼ sign
X435
i¼1

aiyifðxixÞ þ 1g4
 !

ð16Þ

Fig. 2 shows the value of ai.
The design value of c and r has been determined by trail

and error approach in the LSSVM model. Fig. 3 shows the
variation in testing performance (%) with c. It is observed

from Fig. 3 that the developed LSSVM gives best performance
at c = 180 and r = 10. The developed LSSVM produces
97.24% training performance and 85.41% testing perfor-

mance. The following equation (by putting

Kðxi; xÞ ¼ exp � ðxi�xÞ
Tðxi�xÞ
2r2

n o
, r = 10, l = 435, and

b= 1.320 in Eq. (8)) has been presented from the developed

LSSVM.

y ¼ sign
X435
i¼1

aiyi exp �ðxi � xÞTðxi � xÞ
200

( )
þ 1:320

 !
ð17Þ

The values of a have been depicted in Fig. 4.
For RVM, the design value of r has been determined by

trail and error approach. Fig. 5 illustrates the variation in test-
ing performance (%) and number of relevance vector with r. It
can be seen from Fig. 5 that the testing performance (%) and

number of relevance vector increase with an increase r. Fig. 5
also shows that the developed RVM gives best performance at
r = 0.06 and number of relevance vector = 265. The devel-
oped RVM produces 86.44% training performance and

74.59% testing performance. The developed RVM gives the
following equation for prediction of liquefaction susceptibility
of soil.
support vector with C.
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y ¼
X435
i¼1

wi exp �ðxi � xÞTðxi � xÞ
0:0072

( )
ð18Þ

Fig. 6 shows the value of w.

The developed RVM gives the probabilistic output. Fig. 7
depicts the probability of training and testing dataset. It is ob-
served from Fig. 7 that the liquefiable soil fell within the 0.5–1

probability range and most non-liquefiable soil fell within the
0–0.5 range. Thus, the RVM probabilistic output can be used
to determine the liquefaction susceptibility of soil. If the out-

put is less than 0.5, the probability of liquefaction is decreased.
If the output is more than 0.5, the probability of liquefaction is
increased.

A comparative study has been carried out between the

developed SVM, LSSVM and RVM models. Table 1 shows
the comparison. The developed SVM and LSSVM outperform
the RVM. The performance of the SVM and LSSVM is com-

parable. Receiver Operating Characteristics (ROC) has been
developed for the SVM, LSSVM and RVM models. Fig. 8
shows the ROC curves. The area under ROC curve is maxi-

mum for the SVM. The developed RVM gives the minimum
area under ROC curve. Therefore, the performance of SVM
is best. The developed SVM and RVM use 112 and 265 train-

ing dataset for final model respectively. So, the SVM and
RVM produce sparse solution. Whereas, the developed
LSSVM model uses all training dataset for final prediction.
Therefore, it does not produce any sparse solution. The



Table 1 Comparison between SVM, LSSVM and RVM

models.

Model Training performance (%) Testing performance (%)

SVM 96.32 86.49

LSSVM 97.24 85.41

RVM 86.44 74.59
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developed SVM and LSSVM uses two tuning parameters (For
SVM: C and d; For LSSVM: c and r). Whereas, there is only

one tuning parameter for the RVM model.

6. Conclusion

This article has described SVM, LSSVM and RVM for predic-
tion of liquefaction susceptibility of soil. 620 data have been
utilized to develop the SVM, LSSVM and RVM models.

The performance of the SVM and LSSVM is better than that
of the RVM. The developed equations can be used by the users
for determination of liquefaction susceptibility of soil. The

developed SVM and LSSVM produce almost same perfor-
mance. The obtained probability from the RVM can be used
to determine uncertainty. In summary, it can be concluded that
SVM, LSSVM and RVM can be used for solving different

problems in engineering.
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