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a b s t r a c t

We begin a study of torsion theories for representations of finitely generated algebras U
over a field containing a finitely generated commutative Harish-Chandra subalgebra Γ .
This is an important class of associative algebras, which includes all finite W -algebras of
type A over an algebraically closed field of characteristic zero, in particular, the universal
enveloping algebra of gln (or sln) for all n. We show that any Γ -torsion theory defined by
the coheight of the prime ideals of Γ is liftable to U . Moreover, for any simple U-module
M , all associated prime ideals ofM in SpecΓ have the same coheight. Hence, the coheight
of these associated prime ideals is an invariant of a given simple U-module. This implies
the stratification of the category of U-modules controlled by the coheight of the associated
prime ideals of Γ . Our approach can be viewed as a generalization of the classical paper by
Block (1981) [4]; it allows, in particular, to study representations of gln beyond the classical
category of weight or generalized weight modules.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A classical, very difficult and intriguing problem in the representation theory of Lie algebras is the classification of simple
modules over complex simple finite dimensional Lie algebras. Such a classification is only known for the Lie algebra sl2 due
to the results of Block [4]. It remains an open problem in general, even in the subcategory of weight modules with respect
to a fixed Cartan subalgebra. On the other hand, due to the results of Fernando [10] and Mathieu [25], the classification of
simple weight modules with finite dimensional weight spaces is well known for any simple finite dimensional Lie algebra.

The basic idea proposed in [4] in the case of sl2 can be explained as follows. First, we consider a maximal commutative
subalgebra Γ ⊂ U(sl2) (in our terms, a Gelfand–Tsetlin subalgebra), which is generated by a Cartan subalgebra and
the center of U(sl2). Then one fixes a central character χ of U(sl2). After that, all simple modules with central character
χ are divided into torsion (or generalized weight) and torsion-free modules with respect to Γ /(Kerχ). Thereafter, the
investigation of both classes of modules is reduced to the investigation of the simple modules over a (skew) group algebra
of the group Z. An analogous idea works in the more general context of generalized Weyl algebras of rank 1 [2,3], which
allows a complete classification of the simple modules.

A similar approach applied in the case of a Lie algebra gl(n) (or sln) allows one to go beyond the category of weight
modules with finite dimensional spaces. Namely, one considers the full subcategory of weight Gelfand–Tsetlin gln-modules
with respect to a Gelfand–Tsetlin subalgebra Γ (certain maximal commutative subalgebra of U(gln)) [7,15]. That is, one
considers those modules V that have a decomposition as a Γ -module

V = ⊕
m∈SpecmΓ

V (m),
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where V (m) = {v ∈ V |∃N,mNv = 0}. This class is based on natural properties of a Gelfand–Tsetlin basis for finite
dimensional representations of simple classical Lie algebras [18,29,26]. Gelfand–Tsetlin subalgebras were considered in
various connections in [11,28,20,21,19]. The theory developed in [14,15]was an attempt to unify the representation theories
of the universal enveloping algebra of gln and of the generalizedWeyl algebras. We underline that Gelfand–Tsetlin modules
over gln are weight modules with respect to some Cartan subalgebra of gln but they are allowed to have infinite dimensional
weight spaces.

In this paper we begin a study of general torsion theories for representations of a class of associative algebras which
includes all finite W -algebras of type A over an algebraically closed field of characteristic zero. In particular, the universal
enveloping algebra of gln (or sln) is an example of such algebra for all n, where Γ is a Gelfand–Tsetlin subalgebra.

In the rest of the paper K will be a fixed arbitrary field. Only in the applications of the final section we will require it to
be algebraically closed of characteristic zero. We shall consider the following situation.

Setup 1.1. We shall assume that U is a finitely generated K-algebra having a commutative (not necessarily central) subalgebra
Γ satisfying the following properties:

(1) Γ is finitely generated as a K-algebra
(2) Γ is a Harish-Chandra subalgebra, i.e., for each u ∈ U the Γ -bimodule Γ uΓ is a finitely generated both as a left and as a

right Γ -module.

For our purposes, we shall fix a finite subset {u1, . . . , un} ⊂ U (e.g. a finite set of generators) such that U is generated as a
K-algebra by Γ ∪ {u1, . . . , un}.

If M is a Gelfand–Tsetlin U-module with respect to Γ then the associated prime ideals of M in SpecΓ , which form the
assassin Ass(M), are maximal. Our goal is to understand torsion categories of modules over U that are more general than
Gelfand–Tsetlin categories. Such modules have associated primes in SpecΓ which are not maximal.

Our main result is the following theorem. We refer to Section 2 for definitions.

Theorem 1.2. Let U be an algebra and Γ be a commutative subalgebra as in Setup 1.1, and let i ≥ 0 be a natural number. Then

(1) The Γ -torsion theory associated to the subset Zi ⊂ SpecΓ of prime ideals of coheight≤ i is liftable to U .

(2) For any simple U-module M all associated prime ideals of M in SpecΓ have the same coheight.

Theorem1.2 provides a stratification of themodule categoryU-Modwith respect to the coheight of the associated primes.
In classical cases as finiteW -algebras it happens that the endomorphismalgebra of any simpleU-module is one dimensional,
the center Z = Z(U)ofU is an integral domain (polynomial ring) contained inΓ andΓ is also an integral domain (polynomial
ring), which is flat over Z . Under these circumstances (see Proposition 5.1), all simple objects in themodule category U-Mod
are exhausted by simple U-modules whose associated primes have a fixed coheight 0 ≤ i ≤ K dim(Γ ) − K dim(Z), where
K dim denotes the Krull dimension. The case i = 0 corresponds to Gelfand–Tsetlin modules (with respect to Γ ) and the
case i = K dim(Γ ) − K dim(Z) corresponds to the simple U-modules which are torsion-free with respect to some central
character χ : Z −→ K .

Our second main result provides information about the assassin of a simple U-module.

Theorem 1.3. Let U, Γ , u1, . . . , un be as in Setup 1.1, M = Ux be a cyclic U-module generated by an element x such that
annΓ (x) = p is a prime ideal of Γ and suppose that all ideals in Ass(M) have equal coheight. If q ∈ Ass(M) then there is a
sequence q = q0, q1, . . . , qs = p of prime ideals of equal coheight and a sequence of indices k1, . . . , ks ∈ {1, . . . , n} such that

Γ ukiΓ

qi−1ukiΓ + Γ ukiqi
≠ 0,

for all i = 1, . . . , s.

All these results can be applied to the class of Galois orders over finitely generated Noetherian domains [14]. In particular,
the results are valid for all finiteW -algebras of type A, e.g. U(gln) for all n.

2. Torsion theories over a commutative Noetherian ring

In this section we collect some facts concerning torsion theories over commutative Noetherian rings. Recall that, given
a not necessarily commutative ring R, a torsion theory over R is a pair (T , F ) of full subcategories of R-Mod satisfying the
following two conditions:

(1) T =⊥ F consists of those R-module T such that HomR(T , F) = 0, for all F ∈ F

(2) F = T ⊥ consists of those R-module F such that HomR(T , F) = 0, for all T ∈ T
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Note that any of the component classes of a torsion theory determines the other. In the above situation, for every
R-module M there exists a (unique up to isomorphism) exact sequence

0→ T −→ M −→ F → 0,

with T ∈ T and F ∈ F . Then the assignments M  t(M) := T and M  F =: M/t(M) are functorial and yield
a right adjoint and a left adjoint, respectively, to the inclusion functors T ↩→ R-Mod and F ↩→ R-Mod. The functor
t : R-Mod −→ T is called the torsion radical associated to T . The torsion theory is called hereditary when T is closed
under taking submodules, which is equivalent to say that F is closed under taking injective envelopes (see chapter VI of
[27] for all details and terminology concerning torsion theories).

In this paper we are mainly interested in torsion theories over commutative Noetherian rings. In this section, unless
otherwise stated, Γ will be a commutative Noetherian ring, We shall denote by SpecΓ (resp. SpecmΓ ) the prime (resp.
maximal) spectrumofΓ . Given aΓ -moduleM and a prime idealp ∈ SpecΓ , we shall denote byMp the localization ofM atp.
We shall consider two important subsets of SpecΓ associated toM . Namely the support ofM , Supp(M) = {p ∈ SpecΓ |Mp ≠
0}, and the so-called assassin ofM , Ass(M), which consists of those p ∈ Spec(Γ ) such that p = annΓ (x) := {g ∈ Γ : gx = 0},
for some x ∈ M .

We now recall some properties of these sets. In the statement and in what follows, for every subset X ⊂ SpecΓ , we
denote by Min X (resp. MaxX) the set of minimal (resp. maximal) elements of X .

Proposition 2.1. Let X ⊆ SpecΓ be any nonempty subset and M be a Γ -module. The following assertions hold:

(1) Every element of X contains a minimal element of X
(2) Ass(M) ⊆ Supp(M) and Min Ass(M) = Min Supp(M).

Proof. The set SpecΓ satisfies DCC with respect to inclusion. Indeed if p = p0 ⊇ p1 ⊇ · · · is a descending chain of prime
ideals, then the number of nonzero terms in it is bounded above by the height of p, which is always finite (cf. [24][Theorem
13.5]).

If X ⊆ SpecΓ is any nonempty subset and p ∈ X , then, by the DCC property, the set {q ∈ X : q ⊆ p} has a minimal
element which is then a minimal element of X .

Let now take p ∈ Ass(M), so that p = annΓ (Γ x), for some x ∈ M . Then p ∈ Ass(Γ x) ⊆ Supp(Γ x) (see [24][Theorem
6.5]). Putting N = Γ x, we get that Np ≠ 0, which implies thatMp ≠ 0 due to the exactness of the localization functor. Then
Ass(M) ⊆ Supp(M).

SinceM is the direct union of its finitely generated submodules and the localization functor is exact and preserves direct
unions it follows that Supp(M) =


N<M Supp(N), where the union is taken over all finitely generated submodules N of

M . In particular, if p ∈ Min Supp(M) then p ∈ Min Supp(N), for some N < M finitely generated. But then p ∈ Ass(N)
(cf. [24][Theorem 6.5]), and so p ∈ Ass(M). From the inclusion Ass(M) ⊆ Supp(M) we conclude that p ∈ Min Ass(M), thus
proving that Min Supp(M) ⊆ Min Ass(M).

Conversely, if p ∈ Min Ass(M) then we fix a cyclic submodule N = Γ x such that p = annΓ (N). Then we have
p ∈ Ass(N) ⊂ Supp(N) ⊂ Supp(M). By assertion 1, there exists q ∈ Min Supp(M) such that q ⊆ p. But equality must
hold since we already know that Min Supp(M) ⊆ Min Ass(M) and p is minimal in Ass(M). Therefore p ∈ Min Supp(M) and
we get that Min Ass(M) = Min Supp(M). �

Definition 1. A subset Z ⊆ SpecΓ is called closed under specializationwhen the following property holds:
(*) If p ⊆ q are prime ideals with p ∈ Z , then q belongs to Z .

The prototypical examples of closed under specialization subsets of SpecΓ are the Zariski-closed subsets and those of
the form Supp(M), whereM is a Γ -module. The following is a crucial result from [16].

Theorem 2.2. Let Γ be a commutative Noetherian ring. The assignments Z  (TZ , T ⊥Z ), where TZ = {T ∈ Γ -Mod :
Supp(T ) ⊆ Z}, and (T , F )  Z(T ,F ) = {p ∈ SpecΓ : Γ /p ∈ T } define mutually inverse order-preserving one-to-one
correspondences between the closed under specialization subsets of SpecΓ and the hereditary torsion theories in Γ -Mod.

For a givenmoduleM , it is important to identify the torsion submodule tZ (M)with respect to the torsion theory (TZ , T ⊥Z ).

Proposition 2.3. Let Z ⊆ SpecΓ be a closed under specialization subset and M be a Γ -module. For an element x ∈ M, the
following assertions are equivalent:

(1) x belongs to tZ (M)

(2) Ass(Γ x) ⊆ Z (resp. Min Ass(Γ x) ⊆ Z)
(3) If p is a prime ideal such that annΓ (x) ⊆ p, then p ∈ Z
(4) There are prime ideals p1, . . . , pr ∈ Z (resp. p1, . . . , pr ∈ Min Z) and integers n1, . . . , nr > 0 such that pn1

1 · · · · ·p
nr
r x = 0.
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Proof. (1) ⇐⇒ (2) ⇐⇒ (3) Due to the fact that TZ is closed under taking submodules, assertion (1) is equivalent to
say that Γ x ∈ TZ , i.e., to say that Supp(Γ x) ⊆ Z . But Supp(Γ x) is precisely the set of prime ideals containing annΓ (x)
(cf. Proposition III.4.6 in [23]). Moreover, Z being closed under specialization, Proposition 2.1 implies that Supp(Γ x) ⊆ Z
holds exactly when (Min)Ass(Γ x) ⊆ Z .

(3) =⇒ (4) Let {p1, . . . , pr} be the (finite) set of prime ideals of Γ which are minimal among those containing annΓ (x).
In particular, they belong to Z . Then we have p1 · . . . · pr ⊆ p1 ∩ · · · ∩ pr =

√
annΓ (x), where

√
I denotes the radical

of I , for every ideal I of Γ . Thus there is a positive integer n > 0 such that pn
1 · . . . · p

n
r = (p1 · . . . · pr)

n
⊆ annΓ (x). By

Proposition 2.1(1), replacing each pi by a minimal element of Z contained in it if necessary, we can find the needed pi in
Min Z .

(4) =⇒ (3) Let p1, . . . , pr ∈ Z and n1, . . . , nr > 0 be as in condition (4). Then we have pn1
1 · . . . · p

nr
r ⊆ annΓ (x). If p is a

prime ideal such that annΓ (x) ⊆ p then there is some j = 1, . . . , r such that pj ⊆ p. It follows that p ∈ Z since Z is closed
under specialization. �

The following example of closed under specialization subsets of SpecΓ will be the most interesting for us.

Example 2.4. One defines a transfinite ascending chain of subsets (Zi)i ordinal as follows.We put Z0 = SpecmΓ . If i > 0 is any
ordinal and Zj has been defined for all j < i, then Zi =


j<i Zj, in case i is a limit ordinal, and Zi = Zi−1 ∪Max(SpecΓ \ Zi−1)

in case i is nonlimit. It is not difficult to see that there is a minimal ordinal δ such that SpecΓ = Zδ and that all Zi are closed
under specialization. In particular, for each p ∈ SpecΓ , there is aminimal ordinal ip such that p ∈ Zip . This ordinal is nonlimit
and we put cht(p) = ip and call it the coheight of p.

Using Theorem 2.2, we get a corresponding transfinite ascending chain of torsion classes T0 ⊆ T1 ⊆ · · · ⊆ Ti ⊆ · · · such
that Γ -Mod = Tδ =


i≤δ Ti. Then, for every Γ -moduleM , there is uniquely determined (not necessarily nonlimit) ordinal

i such that M ∈ Ti and M ∉ Tj, for all j < i. We also have ti(M) ⊆ tj(M), for all i ≤ j, where ti denotes the torsion radical
associated to Ti.

Corollary 2.5. Let Γ be a commutative Noetherian ring, M be a nonzero Γ -module and i be a nonlimit ordinal. The following
assertions are equivalent:

(1) ti(M) = M but ti−1(M) = 0
(2) The next two conditions hold:

(a) For every x ∈ M there are prime ideals p1, . . . , pr of coheight exactly i and positive integers n1, . . . , nr > 0 such that
pn1
1 · . . . · p

nr
r x = 0

(b) If p is a prime ideal of coheight < i and x ∈ M is an element such that px = 0, then x = 0.
(3) The prime ideals in Ass(M) have coheight exactly i.

Proof. (1) ⇐⇒ (3) By Proposition 2.3 and the fact that the torsion theories Ti are hereditary, we have that ti(M) = M iff
Ass(M) ⊆ Zi and ti−1(M) = 0 iff Ass(M)∩ Zi−1 = ∅. Therefore assertion (1) holds if and only if Ass(M) ⊆ Zi \ Zi−1, which is
equivalent to assertion (3).

(2) =⇒ (1) From Proposition 2.3 and condition (2)(a) we get that ti(M) = M . On the other hand, if we had 0 ≠ x ∈
ti−1(M) that same proposition would give that ∅ ≠ Ass(Γ x) ⊆ Zi−1. We then get g ∈ Γ such that gx ≠ 0 and annΓ (gx) = p
is a prime ideal in Zi−1. That would contradict condition (2)(b).

(1), (3) =⇒ (2) Let us prove condition (2)(b) by way of contradiction. Suppose that there are 0 ≠ x ∈ M and p ∈ Zi−1
such that px = 0. Taking a maximal element in the set {annΓ (gx) : g ∈ G and gx ≠ 0}, we obtain a q ∈ Ass(Γ x) ⊆ Ass(M)
(cf. [24][Theorem 6.1]) such that p ⊆ q. Since Zi−1 is closed under specialization we get that q ∈ Zi−1, which contradicts
assertion (3).

We next prove condition (2)(a). Let us take 0 ≠ x ∈ M . Then, by Proposition 2.3, we have prime ideals p1, . . . , pr ∈ Zi
(hence of coheight≤ i) and positive integers n1, . . . , nr > 0 such that pn1

1 · . . . · p
nr
r x = 0. It is not restrictive to choose the

pi and the ni in such a way that the latter ones are minimal, i.e., that pn1
1 · . . . · p

nk−1
k · . . . · pnr

r x ≠ 0 for all k = 1, . . . , r .
That immediately implies the existence of elements gk ∈ Γ such that gkx ≠ 0 and pk ⊆ annΓ (gkx), for all k = 1, . . . , r . By
[24][Theorem 6.1], we find qk ∈ Ass(Γ x) ⊆ Ass(M) such that pk ⊆ qk, for all k = 1, . . . , r . But then, by assertion (3), we
have i = cht(qk) ≤ cht(pk) ≤ i for k = 1, . . . , r . Therefore we have cht(pk) = i, for k = 1, . . . , n. �

Our next goal is to give the precise structure of the Γ -modules in T0, which is actually given by a more general result,
Proposition 2.7 below, which will follow from the following version of the Chinese Remainder Theorem:

Lemma 2.6. Let I1, . . . , Ir (r > 1) be pairwise distinct ideals of Γ . The following assertions are equivalent:

(1) Ii and Ij are coprime, for all i ≠ j
(2) The canonical ring homomorphism Γ −→

∏
1≤i≤r Γ /Ii is surjective.

In such case


1≤i≤r Ii = I1 · . . . · Ir .

Proof. See [1], Proposition 1.10(i). �

In the rest of the paper, if p ∈ SpecΓ and M is a Γ -module, we shall denote by M(p) the submodule consisting of those
x ∈ M such that pnx = 0, for some n ≥ 0. Note that, in such case, if p ∈ Ass(M(p)) then Min Ass(M(p)) = {p}.
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Proposition 2.7. Let M be a Γ module such that Min Ass(M) consists of pairwise coprime ideals (e.g. if Ass(M) ⊆ SpecmΓ ).
ThenMin Ass(M) = Ass(M) and M = ⊕p∈Ass(M)M(p).

Proof. We shall prove thatM = ⊕p∈Min Ass(M)M(p). It will follow that Ass(M) =


p∈Min Ass(M) Ass(M(p)) =
p∈Min Ass(M) {p} = Min Ass(M) and the result will follow.
It is easy to prove that, for any family of submodules (Mi)i∈I of a given Γ -module M , one has Supp(

∑
i∈I Mi) =

i∈I Supp(Mi). This implies thatMin Ass(
∑

i∈I Mi) ⊆


i∈I Min Ass(Mi) using Proposition 2.1.We apply this to our particular
case. Let us fix p ∈ Min Ass(M) and take

x ∈ M(p) ∩

 −
q∈Min Ass(M),q≠p

M(q)


.

Then we have inclusions

Ass(Γ x) ⊆ Ass(M(p)) ∩ Ass

 −
q∈Min Ass(M),q≠p

M(q)


⊆ Ass(M(p))

∩

 
q∈Min Ass(M),q≠p

Ass(M(q))


⊆ {p} ∩ (Min Ass(M) \ {p}) = ∅.

It follows that x = 0 and, hence, the sum of the M(q), with q ∈ Min Ass(M), is direct.
Let us consider now Z := Supp(M), which is a subset of SpecΓ closed under specialization. Then, by Theorem 2.2, M

belongs to TZ and hence tZ (M) = M . If now x ∈ M then Proposition 2.3 guarantees the existence of distinct prime ideals
p1, . . . , pr ∈ Min Supp(M) and positive integer n1, . . . , nr > 0 such thatpn1

1 ·. . .·p
nr
r x = 0. Thepi are pairwise coprime since

Min Supp(M) = Min Ass(M) (see Proposition 2.1). But then it follows easily that the ideals pni
i are also pairwise coprime.

Then Γ x is a module over the factor ring Γ /pn1
1 · . . . p

nr
r . But, by Lemma 2.6, we know that pn1

1 · . . . · p
nr
r =


1≤i≤r p

ni
i , and

then the canonical map

Γ /pn1
1 · . . . · p

nr
r −→

∏
1≤i≤r

Γ /pni
i

is a ring isomorphism. It follows that in the ring Γ /pn1
1 · . . . · p

nr
r we can decompose 1̄ = ḡ1 + · · · + ḡr , where

gi ∈ pn1
1 · . . . p

ni−1
i−1 ·p

ni+1
i+1 . . . ·pnr

r . Then x =
∑

1≤i≤r gix and pi
nigix = 0, for i = 1, . . . , r . It follows that x ∈ ⊕p∈Min Ass(M)M(p),

and we get the desired equalityM = ⊕p∈Min Ass(M)M(p). �

Proposition 2.8. Let M and N be Γ -modules such that p and q are coprime whenever p ∈ Ass(M) and q ∈ Ass(N) (resp.
p ∈ Min Ass(M) and q ∈ Min Ass(N)). The equality

ExtiΓ (M,N) = 0 = ExtiΓ (N,M)

holds for all i ≥ 0.

Proof. Since we have Min Ass(M) = Min Supp(M) and similarly for N it follows that p and q are coprime whenever
p ∈ Supp(M) and q ∈ Supp(N). If

0→ M −→ I0 −→ I1 −→ . . .

is the minimal injective resolution of M in Γ -Mod and E(Γ /p) is an injective indecomposable Γ -module appearing as
direct summand of some I i, then p ∈ Supp(M) (cf. [24][Theorem 18.7]). It follows that HomΓ (N, I i) = 0, and hence
ExtiΓ (N,M) = 0, for all i ≥ 0. That ExtiΓ (M,N) = 0 for all i ≥ 0 follows by symmetry. �

3. Algebras with a commutative Harish-Chandra subalgebra and lifting of torsion theories

Throughout the rest of the paper U is an algebra and Γ a commutative subalgebra satisfying the conditions of Setup 1.1.
We denote by j : Γ ↩→ U the canonical inclusion and by j∗ : U-Mod −→ Γ -Mod the restriction of scalars functor. It is clear
that if T is a (hereditary) torsion class in Γ -Mod, then T̂ = j−1

∗
(T ) := {T ∈ U-Mod : j∗(T ) ∈ T } is a (hereditary) torsion

class inU-Mod. However, ifM is anU-module, then its torsionΓ -submodule t(M) and its torsionU-submodule t̂(M) satisfy
an inclusion t̂(M) ⊆ t(M) that might be strict. Equality happens exactly when t(M) is an U-submodule of M . That justifies
the following.

Definition 2. A torsion theory (T , F ) in Γ -Mod is called liftable to U-Mod in case t(M) is a U-submodule of M , for every
U-moduleM .

The following is a general criterion for the lifting of a torsion theory.
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Proposition 3.1. Let Z ⊆ SpecΓ be a closed under specialization subset and (TZ , FZ ) be its associated torsion theory in Γ -Mod.
The following assertions are equivalent:

(1) (TZ , FZ ) is liftable to U-Mod
(2) For each prime ideal p (minimal) in Z, the U-module U/Up belongs to TZ when looked at as Γ -module.

Proof. (1) =⇒ (2) Let us take p ∈ Z . Then the canonical generator x = 1 + Up of U/Up belongs to tZ (U/Up)
(see Proposition 2.3). Since tZ (U/Up) is a U-submodule of U/Up we conclude that U/Up = tZ (U/Up) and condition (2)
holds.

(2) =⇒ (1) Let M ≠ 0 be an arbitrary nonzero U-module. If 0 ≠ x ∈ tZ (M) then, by Proposition 2.3, there are
p1, . . . , pr ∈ Min Z and positive integers n1, . . . , nr > 0 such that pn1

1 · . . . · p
nr
r x = 0. We shall prove that Ux ⊆ tZ (M) by

induction on k = n1 + · · · + nr . If k = 1 then we have a p ∈ Min(Z) such that px = 0. Then we get an epimorphism of
U-modules U/Up � Ux (ū = u+ Up  ux) whose domain belongs to TZ when viewed as a Γ -module. Then Ux belongs to
TZ when viewed as a Γ -module, so that Ux ⊆ tZ (M).

Suppose now that k > 1. If prx = 0 then we are done. So we can assume that prx ≠ 0. The induction hypothesis
says that Uprx ⊆ tZ (M), from which it follows that the assignment ū = u + Upr  ux = ux + tZ (M) gives a well-
defined map f : U/Upr −→ M/tZ (M), which is clearly a homomorphism of Γ -modules. Then we have that Im(f ) =
(Ux+ tZ (M))/tZ (M) ∈ TZ since U/Upr belongs to TZ . But we also have that Im(f ) ∈ FZ because Im(f ) is a Γ -submodule of
M/tZ (M). It follows that Im(f ) = 0, so that Ux ⊆ tZ (M). �

Note that in our setting the commutative algebra Γ always has finite Krull dimension, so that the (co)height of any of its
prime ideal is a natural number. We are now ready to prove our main result, which implies Theorem 1.2.

Theorem 3.2. (1) Let i be any natural number. The torsion theory (Ti, Fi) is liftable to U-Mod.
(2) Let M be a simple U-module. There exists a (unique) natural number i such that ti(M) = M and ti−1(M) = 0. Hence all prime

ideals in Ass(M) have coheight exactly i.

Proof. We prove the first statement by induction on i. If i = 0 we takem ∈ Min Z0 = Z0 = SpecmΓ . In order to prove that
U/Um ∈ T0, thus ending the proof (cf. Proposition 3.1), it is enough to prove that Γ uΓ+Um

Um
∼=

Γ uΓ
Γ uΓ∩Um is a ‘left’ Γ -module

in T0, for all u ∈ U . Indeed we have an epimorphism in Γ -Mod

Γ uΓ
Γ um

�
Γ uΓ

Γ uΓ ∩ Um
.

But since Γ uΓ is finitely generated as right Γ -module it follows that Γ uΓ
Γ um is finite dimensional as K -vector space. In

particular Γ uΓ
Γ uΓ∩Um is a ‘left’ Γ -module of finite length and hence belongs to T0.

Suppose now that i > 0 and i < d = K dim(Γ ) (the case i ≥ d is trivial). If p ∈ Min Zi and cht(p) < i then the induction
hypothesis says that U/Up ∈ Ti−1 ⊂ Ti. We assume then that cht(p) = i. According to Proposition 3.1, it will be enough
to prove that U/Up belongs to Ti when viewed as a Γ -module. This is in turn equivalent to prove that, for each u ∈ U , all
the prime ideals of Γ containing annΓ (u + Up) = (Up : u) := {g ∈ Γ : gu ∈ Up} have coheight ≤ i (cf. Proposition 2.3).
Therefore our goal is to prove that the Krull dimension of the algebra Γ /(Up : u) is ≤ i, for all u ∈ U . For that we shall
use the fact that the Krull dimension of this latter algebra coincides with its Gelfand–Kirillov dimension (cf [22][Proposition
7.9])

We fix an element u ∈ U , a finite set of generators {u = u1, u2, . . . , un} of Γ uΓ as right Γ -module and a finite set
of generators {t1, . . . , tm} of Γ as a K -algebra. We consider the filtration (Fk)k≥0 on Γ obtained by taking as Fk the vector
subspace of Γ generated by the monomials of degree ≤ k on the ti. The induced filtration on Γ /(Up : u) is given by
(
Fk+(Up:u)

(Up:u) )k≥0. The multiplication map ḡ  gu+ Up is a K -linear isomorphism Fk+(Up:u)
(Up:u)

∼=
−→

Fku+Up
Up , for each k ≥ 0.

Due to our choices, we have that tiuj =
∑

1≤l≤n ulg l
ij, with g l

ij ∈ Γ , for all i = 1, . . . , r and j = 1, . . . , n. There exists a
minimal positive integer s > 0 such that {g l

ij} ⊂ Fs. An easy induction gives that Fkuj ⊆
∑

1≤i≤n uiFsk, for all k ≥ 0 and all
j = 1, . . . , n. In particular we have Fku ⊆

∑
1≤i≤n uiFsk, and hence Fku+Up

Up ⊆
∑

1≤i≤n
uiFks+Up

Up , for all k ≥ 0. Note that we
have a surjective K -linear map

Fsk + Up
Up

�
uiFks + Up

Up
(g + Up  uig + Up).

Then, taking K -dimensions, we obtain

dim

Fku+ Up

Up


≤ s · dim


Fks + Up

Up


,

and hence

log

dim


Fku+Up

Up


log(k)

≤

log

s · dim


Fks+Up

Up


log(k)

, (∗)
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for all k > 0. Note that we obtain a filtration (F ′k)k≥0 of the algebra Γ by putting F ′k = Fsk, for all k ≥ 0. Then, by applying
limit superior to the inequality (∗) and bearing in mind that the Gelfand–Kirillov dimension decreases by passing to factor
algebras, we get that

GKdim(Γ /(Up : u)) ≤ GKdim(Γ /(Up ∩ Γ )) ≤ GKdim(Γ /p) = i.

This proves the first statement of the theorem. Let us now put i = min{j ≥ 0 : M ∈ Tj}. Then we have ti(M) = M and
ti−1(M) ( M (convening that t−1(M) = 0). By (1), it follows that ti−1(M) is a proper U-submodule of M . The simplicity of
M gives that ti−1(M) = 0 and, using Corollary 2.5, the proof is completed. �

Question and Remark 3.3. According to Proposition 2.7, if M is a simple U-module and the prime ideals in Ass(M) are
pairwise coprime (e.g. if M ∈ T0) then we have a decomposition M = ⊕p∈Ass(M)M(p) as Γ -module. For an arbitrary simple
U-module M , using Theorem 3.2, it is not difficult to see that the sum

∑
p∈Ass(M) M(p) is direct, so that ⊕p∈Ass(M)M(p) is a

Γ -submodule of M . Then a natural question arises: is this sum a U-submodule? Note that a positive answer would imply
thatM = ⊕p∈Ass(M)M(p).

Given a simple U-module M , one needs ways of calculating the i ≥ 0 such that ti(M) = M and ti−1(M) = 0. Recall that
a subset {g1, . . . , gr} ⊂ Γ is called a regular sequence in case

∑
1≤i≤r Γ gi ≠ Γ and ḡk := gk +

∑
1≤i<k Γ gi is not a zero

divisor in Γ /
∑

1≤i<k Γ gi, for all k = 1, . . . , n. In that case r is called the length of the regular sequence. We refer the reader
to [24][pages 136 and 250] for the definitions of Cohen–Macaulay and equidimensional commutative rings, that we use in
the following result.

Proposition 3.4. Suppose that Γ is Cohen–Macaulay and equidimensional and let d = K dim(Γ ) be its Krull dimension. If M
is a U-module such that all ideals in Ass(M) have the same coheight (e.g. a simple U-module), then the following assertions are
equivalent:

(1) ti(M) = M and ti−1(M) = 0
(2) There is a regular sequence in Γ , maximal with the property of annihilating some x ∈ M \ {0}, which has length d− i.

Proof. The equidimensionality guarantees that ht(p) + cht(p) = d, for all p ∈ SpecΓ (cf. [23][Corollary II.3.6]). Note also
that if {g1, . . . , gk} is a regular sequence contained in annΓ (x), for some x ∈ M \ {0}, then, replacing if necessary x by some
gx ≠ 0 with g ∈ G, it is not restrictive to assume that annΓ (x) = q, for some prime ideal q ∈ Ass(M). So assertion (2) is
equivalent to the following:

(2′) There is a regular sequence in Γ of length d− i contained in some q ∈ Ass(M) and maximal with that property.
By [23][Theorem VI.3.14] and the fact that all prime ideals in Ass(M) have the same (co)height, this condition 2′ is in turn

equivalent to say that d − i = ht(q), for every q ∈ Ass(M). Therefore assertion (2) holds if, and only if, cht(q) = i for all
q ∈ Ass(M). By Corollary 2.5, this is equivalent to assertion (1). �

4. An approximation to the assassin of a U-module

The preceding section shows that, given a simple U-module M , its assassin as Γ -module, Ass(M), is an important
invariant. Therefore it is natural to give ways of approximating this subset of Spec(Γ ). We will see in this section that,
knowing a prime p ∈ Ass(M) and the finite subset {u1, . . . , un} ⊂ U of Setup 1.1, one can give a precise subset of SpecΓ in
which Ass(M) is contained.

We will follow the terminology used for maximal ideals in [8] and, given u ∈ U , we denote by Xu the set of pairs
(q, p) ∈ SpecΓ × SpecΓ such that Γ uΓ

quΓ+Γ up ≠ 0 (or equivalently Γ

q ⊗Γ Γ uΓ ⊗Γ
Γ

p ≠ 0). For simplicity, we shall write
q ≡u p whenever (q, p) ∈ Xu.

Note that, due to Nakayama lemma, if H if a finitely generated Γ -module and q ∈ Supp(H) then qH ≠ H . We will use
this fact in the proof of the following result, which is a crucial tool for our purposes.

Lemma 4.1. Let M be a U-module. The following assertions hold:

(1) If u ∈ U, x ∈ M and q ∈ Supp(Γ ux), then there exists p ∈ Ass(Γ x) such that q ≡u p
(2) If all prime ideals in Ass(M) have the same coheight, then there is an inclusion

Ass(Γ (x+ y)) ⊆ Ass(Γ x) ∪ Ass(Γ y),

for all x, y ∈ M.

Proof. (1) We have q ∈ Supp(Γ ux) ⊆ Supp(Γ uΓ x). It follows that Γ uΓ x
quΓ x ≠ 0 since our Setup 1.1 guarantees that Γ uΓ x is

a finitely generated Γ -module. The assignment v̄ ⊗ y  vy gives a surjective K -linear map

Γ uΓ
quΓ

⊗Γ Γ x �
Γ uΓ x
quΓ x

≠ 0.
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It follows that Γ uΓ
quΓ ⊗Γ Γ x ≠ 0. But Γ x admits a finite filtration with successive factors isomorphic to Γ /p, with

p ∈ Supp(Γ x) (see [23][Proposition VI.2.6]). We conclude that there is a p′ ∈ Supp(Γ x) such that Γ uΓ
quΓ ⊗Γ

Γ

p′ ≠ 0. Choosing
now p ∈ Ass(Γ x) such that p ⊆ p′, we get that Γ uΓ

quΓ ⊗Γ
Γ

p ≠ 0 and hence q ≡u p.
(3) Since we have an inclusion Γ (x+ y) ⊆ Γ x+Γ y it will be enough to check that Ass(Γ x+Γ y) ⊆ Ass(Γ x)∪Ass(Γ y).

To do that, we consider the canonical exact sequence in Γ -Mod:

0→ Γ x ∩ Γ y −→ Γ x⊕ Γ y −→ Γ x+ Γ y→ 0,

from which we get that Ass(Γ x+ Γ y) ⊆ Supp(Γ x⊕ Γ y) = Supp(Γ x) ∪ Supp(Γ y).
By hypothesis, all prime ideals in Ass(M) have the same coheight, which implies that all of them areminimal in Supp(M).

As a consequence, if q ∈ Ass(Γ x + Γ y) and we assume that q ∈ Supp(Γ x), then q is minimal in Supp(Γ x). This implies
that q ∈ Min Supp(Γ x) = Min Ass(Γ x) ⊆ Ass(Γ x). We replace x by y in case q ∈ Supp(Γ y), and the proof is finished. �

4.1. Proof of Theorem 1.3

We are now ready to prove Theorem 1.3.
If q ∈ Ass(M) then we have q = annΓ (ux), for some u ∈ U . If u ∈ Γ then q = p and there is nothing to prove. So we

assume u ∉ Γ , in which case u is a sum of products of the form

g1uk1g2 . . . grukr gr+1,

where the gk belong to Γ and the k1, . . . , kr belong to {1, . . . , n}. Lemma 4.1 allows us to assume, without loss of generality,
that

u = g1uk1g2 . . . grukr gr+1,

something that we do from now on in this proof.
We then have

q ∈ Ass(Γ ux) ⊆ Ass(Γ uk1g2...grukr gr+1x).

By Lemma 4.1(1), there is a q1 ∈ Ass(Γ g2uk2 ...grukr gr+1x) such that q ≡uk1
q1. By induction we get a sequence q =

q0, q1, . . . , qr of prime ideals in Ass(M), whence of coheight exactly cht(p) (see Theorem 3.2, such that qr ∈ Ass(Γ gr+1x)
and qi−1 ≡uki

qi for i = 1, . . . , r . But Ass(Γ gr+1x) = {p} since annΓ (x) = p is a prime ideal and gr+1x ≠ 0. Then qr = p
and the proof is finished.

Theorem 1.3 suggests to define, for each 0 ≤ i ≤ d, a (not necessarily symmetric) relation ≡ in the set Min Zi of prime
ideals of coheight i by saying that q ≡ p if, and only if, there are a sequence q = q0, q1, . . . , qs = p in Min Zi and a sequence
of indices k1, . . . , ks ∈ {1, . . . , n} such that qi−1 ≡uki

qi, for all i = 1, . . . , s.

Corollary 4.2. If M is a simple U-module and p, q ∈ Ass(M) then q ≡ p.

Proof. As U-module, M is generated by any of its nonzero elements. Choose 0 ≠ x ∈ M such that annΓ (x) = p and apply
Theorem 3.2. �

We obtain immediately the following refinement of Proposition 2.7.

Corollary 4.3. Let M be a simple U-module and take p ∈ Ass(M), with cht(p) = i. Suppose that q and q′ are coprime whenever
q ≠ q′ are distinct prime ideals ofΓ of coheight i such thatq ≡ p andq′ ≡ p. Thenwe have a decompositionM = ⊕q∈Ass(M)M(q)
as Γ -module.

Proof. By Theorem 1.3, we have an inclusion Ass(M) ⊆ {q ∈ SpecΓ : cht(q) = i and q ≡ p}. Therefore the elements of
Ass(M) are pairwise coprime and Proposition 2.7 applies. �

The following example shows that in some circumstances (usually when the coheight is large), Theorem 1.3 is not
sufficient to approximate Ass(M).

Example 4.4. Let K be algebraically closed of characteristic zero and U = An(K) be the Weyl algebra given by generators
X1, . . . , Xn, Y1, . . . , Yn subject to the relations

XiXj − XjXi = 0 = YiYj − YjYi

XiYj − YjXi = δij,

for all i, j ∈ {1, . . . , n}, where δij is the Kronecker symbol. Assume n > 1, put ti = XiYi and put Γ = K [t1, . . . , tn]. Then Γ

and U satisfy the conditions of our Setup 1.1 by taking uj = Yσ(j) (resp. uj = Xσ(j)), for all j = 1, . . . , n, where σ ∈ Sn is any
permutation. If p = Γ (t1 − 1) then q ≡ p, for every prime ideal q ∈ Spec(Γ ) of height 1.
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Proof. For simplicity put ui = Yi (i = 1, . . . , n), the other choices being treated similarly. Then one readily shows the
equalities

Yitj = tjYi (i ≠ j)
Yiti = (ti − 1)Yi (equivalently tiYi = Yi(ti + 1)),

for all i = 1, . . . , n. If f , g ∈ Γ are irreducible polynomials we derive from these equalities that f ≡Yi g if and only if the
polynomials si(f ) := f (t1, . . . , ti−1, ti + 1, ti+1, . . . , tn) and g are not coprime (i.e. the prime ideals of Γ generated by them
are not coprime). Indeed we have that fYiΓ = Yisi(f )Γ and Γ YiΓ = YiΓ using the above equalities. But then the obvious
isomorphism of ‘right’ Γ -modules Γ ∼= YiΓ induces an isomorphism

Γ YiΓ

fYiΓ
=

YiΓ

Yisi(f )Γ
∼=
←→

Γ

(si(f ))
.

It follows that Γ YiΓ
fYiΓ+Γ Yig

∼=
Γ YiΓ
fYiΓ
⊗Γ

Γ

(g) is nonzero if an only if Γ

(si(f ))
⊗Γ

Γ

(g) ≠ 0. This happens exactly when si(f ) and g are
not coprime.

We pass now to prove the statement. If si(f ) is not coprimewith t1−1, for some i = 1, . . . , n, then last paragraph applies
with g = t1 − 1. So we assume that si(f ) is coprime with t1 − 1 for all i = 1, . . . , n. (Note that this situation can actually
happen. For instance if f = a + b(t1 − 2)m, with m > 0 a, b ∈ K and a ≠ 0 ≠ a + (−1)mb.) We then put f ′ := s1(f ) and
express it as a sum

∑
0≤k≤r gk(t2, . . . , tn)(t1 − 1)k. Then we get

Γ = f ′Γ + (t1 − 1)Γ = g0Γ + (t1 − 1)Γ

and it is easy to derive from this that g0 is a constant polynomial, so that we can rewrite

f ′(t1, . . . , tn) = a+ (t1 − 1)mg(t1, . . . , t2),

where g ∈ Γ \{0} and a ∈ K\{0}. Note that, given any index i = 2, . . . , n, we cannot have g(t1, . . . , ti−1, α, ti+1, . . . , tn) = 0,
for all α ∈ K . Indeed in that case the polynomial g would be zero. We then choose α ∈ K such that g(t1, α, t3, . . . , tn) ≠ 0
and claim that f ′ and t2−α are not coprime. To see that, note that f ′ and t2−α are coprime if, and only if, f̄ ′ := f ′+ (t2−α)
is invertible in Γ /(t2 − α). Using the canonical isomorphism

K [t1, . . . , tn]/(t2 − α)
∼=
−→ K [t1, t3, . . . , tn]

(h̄  h(t1, α, t3, . . . , tn)),

we immediately find a polynomial u ∈ K [t1, t3, . . . , tn] satisfying the equality

f ′(t1, α, t3, . . . , tn)u(t1, t3, . . . , tn) = 1

in K [t1, t3, . . . , tn]. It follows that

f ′(t1, α, t3, . . . , tn) = 1+ (t1 − 1)mg(t1, α, t2, . . . , tn)

is a constant polynomial, something which can only happen when g(t1, α, t2, . . . , tn) = 0. But this contradicts our choice
of α.

Put now h := t2 − α. We then get that f ≡Y1 h since f ′ = s1(f ) is not coprime with h = t2 − α. On the other hand, we
also have h ≡Y2 t1 − 1 since s2(h) = h(t2 + 1) = t2 + 1− α is not coprime with t1 − 1. We then conclude that f ≡ t1 − 1
as desired. �

We end the section with a result on extensions of U-modules.

Proposition 4.5. LetM and N be nonzero U-modules and suppose that Γ uΓ
quΓ+Γ up = 0, for all u ∈ U, q ∈ Ass(M) and p ∈ Ass(N).

The following assertions hold:
(1) ExtiΓ (M,N) = 0 = ExtiΓ (N,M), for all i ≥ 0
(2) Ext1U(N,M) = 0.

Proof. (1) By taking u = 1 above, we see that p and q are coprime whenever p ∈ Ass(M) and q ∈ Ass(N). The assertion
follows from Proposition 2.8.

(2) Let 0 → M −→ X −→ N → 0 be an exact sequence in U-Mod. By assertion 1 we know that it split in Γ -Mod.
Then we shall identify X = M ⊕ N , in which case the external multiplication map U × X −→ X ((u, x)  u · x) is entirely
determined by the U-module structures on M and N and by a K -bilinear map µ : U × N −→ M satisfying the following
three properties for all u, u′ ∈ U , g ∈ Γ and y ∈ N:
(1) µ(uu′, y) = uµ(u′, y)+ µ(u, u′y) (this guarantees that (uu′) · y = u · (u′ · y))
(2) µ(g, y) = 0, for all g ∈ Γ (this guarantees that the structure of Γ -module on M ⊕ N given by restriction of scalars via

the inclusion j : Γ ↩→ U is that of the direct sum)
(3) u · y = µ(u, y)+ uy (this guarantees that the projection


0 1


: X = M ⊕ N −→ N is a U-homomorphism).

It follows that the assignment u⊗ y  µ(u, y) defines a homomorphism of Γ -modules µ′ : U ⊗Γ N −→ M .
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We claim that µ′ = 0. Suppose not and take q ∈ Ass(Im(µ′)) ⊆ Ass(M). The surjective Γ -homomorphism U ⊗Γ N �
Im(µ′) induces another surjective Γ -homomorphism

⊕
u∈U,y∈N

Γ uΓ ⊗Γ Γ y � Im(µ′).

In particular, we get that q ∈ Supp(Γ uΓ ⊗Γ Γ y), for some u ∈ U and y ∈ N . Since Γ uΓ ⊗Γ Γ y is an epimorphic image in
Γ -Mod ofΓ uΓ , which is finitely generated as ‘left’Γ -modules, it follows thatΓ uΓ ⊗Γ Γ y is a finitely generatedΓ -module
and thereby that q(Γ uΓ ⊗Γ Γ y) ≠ Γ uΓ ⊗Γ Γ y. That means that the left arrow in the exact sequence

quΓ ⊗Γ Γ y −→ Γ uΓ ⊗Γ Γ y −→
Γ uΓ
quΓ

⊗Γ Γ y→ 0

is not surjective, and hence that Γ uΓ
quΓ ⊗Γ Γ y ≠ 0. The argument of Lemma 4.1(1) shows that there exists a p ∈ Ass(Γ y) ⊆

Ass(N) such that Γ uΓ
quΓ ⊗Γ

Γ

p ≠ 0. We then get Γ uΓ
quΓ+Γ up ≠ 0, which contradicts the hypothesis. �

5. Applications and some open questions

We start with a proposition which will be useful in what follows, for its hypotheses are satisfied by all examples of this
final section.

Proposition 5.1. In the Setup 1.1 suppose in addition that the following conditions hold:

(1) If Z = Z(U) is the center of U then Z ∩ Γ is equidimensional (see [24], p. 250)
(2) Γ is flat as a Z ∩ Γ -module
(3) For each simple U-module, the endomorphism algebra EndU(M) has dimension equal to 1 as a K-vector space.

If U−fl denotes the subcategory of U-modules of finite length, then Ti∩U−fl = Tj∩U−fl, for all i, j ≥ K dim(Γ )−K dim(Z∩Γ ).

Proof. LetM be a simple U-module. Then the structural map K −→ EndU(M) is an algebra isomorphism, which we view as
an identification. On the other hand, every element z ∈ Z induces by multiplication an endomorphism λz ∈ EndU(M). Put
Z ′ = Z ∩ Γ . The assignment z  λz gives then an isomorphism

Z ′/annZ ′(M)
∼=
−→ EndU(M) = K ,

thus showing that m := annZ ′(M) is a maximal ideal of Z ′. Let now p ∈ Spec(Γ ) be minimal over Γ m. We clearly have
m = Z ′ ∩ p and we have an equality

ht(p) = ht(m)+ K dim


Γp

Γpm


(cf. [24][Theorem 15.1]). But the prime spectrum of Γp

Γpm
is in bijection with the set of q ∈ Spec(Γ ) such that Γ m ⊆ q ⊆ p.

By our choice of p, this implies that Spec( Γp
Γpm

) has one element. It follows that K dim(
Γp

Γpm
) = 0, so that ht(p) = ht(m), for

allm ∈ Specm Z ′ and all p ∈ SpecΓ minimal over Γ m.
Put d := K dim(Γ ) and e := K dim(Z ′). Equidimensionality of Z ′ gives that ht(m) = e (cf. [23][Corollary II.3.6]). Then

from the last paragraph and the inequality

ht(p)+ K dim(Γ /p) ≤ K dim(Γ )

we readily derive that

K dim


Γ

Γ m


= Sup{K dim(Γ /p) : p ∈ SpecΓ minimal over Γ m} ≤ d− e.

This says that the coheight of any p ∈ SpecΓ containing amaximal ideal of Z ′ is always≤ d−e. In particular that happens for
all p ∈ Ass(M), for every simple U-moduleM . It follows that the simple U-modules in Ti are the same for all d− e ≤ i ≤ d,
which implies the statement. �

Remark 5.2. If our field is algebraically closed, condition (3) in Proposition 5.1 is satisfiedwheneverU admits an exhaustive
filtration U0 ⊂ U1 ⊂ · · · such that the associated graded algebra gr(U) is a commutative finitely generated algebra (cf.
[6][Lemma 2.6.4]). It is the case for all finiteW -algebras (cf. [5], Theorem 10.1 or [17], 4.4).

The following problems are of special interest in the case of enveloping algebras of Lie algebras and finiteW -algebras.

Problems 5.3. Suppose that Γ and U satisfy the conditions of Setup 1.1 and also the hypotheses of Proposition 5.1. We
propose the following problems:
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(1) To identify the setNU of natural numbers 0 ≤ j ≤ d−e for which there exists a simpleU-moduleM such that tj(M) = M
and tj−1(M) = 0 (convening that t−1(M) = 0).

(2) Given j ∈ NU , to identify the set of p ∈ SpecΓ such that cht(p) = j and p ∈ Ass(M), for some simple U-module M
(3) (Local version) Given a character χ : Z ′ = Z ∩ Γ −→ K , to identify the set N(χ) of natural numbers 0 ≤ j ≤ d− e for

which there exists a simple U-module M annihilated by Ker(χ) with tj(M) = M and tj−1(M) = 0. For any j ∈ N(χ), to
identify all p ∈ SpecΓ such that cht(p) = j, Ker(χ) ⊂ p and p ∈ Ass(M) for some simple U-moduleM .

We move now to the announced classical examples. In the rest of the paper we assume that the field K is algebraically
closed of characteristic zero.

5.1. Finite W-algebras

Associated with a nilpotent element and a good grading in the Lie algebra gln, there is associated a finite W -algebra
(see [9] for the definition and details). Each finite W -algebra of type A is determined by a sequence of integers τ =
(p1, . . . , pm) such that 1 ≤ p1 ≤ · · · ≤ pm and p1 + · · · + pm = n. We denote such an algebra by W (τ ). If for each
k = 1, . . . ,m we put τk = (p1, . . . , pk), then we obtain a chain of subalgebras

W (τ1) ⊂ · · · ⊂ W (τm) = W (τ ).

The subalgebra Γ ofW (τ ) generated by the centers of theW (τk) is a commutative algebra usually called the Gelfand–Tsetlin
subalgebra of W (τ ).

As shown in [14,13], the algebra U = W (τ ) and the commutative subalgebra Γ satisfy all the conditions of Setup
1.1 and all the hypothesis of Proposition 5.1, actually with Z ⊂ Γ and hence Z ∩ Γ = Z . Moreover, we have d =
mp1 + (m − 1)p2 + · · · + 2pm−1 + pm and e = p1 + · · · + pm (see [12,5]), where d and e are as in Proposition 5.1. In
particular we get:

Corollary 5.4. Let us consider the natural number r = (m− 1)p1 + (m− 2)p2 + · · · + pm−1. The following assertions hold:

(1) The torsion theories (Ti, Fi) (i = 0, 1, . . . , d) are liftable from Γ -Mod to W (τ )-Mod.
(2) If M is a simple W (τ )-module then there is a unique natural number 0 ≤ j ≤ r such that tj(M) = M and tj−1(M) = 0. In

this case all prime ideals in Ass(M) have coheight exactly j.

Note that in the casem = n and p1 = · · · = pm = 1 the correspondingW -algebra is isomorphic to U(gln).

5.2. The Lie algebra gln

Given any positive integer n and any basis π = {α1, . . . , αn} of the root system of the Lie algebra gln, we denote by gli
the Lie subalgebra corresponding to the simple roots α1, . . . , αi. We then have inclusions of Lie algebras

gl1 ⊂ gl2 ⊂ · · · ⊂ gln
inducing corresponding inclusions of associative algebras

U1 ⊂ U2 ⊂ · · · ⊂ Un,

where Uk = U(glk) is the universal enveloping algebra of glk for each k > 0. If we put U = Un then the subalgebra Γ (π) of
U generated by the centers of U1, . . . ,Un is a maximal commutative subalgebra, called the Gelfand–Tsetlin subalgebra of U
associated to the root system π . The inclusion Γ (π) ⊂ U satisfies all the requirements of Setup 1.1 and the hypotheses of
Proposition 5.1, again with Z ⊆ Γ . Concretely Γ (π) is isomorphic to a polynomial algebra on n(n+1)

2 variables (cf. [14,15])
while the center Z = Z(U) is a polynomial algebra on n variables. We therefore have:

Corollary 5.5. The following assertions hold:

(1) The torsion theories (Ti, Fi) (i = 0, 1, . . . , n(n+1)
2 ) are liftable from Γ (π)-Mod to U(gln)-Mod.

(2) If M is a simple gln-module then there is a unique natural number 0 ≤ j ≤ n(n−1)
2 such that tj(M) = M and tj−1(M) = 0. In

this case all prime ideals in Ass(M) have coheight exactly j.

An interesting phenomenon for Un = U(gln) is that there are several Gelfand–Tsetlin subalgebras to which we can apply
our general theory, namely, one per each choice of a basis of the root system. We denote by Ti(π) the class of Un-modules
M such that, viewed as Γ (π)-module, M belongs to Ti. Since different root systems are conjugated by the Weyl group, one
immediately gets:

Proposition 5.6. Let π and π ′ be two bases of the root systems of gln. The categories Ti(π) and Ti(π
′) are equivalent for any i.

Concerning Problems 5.3(1), it is well known that 0 ∈ NU when U is a finiteW -algebra of type A. For the particular case
U = U(gln) we have that 1 ∈ NU , as the following example show.

Example 5.7. There are simple gln-modules which are not in T0 for all n > 1.
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Proof. Consider any generic simple non-weight (with respect to any Cartan subalgebra) gl2-module V , such modules exist
by [4]. Then V ∈ T1 and is not Gelfand–Tsetlin. Let H be a Cartan subalgebra of gl3. Fix a ∈ C. Let (c1, c2) be the central
character of V (c1 is an eigenvalue of e11+ e22 and c2 is an eigenvalue of the quadratic Casimir element). Let P be a parabolic
subalgebra of gl3 whose Levi factor is gl2 + H . Now consider the induced module M(V , a) = U(gl3) ⊗U(P) V where V is
naturally viewed as a P-module with a trivial action of the radical and e11 + e22 + e33 acts by multiplication by a. Then
M(V , a) has a unique simple quotient L(V , a) which belongs to the subcategory T1 ⊂ gl3-Mod and is not Gelfand–Tsetlin.
Similarly, one can induce now from L(V , a) to get a gl4-module with a unique simple quotient in T1 ⊂ gl4-Mod which is
not Gelfand–Tsetlin. One continues inductively. Hence, for each n ≥ 2 we construct a simple gln-module in T1 which is not
Gelfand–Tsetlin. �
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