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Abstract

Let Cα(X,Y ) be the set of all continuous functions fromX to Y endowed with the set-open topo
ogy whereα is a hereditarily closed, compact network onX such that closed under finite unions. W
define two properties(E1) and(E2) on the triple(α,X,Y ) which yield new equalities and inequa
ties between some cardinal invariants onCα(X,Y ) and some cardinal invariants on the spacesX, Y

such as:

Theorem. If Y is an equiconnected space with a base consisting of ϕ-convex sets, then for each
f ∈ C(X,Y ), χ(f,Cα(X,Y )) = αa(X) . we(f (X)).

Corollary. Let Y be a noncompact metric space and let the triple (α,X,Y ) satisfy (E1). The follow-
ing are equivalent:

(i) Cα(X,Y ) is a first-countable space.
(ii) π -character of the space Cα(X,Y ) is countable.
(iii) Cα(X,Y ) is of pointwise countable type.
(iv) There exists a compact subset K of Cα(X,Y ) such that π -character of K in the space

Cα(X,Y ) is countable.
(v) αa(X) � ℵ0.
(vi) Cα(X,Y ) is metrizable.

(vii) Cα(X,Y ) is a q-space.
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(viii) There exists a sequence {On: n ∈ ω} of nonempty open subset of Cα(X,Y ) such that each
sequence {gn: n ∈ ω} with gn ∈ On for each n ∈ ω, has a cluster point in Cα(X,Y ).

 2004 Elsevier B.V. All rights reserved.
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1. Preliminaries

In [4], it have been investigated some relations between some cardinal invaria
the spaceCα(X,R) and some cardinal invariants on the spaceX, whereR is the space
of real numbers with the usual metric. In this paper, when the range spaceY is an arbi-
trary topological space having some requisite properties, we investigated some re
between some cardinal invariants on the spaceCα(X,Y ) and some cardinal invariants o
the spacesX, Y .

Throughout this paperX andY are infinite Tychonoff spaces (i.e., completely regu
topological spaces in which finite sets are closed), andC(X,Y ) denotes the set of all con
tinuous mappings fromX into Y , andα is always a hereditarily closed, compact netw
on the domain spaceX. (I.e.,α is a network onX such that each member is compact a
each closed subset of a member of it is a member of it.) Without loss of generality w
assume thatα is closed under finite unions. Throughout this paperω andℵ0 denote the
first infinite ordinal and the first infinite cardinal, respectively.

Let A ⊆ X andB ⊆ Y . The notation[A,B] used to denote

[A,B] = {
f ∈ C(X,Y ): f (A) ⊆ B

}
.

If x ∈ X andB ⊆ Y , then[{x},B] is abbreviated as[x,B].
The topology generated by the family

B =
{

n⋂
i=1

[Ai,Vi]: Ai ∈ α andVi is open inY for each 1� i � n

}
on the setC(X,Y ) is called theset-open topology, and the function spaceC(X,Y ) having
this topology is denoted byCα(X,Y ). The familyB is called thestandard base of this
topology. For any elementB = ⋂n

i=1[Ai,Vi] of B, the set
⋃n

i=1 Ai is called thesupport of
B, and denoted by supp(B). The function spaceC(X,Y ) havingthe topology of pointwise
convergence is denoted byCp(X,Y ).

Let Z be a subspace ofX. Thenα|Z denotes the set{A ∩ Z: A ∈ α} and the restriction
of a mappingf :X → Y to the setZ is denoted byf|Z .

The cardinality and the closure of a setA is denoted by|A| andA, respectively.
A family O of nonempty open subsets of a spaceX is called aπ -base for the spaceX at

a setA ⊆ X, if for any open setU that containsA there exists anO ∈O such thatO ⊆ U .
The π -character of a setA in a topological spaceX is defined as the smallest cardin
number of the form|O|, whereO is aπ -base for X at the setA; this cardinal number is
denoted byπχ(A,X).
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Let β be a family of subsets ofX. If every member ofα is contained in some memb
of β, thenβ is called anα-cover of X. The smallest infinite cardinality of such a familyβ

with β ⊆ α is calledα-Arens number of X, and it is denoted byαa(X).
An external base for a subspaceA of a topological spaceX is a family D of open

subsets ofX with the property that for eacha ∈ A and any neighbourhoodU of a in the
spaceX, there exists aD ∈ D such thata ∈ D ⊆ U . Theexternal weight of a subspaceA of
a spaceX is the smallest infinite cardinal number of the form|D|, whereD is an externa
base forA; this cardinal number is denoted bywe(A).

Thecharacter andweight of a spaceX are denoted byχ(X) andw(X), respectively.
For a spaceX, we denote the smallest cardinal numberκ with the property that for eac

x in X there exists a compact subsetC of X such thatx ∈ C andχ(C,X) � κ by h(X).
uw(X), theuniform weight of an uniform spaceX, is the smallest infinite cardinality o

an uniformity base ofX.
Notations and terminology not explained above can be found in [1,3,4].

2. Two properties on the triple (α,X,Y )

It is well known that the topological spaceR with the usual metric has a lot of stron
properties. For exampleR is a linear topological space, and hence the spaceCα(X,R) is
a linear topological space. But, in general, for any topological spaceY , the spaceCα(X,Y )

does not have most of the properties thatCα(X,R) has.
In this part, we will give two properties on the triple(α,X,Y ), and we will investigate

(α,X,Y ) satisfying these properties.
We say that the triple(α,X,Y ) satisfies(E1) when it satisfies the fact that ify ∈ Y ,

f ∈ C(X,Y ), A ∈ α andx ∈ X\A, then there exists ag ∈ C(X,Y ) such thatg(x) = y and
g|A = f|A .

We say that the triple(α,X,Y ) satisfies(E2) when it satisfies the fact that ify ∈ Y ,
then there exists an open subsetW of Y such thaty ∈ W , and ifB is a nonempty elemen
of the standard base ofCα(X,Y ) andF is a finite subset ofX with F ∩ supp(B) = ∅, then
[F,Y\W ] ∩ B �= ∅.

It is easy to see that(E1) implies(E2).
We observe that, if the triple(α,X,Y ) satisfies(E1) thenC(X,Y ) is a dense subset o

the product spaceYX .
In order to satisfy(E1), we give some sufficient conditions on the triple(α,X,Y ).

Proposition 1. If X is a zero-dimensional topological space, then (α,X,Y ) satisfies (E1).

Proof. Take anyy ∈ Y , f ∈ C(X,Y ), A ∈ α andx ∈ X\A. Since the spaceX is zero-
dimensional, andA is closed subset ofX, then there exists a closed–open subsetZ of X

such thatx ∈ Z ⊆ X\A. Define the functiong :X → Y with g(p) = y for eachp ∈ Z, and
g(p) = f (p) for eachp ∈ X\Z. One can easily verify thatg is continuous,g(x) = y and
g|A = f|A . �
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Proposition 2. If (Y,∗) is a pathwise connected topological group, then (α,X,Y ) satis-
fies (E1).

Proof. Take anyy ∈ Y , f ∈ C(X,Y ), A ∈ α andx ∈ X\A. Since the spaceX is Tychonoff,
there exists a continuous functionΨ :X → [0,1] such thatΨ (x) = 0 andΨ (A) ⊆ {1}.
Pathwise connectedness ofY gives us a continuous functionΦ : [0,1] → Y such that
Φ(0) = (f (x))−1 ∗ y and Φ(1) = e (e being the identity ofY ). Then define the func
tion g :X → Y with g(z) = f (z) ∗ (Φ(Ψ (z))). Thus,g is continuous function that i
required. �
Proposition 3. Let X and Y be topological spaces. If there exists a continuous map ϕ :Y ×
Y × [0,1] → Y such that ϕ(p,q,0) = p and ϕ(p,q,1) = q for each p,q ∈ Y with p �= q ,
then (α,X,Y ) satisfies (E1).

Proof. Take anyy ∈ Y , f ∈ C(X,Y ), A ∈ α andx ∈ X\A. Since the spaceX is Tychonoff,
there exists a continuous mapΨ :X → [0,1] such thatΨ (x) = 0 andΨ (A) ⊆ {1}. Define
the functiong :X → Y with g(z) = ϕ(y,f (z),Ψ (z)).Theng is continuous function that i
required. �

Recall that anequiconnected topological space Y is a topological space with the exi
tence of a continuous mapϕ :Y ×Y ×[0,1] → Y such thatϕ(p,p, t) = p, ϕ(p,q,0) = p

andϕ(p,q,1) = q for everyp,q ∈ Y andt ∈ [0,1]. The mapϕ is called anequiconnect-
ing function. A subset V of an equiconnected spaceY is called aϕ-convex subset of Y

provided thatϕ(V × V × [0,1]) ⊆ V .
The last proposition leads us to the following corollary.

Corollary 1. If Y is an equiconnected space, then (α,X,Y ) satisfies (E1).

If Y is a topological vector space, or a convex subset of any topological vector s
thenY is an equiconnected space. Also, every retract of any equiconnected space
an equiconnected space. So, we can state the following.

Corollary 2. If Y is a topological vector space, or a convex subset of any topological
vector space, or a retract of a convex subset of any topological vector space, then (α,X,Y )

satisfies (E1).

Recall that a topological latticeY is a topological space,� is a partial order onY , every
two element set{p,q} has the supremump ∨ q and the infimump ∧ q, and the lattice
operations∨ and∧ are continuous.

The following is a sufficient condition on the triple(α,X,Y ) for it to satisfy(E2).

Proposition 4. Let Y be a pathwise connected topological lattice having no smallest ele-
ment. If each compact subset of Y is bounded above, then (α,X,Y ) satisfies (E2).
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Proof. Let y ∈ Y . SinceY has no smallest element, there is aq ∈ Y such thatq � y and
q �= y. Continuity of the operation∨ :Y × Y → Y leads us to the fact thatK = {z ∈ Y :
z � q} is closed inY .

Let B be any nonempty element of the standard base ofCα(X,Y ) andF be a finite
subset ofX with F ∩ supp(B) = ∅. Take anf ∈ B. Sincef (supp(B)) is a compact sub
set ofY , the setf (supp(B)) is bounded above. Letp be an upperbound off (supp(B)).
SinceY is a pathwise connected space andX is a Tychonoff space, we can find a cont
uous functionh :X → Y such thath(supp(B)) ⊆ {p} andh(F ) ⊆ {q}. Define the function
g :X → Y with g(x) = h(x) ∧ f (x) for eachx ∈ X. It is clear thatg is continuous, and
one can easily verify thatg ∈ [F,K] ∩ B. �

3. Main results

We give a new definition.

Definition 1. Let X be a topological space,A ⊆ X, and letO be aπ -base forX at A.
A point x in A is called aπ -accumulation point of O at A if for each neighbourhoodU
of x, and for each neighbourhoodV of A, there exists anO ∈ O such thatO ∩ U �= ∅ and
O ⊆ V .

The following lemmas are needed in the proof of the next theorem. The proof o
first lemma is trivial.

Lemma 1. Let X be a topological space, K be a nonempty compact subset of X, and O be
a π -base for X at K . Then there exists a π -accumulation point of O at K .

Lemma 2. Let T and S be two topologies on X such that (X,S) is Hausdorff and S ⊆ T .
Let K be a T -compact subset of X, and let O be a π -base for the space (X,T ) at K . If x

is a π -accumulation point (respect to T ) of O at K , then the family

{U ∩ O: U ∈ S, x ∈ U, O ∈O and U ∩ O �= ∅}
is a π -base for the space (X,T ) at the point x.

Proof. Take anyT ∈ T with x ∈ T . Sincex /∈ K\T , and the setK\T is S-compact,
and the space(X,S) is Hausdorff, there existU , V ∈ S such thatx ∈ U , K\T ⊆ V and
U ∩ V = ∅. SinceK ⊆ T ∪ V , T ∪ V ∈ T , andx is aπ -accumulation point ofO at K ,
there exists aO ∈O such thatU ∩ O �= ∅ andO ⊆ T ∪ V . It is clear thatO ∩ U ⊆ T . �
Lemma 3. Let the triple (α,X,Y ) satisfy (E2), and let K be a nonempty compact subset
of Cα(X,Y ), and let the family O be a π -base for the space Cα(X,Y ) at K where O is a
subfamily of the standard base of the space Cα(X,Y ). Let f be a π -accumulation point of
O at K . Then each element A of α can be covered by a finite subfamily of the family{

B ∪ supp(O): B is a finite subset of X, and O ∈O
}
.
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Proof. Take anyA ∈ α. Let us choose an open neighbourhoodWy of y for eachy ∈ f (A)

by means of the property(E2). Since the setf (A) is compact, then there exists a fin
subsetF of f (A) such thatf (A) ⊆ ⋃{Wy : y ∈ F }, and there exists a closed subsetCy

of Y for eachy ∈ F such thatf (A) ⊆ ⋃{Cy : y ∈ F } andCy ⊆ Wy for eachy ∈ F . So,
we havef ∈ [A ∩ f −1(Cy),Wy] for eachy ∈ F . Sincef is aπ -accumulation point ofO
at K , by Lemma 2, there exists a neighbourhoodUy of f in Cp(X,Y ), and anOy ∈ O
such thatUy ∩ Oy �= ∅ andUy ∩ Oy ⊆ [A ∩ f −1(Cy),Wy] for eachy ∈ F . The choice of
Wy ’s gives usA ∩ f −1(Cy) ⊆ supp(Uy) ∪ supp(Oy) for eachy ∈ F , and hence we hav
thatA ⊆ ⋃{supp(Uy) ∪ supp(Oy): y ∈ F }. �

Now we are ready to state and prove one of the main theorems in this paper.

Theorem 1. Let the triple (α,X,Y ) satisfy (E2), and let K be a nonempty compact subset
of Cα(X,Y ). If πχ(K,Cα(X,Y )) � κ , then there exists a closed–open subset Z of X, and
a subfamily β of α with |β| � κ such that for each A ∈ α the set A\Z is finite, and β is an
α|Z -cover of Z.

Proof. LetO be aπ -base forCα(X,Y ) atK such that|O| � κ , and letf be aπ -accumu-
lation point ofO at K . There is no loss of generality by assuming that the familyO is a
subfamily of the standard base of the spaceCα(X,Y ). Let

Z =
⋃{

supp(O): O ∈ O
}

and letβ be the family of all finite unions of elements of the family{supp(O): O ∈ O}. It
is clear that|β| � κ , and sinceα is closed under finite unions,β ⊆ α.

First, we prove that the setZ is a closed–open subset ofX by showingZ ∩ X\Z = ∅.
Let x ∈ X. LetU be the subfamily of the standard base ofCp(X,Y ) such that supp(U) ⊆ Z

andf ∈ U for eachU ∈ U , and letF be the family of finite subsets ofX which are not
meeting withZ. Define

A(U) =
⋃

{O ∈O: O ∩ U �= ∅}
for eachU ∈ U . Sincef is a π -accumulation point ofO at K , we haveA(U) �= ∅ for
eachU ∈ U . The property(E2) gives us an open subsetW of Y such thatf (x) ∈ W and
[F,Y\W ] ∩ O ∩ U �= ∅ for eachF ∈ F , U ∈ U , andO ∈O with O ∩ U �= ∅. Then define

S(F,U) = [F,Y\W ] ∩ A(U) ∩ U

for eachF ∈ F andU ∈ U . Since[F,Y\W ] ∩ O ∩ U �= ∅ for eachF ∈ F , U ∈ U , and
O ∈ O with O ∩U �= ∅, and sincef is aπ -accumulation point ofO atK , we have thatK ∩
S(F,U) �= ∅ for eachF ∈ F andU ∈ U . We observe that the family{K ∩ S(F,U): F ∈
F , U ∈ U} of closed subset ofK has the finite intersection property. So, there exis
g ∈ C(X,Y ) such thatg ∈ S(F,U) for eachF ∈ F andU ∈ U . One can easily prove tha
g(X\Z) ∩ W = ∅ andg|Z = f|Z . Continuity ofg, Hausdorffness ofY andf (x) ∈ W lead
us to the fact thatx /∈ Z ∩ X\Z, hence the result.

Now, we prove that the familyβ is anα|Z -cover ofZ. Take anyA ∈ α. From Lemma 3,
there existF1,F2, . . . ,Fn finite subsets ofX, andO1,O2, . . . ,On ∈ O such that

A ⊆
⋃{

Fi ∪ supp(Oi): 1� i � n
}
.
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Since the setFi is finite for eachi, the setFi ∩Z can be covered by the supports of finite
many elements ofO for eachi with 1 � i � n. Hence the setA ∩ Z is contained in some
member ofβ, and so, the familyβ is anα|Z -cover ofZ.

Since supp(Oi) is a subset ofZ for eachi, we have

A\Z ⊆
⋃

{Fi\Z: 1� i � n}.
ThereforeA\Z is finite. �

Let Z andK be as in the above theorem. We note that since the setZ is a closed–open
subset ofX, the mapping

π :Cα(X,Y ) → Cα|Z (Z,Y ) × Cα|X\Z (X\Z,Y )

defined byπ(f ) = (f|Z , f|X\Z ) is a homeomorphism. In the above theorem, we have
that if A ∈ α with A ⊆ X\Z, thenA is finite. Hence the spaceCα(X,Y ) and the produc
spaceCα|Z (Z,Y ) × Cp(X\Z,Y ) are homeomorphic with the mapπ . Let π̃ :Cα(X,Y ) →
Cp(X\Z,Y ) be the projection map with̃π(f ) = f|X\Z for eachf ∈ C(X,Y ). One can
easily show that̃π(K) = C(X\Z,Y ). SinceK is compact and the map̃π is continuous,
the spaceCp(X\Z,Y ) is compact. IfX\Z �= ∅, then the spaceY closedly embeddable i
Cp(X\Z,Y ) [4]. So, if Y is not a compact space, thenX\Z = ∅. Thus we can say

Corollary 3. Let the triple (α,X,Y ) satisfy (E2), and let K be a nonempty compact subset
of Cα(X,Y ). If Y is not a compact space, then αa(X)� πχ(K,Cα(X,Y )).

If X is a connected space, then we have eitherZ = X or Z = ∅ for the setZ. If Z = ∅,
then we haveK = Cα(X,Y ) for the compact subsetK of Cα(X,Y ). Therefore we have

Corollary 4. Let the triple (α,X,Y ) satisfy (E2), and let K be a nonempty compact proper
subset of Cα(X,Y ). If X is a connected space, then
αa(X) � πχ(K,Cα(X,Y )).

For the setK in Theorem 1, ifK = {f }, wheref ∈ C(X,Y ), then we haveZ = X, and
hence we can state the following.

Corollary 5. For each (α,X,Y ) satisfying (E2), and for each f ∈ C(X,Y ), we have that
αa(X) � πχ(f,Cα(X,Y )).

We note that, whenY in the above corollary isR, theα-Arens number ofX, the char-
acter ofCα(X,R) and theπ -character ofCα(X,R) are the same [4, Theorem 4.4.1].

It is known thatαa(X) = |X|, if α consists of all finite subsets ofX [4]. So, by Corol-
lary 5, if the triple(α,X,Y ) satisfies(E2) whereα consists of all finite subsets ofX, then
|X| � πχ(f,Cp(X,Y )) for eachf in C(X,Y ).
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Lemma 4. Let Y be an equiconnected space with equiconnecting function ϕ. If Y has
a base B consisting of ϕ-convex subsets of Y , then the family

σ =
{

n⋂
i=1

[Ai,Vi]: n ∈ ω, Ai ∈ α, Vi ∈ B
}

is a base for the space Cα(X,Y ), and σ satisfies the following property:

“if
⋂n

i=1[Ai,Vi] ∈ σ , f ∈ ⋂n
i=1[Ai,Vi], A ∈ α, V is an open proper subset of Y and⋂n

i=1[Ai,Vi] ⊆ [A,V ], then there exist some unions of some intersections of elements
of the family {Vi : i = 1,2, . . . , n} such that the set is a subset of V and contains f (A).”

Proof. Let ϕ :Y ×Y ×[0,1] → Y be the equiconnecting function. It is clear that the fam
σ is a base for the spaceCα(X,Y ). Let

⋂n
i=1[Ai,Vi] ∈ σ , f ∈ ⋂n

i=1[Ai,Vi], A ∈ α, and
let V be an open proper subset ofY such that

⋂n
i=1[Ai,Vi] ⊆ [A,V ]. By Corollary 1,

(α,X,Y ) satisfies(E1). The property(E1) leads us to the fact thatA ⊆ ⋃n
i=1 Ai .

The family of all subsets havingk elements of the set{1,2, . . . , n} be denoted by
{1,2, . . . , n}k wherek is an integer with 1� k � n. For eachk with 1 � k � n, and for
eacha ∈ {1,2, . . . , n}k defineA(a) = ⋂

i∈a Ai , and define a subsetLk of {1,2, . . . , n}k by
the rule:

a ∈ Lk ⇐⇒ (
A ∩ A(a)

) \
⋃

{Aj : 1� j � n andj /∈ a} �= ∅.

We claim thatV (a) ⊆ V for eacha ∈ Lk with 1 � k � n. To prove this, assume the co
trary. Lety ∈ V (a)\V for somea ∈ Lk with 1� k � n. Sincea ∈ Lk , there exists anx ∈ X

such thatx ∈ A∩A(a) andx /∈ Aj for eachj ∈ {1,2, . . . , n}\a. Sincef is continuous and
the spaceX is regular, there exists an open neighbourhoodW of x such that

f (W) ⊆ V (a) and W ∩
⋃

{Aj : 1� j � n andj /∈ a} = ∅.

Since X is a Tychonoff space, we have a continuous functionη :X → [0,1] such
that η(x) = 0 and η(X\W) ⊆ {1}. Then the functionh :X → Y defined byh(z) =
ϕ(y,f (z), η(z)) for eachz ∈ X, is continuous. Sinceη(x) = 0, we haveh(x) = y. We
shall now show thath ∈ ⋂n

i=1[Ai,Vi]. Take anyi with 1 � i � n, and take az ∈ Ai .
We have that eitheri ∈ a or i /∈ a. If i ∈ a; ϕ-convexity ofVi leads us to the fact tha
h(z) ∈ Vi . If i /∈ a, then we haveAi ∩W = ∅. Soh(z) = f (z), and henceh(z) ∈ Vi . There-
fore h ∈ ⋂n

i=1[Ai,Vi]. But, sincex ∈ A, h(x) = y andy /∈ V , we haveh /∈ [A,V ]. This
gives a contradiction, so we obtain that

n⋃
k=1

⋃
a∈Lk

V (a) ⊆ V.

SinceA ⊆ ⋃n
i=1 Ai , we have

A ⊆
n⋃ ⋃

A(a).
k=1a∈Lk



S. Önal, Ç. Vural / Topology and its Applications 150 (2005) 255–265 263

-

ce
We also havef (A(a)) ⊆ V (a) for eachk with 1 � k � n anda ∈ Lk . Hence we obtain
that

f (A) ⊆
n⋃

k=1

⋃
a∈Lk

V (a) ⊆ V. �

Theorem 2. If Y is an equiconnected space having a base consisting of ϕ-convex sets, then
we(f (X)) � χ(f,Cα(X,Y )) for each f ∈ C(X,Y ).

Proof. Let f be any element ofC(X,Y ), and let σ be a base forCα(X,Y ) as in
Lemma 4. LetO = {⋂nλ

i=1[Aλ
i ,V

λ
i ]: λ ∈ I } be a local base at the pointf such that

|I | � χ(f,Cα(X,Y )) andO ⊆ σ . Let the familyV be the finite unions of the finite in
tersections of elements of the family{V λ

i : λ ∈ I, i = 1,2, . . . , nλ}. We claim that the
family V is an external base for the subspacef (X) of the spaceY . To justify our claim, let
y ∈ f (X), and letU be an open neighbourhood ofy in Y . Without loss of generality, we
can assume thatU �= Y . Lety = f (x) for somex ∈ X. Sincef ∈ [x,U ] and[x,U ] is open
in Cα(X,Y ), there exists aλ ∈ I , such thatf ∈ ⋂nλ

i=1[Aλ
i ,V

λ
i ] ⊆ [x,U ]. From Lemma 4,

there exists aV ∈ V such thatf (x) ∈ V ⊆ U . HenceV is an external base forf (X).
It follows thatwe(f (X)) � |V| � |I | � χ(f,Cα(X,Y )). �
Theorem 3. For each X, Y , α and f ∈ C(X,Y ), χ(f,Cα(X,Y ))� αa(X) . we(f (X)).

Proof. Let αa(X) . we(f (X)) = κ . Let β ⊆ α be anα-cover ofX such that|β| � κ , and
let V be an external base for the subspacef (X) of the spaceY with |V| � κ . Let Ṽ be
the family of all finite unions of the familyV , and letσ = {(V ,U) ∈ Ṽ × Ṽ: U ⊆ V },
and letF be the family of all finite intersections of elements of the family{[f −1(U) ∩
A,V ]: (V ,U) ∈ σ, A ∈ β}. It is easily seen that the familyF is a local base atf in
Cα(X,Y ) and|F | � κ . �

For a dense subsetD of a regular space, it is known thatwe(D) = w(D) [2]. By this
equality and the above theorem, the following is immediate;

Corollary 6. For each X, Y , α, and for each almost onto f in Cα(X,Y ), we have
χ(f,Cα(X,Y )) � αa(X) . w(f (X)).

The following theorem gives a characterization of the character of the spaceCα(X,Y )

at a pointf . Corollaries 1, 5 and Theorems 2, 3 give us the following.

Theorem 4. If Y is an equiconnected space having a base consisting of ϕ-convex sets, then
for each f ∈ C(X,Y ), χ(f,Cα(X,Y )) = αa(X) . we(f (X)).

The following theorem is a generalization of [4, Theorem 4.4.2]. Letµ be a compatible
uniformity onY . The function spaceC(X,Y ) having the topology of uniform convergen
on α with respect toµ is denoted byCα,µ(X,Y ) as in [4].uw(Y ), theuniform weight of
an uniform spaceY , is the smallest infinite cardinality of an uniformity base ofY .
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Theorem 5. Let Y be an uniform space, and let the triple (α,X,Y ) satisfy (E2). If
uw(Y ) � κ , then the following are equivalent:

(i) χ(Cα(X,Y )) � κ .
(ii) πχ(Cα(X,Y )) � κ .

(iii) There exists a f ∈ C(X,Y ) such that πχ(f,Cα(X,Y )) � κ .
(iv) αa(X) � κ .
(v) uw(Cα,µ(X,Y )) � κ .

In addition, if Y is not a compact space,

(vi) h(Cα(X,Y )) � κ .
(vii) There exists a compact subset K of Cα(X,Y ) with πχ(K,Cα(X,Y )) � κ .

Proof. It is clear that (i)⇒ (ii) ⇒ (iii) and (vi) ⇒ (vii). The implications (iii)⇒ (iv) and
(vii) ⇒ (iv) follow from Corollary 5 and Corollary 3, respectively. It is easy to see
uw(Cα,µ(X,Y )) � αa(X) . uw(Y ). This inequality gives us (iv)⇒ (v). Sinceα is a hered-
itarily closed, compact network onX, we haveCα(X,Y ) = Cα,µ(X,Y ) [4]. Moreover, the
character of a topological space whose topology is induced by a uniformity is less t
equal to the uniform weight of it. These give us the implication (v)⇒ (i). �

We recall that a spaceX is called aq-space, if for each pointx of X, there exists a
sequence{Un: n ∈ ω} of neighbourhoods ofx such that each sequence{xn: n ∈ ω} with
xn ∈ Un for eachn ∈ ω has a cluster point inX.

It is well known that, for a topological spaceX, uw(X) � ℵ0 if and only if X is metriz-
able space, andh(X) � ℵ0 if and only if X is of pointwise countable type [3]. So, we ha
the following.

Corollary 7. Let Y be a noncompact metric space, and let the triple (α,X,Y ) satisfy (E1).
The following are equivalent:

(i) Cα(X,Y ) is a first-countable space.
(ii) π -character of the space Cα(X,Y ) is countable.
(iii) Cα(X,Y ) is of pointwise countable type.
(iv) There exists a compact subset K of Cα(X,Y ) such that π -character of K in the

space Cα(X,Y ) is countable.
(v) αa(X) � ℵ0.
(vi) Cα(X,Y ) is metrizable.

(vii) Cα(X,Y ) is a q-space.
(viii) There exists a sequence {On: n ∈ ω} of nonempty open subset of Cα(X,Y ) such

that each sequence {gn: n ∈ ω} with gn ∈ On for each n ∈ ω has a cluster point in
Cα(X,Y ).

Proof. From Theorem 5, statements from (i) to (vi) are equivalent. It is clear that (vi⇒
(viii) and (i) ⇒ (vii). There is need to prove the implication (viii)⇒ (v). Let {On: n ∈ ω}
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be a sequence as in (viii). Without loss of generality we can assume that, for eachn ∈ ω,
On is of the form

⋂k(n)
i=1 [A(n)

i ,V
(n)
i ] wherek(n) ∈ ω, andA

(n)
i ∈ α andV

(n)
i is an open

subset ofY for eachi with 1� i � k(n).
Let

β = {
supp(On): n ∈ ω

}
.

Sinceα is closed under finite unions,β is a subfamily ofα. We claim thatβ is anα-cov-
er of X. Assume contrary. LetA ∈ α such thatA is not a subset of supp(On) for each
n ∈ ω. Choose axn ∈ A\supp(On) for eachn ∈ ω. SinceY is not a compact space, the
exists a sequence{yn: n ∈ ω} in Y such that{yn: n ∈ ω} has no cluster point inY . Since
the triple(α,X,Y ) satisfy(E1), there exists anhn ∈ C(X,Y ) such thathn(xn) = yn and
hn ∈ On for eachn ∈ ω. From the hypothesis, the sequence{hn: n ∈ ω} has a cluster poin
h in Cα(X,Y ). Let L = {xn: n ∈ ω}. Since{xn: n ∈ ω} ⊆ A, A ∈ α andh is a continuous
map,h(L) is a compact subset ofY . So the set{yn: n ∈ ω} ∩ h(L) has to be finite. Then
there exists ak ∈ ω such that{yn: n > k} ∩ h(L) = ∅. Let V = Y\{yn: n > k}. Since the
set[L,V ] is an open neighbourhood ofh in Cα(X,Y ), there exists am ∈ ω with m > k

andhm ∈ [L,V ]. Sincehm(xm) = ym, then we haveym ∈ V . But this contradicts with
the fact thatm > k. This contradiction shows us thatβ is an α-cover of X, and hence
aα(X) � ℵ0. �
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