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Abstract

Let Cy (X, Y) be the set of all continuous functions fraxnto Y endowed with the set-open topol-
ogy wWherex is a hereditarily closed, compact network ®rsuch that closed under finite unions. We
define two propertieéE1) and(E?2) on the triple(«, X, Y) which yield new equalities and inequali-
ties between some cardinal invariants@ X, Y) and some cardinal invariants on the spake%
such as:

Theorem. If Y is an equiconnected space with a base consisting of ¢-convex sets, then for each
FeCX,Y), x(f, Ca(X, 1)) = aa(X) . we(f(X)).

Corollary. Let Y be a noncompact metric space and let thetriple («, X, Y) satisfy (E1). The follow-
ing are equivalent:

(i) Cy(X,Y) isafirst-countable space.
(ii) m-character of the space Cy (X, Y) is countable.
(iii) Cq(X,Y) isof pointwise countable type.
(iv) There exists a compact subset K of C(X,Y) such that w-character of K in the space
Cy(X,Y) iscountable.
(V) aa(X) <Ro.
(Vi) Cy(X,Y)ismetrizable.
(vii) Cy(X,Y)isag-space.
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(viii) There exists a sequence {O,: n € w} of nonempty open subset of C, (X, Y) such that each
sequence {g,: n € w} with g, € O, for each n € w, hasa cluster pointin Cy (X, Y).

0 2004 Elsevier B.V. All rights reserved.
MSC: 54C35; 54C05; 54C20
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1. Preliminaries

In [4], it have been investigated some relations between some cardinal invariants on
the spaceC, (X, R) and some cardinal invariants on the spaGewhereR is the space
of real numbers with the usual metric. In this paper, when the range $pécan arbi-
trary topological space having some requisite properties, we investigated some relations
between some cardinal invariants on the sp@géX, Y) and some cardinal invariants on
the space¥, Y.

Throughout this papeX andY are infinite Tychonoff spaces (i.e., completely regular
topological spaces in which finite sets are closed), @0, Y) denotes the set of all con-
tinuous mappings fronX into Y, anda is always a hereditarily closed, compact network
on the domain spack. (l.e.,« is a network onX such that each member is compact and
each closed subset of a member of it is a member of it.) Without loss of generality we can
assume thad is closed under finite unions. Throughout this papesind X denote the
first infinite ordinal and the first infinite cardinal, respectively.

Let A C X andB C Y. The notatio{ A, B] used to denote

[A,Bl={feC(X,Y): f(A)C B}.

If x e X andB C Y, then[{x}, B] is abbreviated af, B].
The topology generated by the family

B= ﬂ[Ai, Vi]: A; ex andV; is openinY for each 1<i <n
i=1

on the seC(X, Y) is called theset-open topology, and the function spadgé(X, Y) having
this topology is denoted b¢, (X, Y). The family B is called thestandard base of this
topology. For any elemert = (/_;[A;, V;] of B, the set J!_; A; is called thesupport of
B, and denoted by supp). The function spac€ (X, Y) havingthe topology of pointwise
convergence is denoted byC, (X, Y).

Let Z be a subspace df. Thenq, denotes the sdtd N Z: A € o} and the restriction
of a mappingf : X — Y to the setZ is denoted byf;, .

The cardinality and the closure of a seis denoted byA| and A, respectively.

A family O of nonempty open subsets of a spaces called ar -base for the spaceX at
a setA C X, if for any open seU that containsA there exists a® € O such thato C U.
The r-character of a setA in a topological spac& is defined as the smallest cardinal
number of the formO|, whereO is an-base for X at the setA; this cardinal number is
denoted byr x (A, X).
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Let 8 be a family of subsets of. If every member ok is contained in some member
of B, theng is called anx-cover of X. The smallest infinite cardinality of such a fampy
with 8 C « is calleda-Arens number of X, and it is denoted bga(X).

An external base for a subspacet of a topological spac& is a family D of open
subsets ofX with the property that for each € A and any neighbourhood of « in the
spaceX, there exists & € D such that: € D C U. Theexternal weight of a subspacd of
a spaceX is the smallest infinite cardinal number of the foyf, whereD is an external
base forA; this cardinal number is denoted by (A).

Thecharacter andweight of a spaceX are denoted by (X) andw(X), respectively.

For a spac&, we denote the smallest cardinal numbavith the property that for each
x in X there exists a compact subgebf X such thatr € C andx (C, X) < « by h(X).

uw(X), theuniformweight of an uniform spacg, is the smallest infinite cardinality of
an uniformity base oX.

Notations and terminology not explained above can be found in [1,3,4].

2. Two propertieson thetriple (¢, X, Y)

It is well known that the topological spade with the usual metric has a lot of strong
properties. For examplR is a linear topological space, and hence the sgage, R) is
a linear topological space. But, in general, for any topological spatiee spac&, (X, Y)
does not have most of the properties thgt X, R) has.

In this part, we will give two properties on the triple, X, Y), and we will investigate
(a, X, Y) satisfying these properties.

We say that the tripléc, X, Y) satisfies(E1) when it satisfies the fact that ife Y,
feC(X,Y), Acaandx € X\A, then there exists ge C(X, Y) such thatg(x) =y and
8la = fia

We say that the tripléa, X, Y) satisfies(E2) when it satisfies the fact thatife Y,
then there exists an open sub®ébf Y such thaty € W, and if B is a nonempty element
of the standard base 6%, (X, Y) andF is a finite subset ok with F NsupgB) =¥, then
[F,Y\W]N B #.

It is easy to see thatE1) implies (E2).

We observe that, if the tripléx, X, Y) satisfies(E1) thenC(X, Y) is a dense subset of
the product spaciX .

In order to satisfy( E1), we give some sufficient conditions on the trigée X, Y).

Proposition 1. If X isa zero-dimensional topological space, then («, X, Y) satisfies (E1).

Proof. Take anyy e Y, f € C(X,Y), A € « andx € X\A. Since the spacd is zero-
dimensional, andi is closed subset o, then there exists a closed—open sutset X
such thate € Z € X\ A. Define the functiory : X — Y with g(p) = y for eachp € Z, and
g(p) = f(p) for eachp € X\ Z. One can easily verify that is continuousg(x) = y and

8a=1/fia O
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Proposition 2. If (Y, %) is a pathwise connected topological group, then (o, X, Y) satis-
fies(E1).

Proof. Takeany e Y, f € C(X,Y), A € @ andx € X\ A. Since the spack is Tychonoff,
there exists a continuous functiah: X — [0, 1] such that¥ (x) = 0 and¥ (A) C {1}.
Pathwise connectedness Bfgives us a continuous functio : [0, 1] — Y such that
@(0) = (f(x)) L%y and®(1) = e (e being the identity ofY). Then define the func-
tion g: X — Y with g(z) = f(z) * (®(¥(z))). Thus, g is continuous function that is
required. O

Proposition 3. Let X and Y betopological spaces. If there existsa continuousmap ¢ : Y x
Y x [0,1] — Y suchthat ¢(p,q,0) = p and ¢(p, ¢, 1) =g for each p,q € Y with p £ ¢,
then (o, X, Y) satisfies (E1).

Proof. Takeany e Y, f € C(X,Y), A € @ andx € X\ A. Since the spac¥ is Tychonoff,
there exists a continuous map: X — [0, 1] such that¥ (x) =0 and¥ (A) C {1}. Define
the functiong : X — Y with g(z) = ¢(y, f(2), ¥ (z)).Theng is continuous function that is
required. O

Recall that arequiconnected topological space Y is a topological space with the exis-
tence of a continuous map: Y x Y x [0, 1] — Y such thaw(p, p,t) = p, ¢(p,q,0 =p
andyg(p,q,1) = q for everyp,q € Y andt € [0, 1]. The mapy is called anequiconnect-
ing function. A subset V of an equiconnected spadeis called ap-convex subset of Y
provided thatp(V x V x [0,1]) C V.

The last proposition leads us to the following corollary.

Corollary 1. If Y isan equiconnected space, then («, X, Y) satisfies (E1).

If Y is a topological vector space, or a convex subset of any topological vector space,
thenY is an equiconnected space. Also, every retract of any equiconnected space is also
an equiconnected space. So, we can state the following.

Corollary 2. If Y is a topological vector space, or a convex subset of any topological
vector space, or aretract of a convex subset of any topological vector space, then («, X, Y)
satisfies (E1).

Recall that a topological latticE is a topological spaces is a partial order oy, every
two element sefp, g} has the supremurp v ¢ and the infimump A ¢, and the lattice
operationsv andA are continuous.

The following is a sufficient condition on the triple, X, Y) for it to satisfy(E2).

Proposition 4. Let Y be a pathwise connected topological lattice having no smallest ele-
ment. If each compact subset of Y is bounded above, then («, X, Y) satisfies (E2).
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Proof. Lety € Y. SinceY has no smallest element, there ig & Y such thay < y and
q # y. Continuity of the operatiorv:Y x Y — Y leads us to the fact thdt = {z € Y:
7 < g}isclosediny.

Let B be any nonempty element of the standard bas€ X, Y) and F be a finite
subset ofX with F N suppB) = ¢¥. Take anf € B. Since f (SupgB)) is a compact sub-
set of Y, the setf (supB)) is bounded above. Lgt be an upperbound of (SupgB)).
SinceY is a pathwise connected space ands a Tychonoff space, we can find a contin-
uous functiom: : X — Y such thati(supB)) C {p} andh(F) C {g}. Define the function
g:X — Y with g(x) = h(x) A f(x) for eachx € X. It is clear thatg is continuous, and
one can easily verify thate [F, K]NB. O

3. Main results
We give a new definition.

Definition 1. Let X be a topological spaced C X, and letO be ar-base forX at A.
A point x in A is called ar-accumulation point of O at A if for each neighbourhood
of x, and for each neighbourhodd of A, there exists a® € O such thato N U # ¢ and
ocCV.

The following lemmas are needed in the proof of the next theorem. The proof of the
first lemma is trivial.

Lemmal. Let X beatopological space, K be a nonempty compact subset of X, and O be
ar-basefor X at K. Then there exists a 7w -accumulation point of O at K .

Lemma2. Let 7 and S be two topologieson X such that (X, S) isHausdorffand S C 7.
Let K bea 7 -compact subset of X, and let O be a 7 -base for the space (X, 7) at K. If x
isa -accumulation point (respect to 7°) of O at K, then the family

{UNO:UeS, xelU, 0cOandU N O +0)

isa -base for the space (X, 7) at the point x.

Proof. Take anyT € 7 with x € T. Sincex ¢ K\T, and the seK\T is S-compact,
and the space€X, S) is Hausdorff, there exist/, V € S such thatc € U, K\T C V and
UNV =@ SinceK CTUV,TUV €7, andx is ar-accumulation point o® at K,
there exists @ € O suchthaty N0 #@andO CTUV.ltisclearthatONU CT. O

Lemma 3. Let thetriple («, X, Y) satisfy (E2), and let K be a nonempty compact subset
of Cy(X,Y), and let the family O be a 7 -base for the space C, (X, Y) at K where O isa
subfamily of the standard base of the space C, (X, Y). Let f be a w-accumulation point of
O at K. Then each element A of « can be covered by a finite subfamily of the family

{B Usup0): B isafinite subset of X, and O € O}.
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Proof. Take anyA € a. Let us choose an open neighbourhd®gof y for eachy € f(A)

by means of the propert§£2). Since the seff (A) is compact, then there exists a finite
subsetF of f(A) such thatf(A) € |J{W,: y € F}, and there exists a closed subégt
of Y for eachy € F such thatf(A) € |J{C,: y € F} andC, € W, for eachy € F. So,
we havef e [AN f‘l(Cy), W,] for eachy € F. Sincef is am-accumulation point o
at K, by Lemma 2, there exists a neighbourhdddof f in C,(X,Y), and an0, € O
such thatyy N O, # ¥ andU, N Oy € [AN f~1(Cy), W,] for eachy € F. The choice of
W,'s gives usA N f*l(Cy) C suppUy) U supp Oy) for eachy € F, and hence we have
thatA < | J{suppU,) UsuppOy): ye F}. O

Now we are ready to state and prove one of the main theorems in this paper.

Theorem 1. Let thetriple (o, X, Y) satisfy (E2), and let K be a nonempty compact subset
of Co (X, Y). Ifmx (K, Cy(X,Y)) <k, then there exists a closed—open subset Z of X, and
a subfamily 8 of o with | 8] < x such that for each A € « the set A\ Z isfinite, and 8 isan
), -cover of Z.

Proof. Let O be arr-base forC, (X, Y) at K such thajO| < «, and letf be ar-accumu-
lation point of © at K. There is no loss of generality by assuming that the fargilis a
subfamily of the standard base of the spég&X, Y). Let

z=|J{supno): 0 e 0}

and lets be the family of all finite unions of elements of the famfsupg 0): O € O}. It
is clear that8| < «, and sincex is closed under finite uniong, C «.

First, we prove that the sét is a closed—open subset ¥fby showingZ N X\Z = 4.
Letx € X. Let/ be the subfamily of the standard bas&gf( X, Y) such that sup@/) € Z
and f € U for eachU € U, and letF be the family of finite subsets af which are not
meeting withZ. Define

AU)=|Jioeo: onU#m}

for eachU € U. Since f is amw-accumulation point ofD at K, we haveA(U) # ¢ for
eachU € U. The property E2) gives us an open subsBt of Y such thatf(x) € W and
[F,Y\W]NONU #¢foreachF € F,U €U, andO € O with O N U # @. Then define

S(F,U)=[F,Y\WINAWU)NU

for eachF € F andU e U. Since[F,Y\W]NONU # @ for eachF € F, U €U, and
0 € O with ONU # @, and sincef is ar-accumulation point of at K, we have thak N
S(F,U) # ¢ for eachF € F andU € U. We observe that the familyk N S(F,U): F €
F, U e U} of closed subset ok has the finite intersection property. So, there exists a
g€ C(X,Y)suchthatg € S(F, U) for eachF € F andU € U. One can easily prove that
g(X\Z)NW =@ andg|, = fj,. Continuity ofg, Hausdorffness of and f(x) € W lead
us to the fact that ¢ Z N X\ Z, hence the result.

Now, we prove that the familg is anc,,-cover ofZ. Take anyA € «. From Lemma 3,
there existFy, F», ..., F, finite subsets ok, andOq, Oo, ..., O, € O such that

A c|J{Fiusupon: 1<i <n}.
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Since the sef; is finite for each, the setF; N Z can be covered by the supports of finitely
many elements oP for eachi with 1 <i < n. Hence the sefi N Z is contained in some
member ofg, and so, the family is an«,,-cover of Z.

Since suppoO;) is a subset o for eachi, we have

Az c| JIF\Z: 1<i<n).

ThereforeA\Z is finite. O

Let Z andK be as in the above theorem. We note that since th $&a closed—open
subset ofX, the mapping

7:Co(X,¥) = Cu, (Z,Y) % Cuyy , (X\Z,Y)

defined byr (f) = (f|;, fix,,) is @ homeomorphism. In the above theorem, we have seen
that if A € @ with A € X\ Z, thenA is finite. Hence the spadg&, (X, Y) and the product
spaceCy, (Z,Y) x C,p(X\Z,Y) are homeomorphic with the man Let7: Cy (X, Y) —
Cp(X\Z,Y) be the projection map witk (f) = f|,,, for eachf € C(X,Y). One can
easily show thatr (K) = C(X\Z,Y). SinceK is compact and the map is continuous,

the spaceC,(X\Z, Y) is compact. IfX\Z # ¢, then the spac¥ closedly embeddable in
C,(X\Z,Y) [4]. So, if Y is not a compact space, than, Z = ¢. Thus we can say

Corollary 3. Letthetriple («, X, Y) satisfy (E2), and let K be a nonempty compact subset
of Cy (X, Y).If Y isnot a compact space, then aa(X)< wx (K, Cy (X, Y)).

If X is a connected space, then we have either X or Z = ¢ for the setZ. If Z =,
then we havek = C, (X, Y) for the compact subséf of C, (X, Y). Therefore we have

Corollary 4. Let thetriple («, X, Y) satisfy (E2), and let K be a nonempty compact proper
subset of C, (X, Y). If X isa connected space, then
aa(X) <mx(K,Co(X,Y)).

For the setk in Theorem 1, ifK = { f}, wheref € C(X, Y), then we haveZ = X, and
hence we can state the following.

Corollary 5. For each («, X, Y) satisfying (E2), and for each f € C(X, Y), we have that
aa(X) < x(f, Cu(X,Y)).

We note that, wherY in the above corollary i®, thea-Arens number ofX, the char-
acter ofC, (X, R) and ther-character ofC, (X, R) are the same [4, Theorem 4.4.1].

It is known thatea(X) = | X|, if @ consists of all finite subsets &f [4]. So, by Corol-
lary 5, if the triple(w, X, Y) satisfieq £2) wherea consists of all finite subsets a&f, then
IX| <mx(f Cp(X,Y)) foreachf in C(X,Y).
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Lemma 4. Let Y be an equiconnected space with equiconnecting function ¢. If Y has
a base B consisting of ¢-convex subsets of Y, then the family

n
o={(Ai. Vil new, A eca, V,-GB}
i=1

isa base for the space C, (X, Y), and o satisfies the following property:

“if MiL1[Ai, Vil€o, f €/ _1[Ai, Vil, A €a, V isan open proper subset of ¥ and
Mi_1[Ai, Vi1 € [A, V], then there exist some unions of some intersections of elements
of thefamily {V;: i =1, 2, ..., n} such that the set isa subset of V and contains f(A)”

Proof. Lety:Y xY x [0, 1] — Y be the equiconnecting function. Itis clear that the family
o is a base for the spa@®, (X, Y). Let(\'_1[A;, Vil € o, f € (_1[Ai, Vil, A € o, and

let V be an open proper subset Bfsuch that)'_;[A;, Vi] € [A, V]. By Corollary 1,
(a, X, Y) satisfies E1). The property E1) leads us to the fact that | J;_; A;.

The family of all subsets having elements of the sefl, 2,...,n} be denoted by
{1,2,...,n}* wherek is an integer with X k < n. For eachk with 1 < k < n, and for
eacha € (1,2, ..., n}* defineA(a) =), A, and define a subsé, of {1,2,...,n}* by
the rule:

i€a

aeli (ANA@)\| JAj: 1<j<nandj ¢a) #0.

We claim thatV (a) C V for eacha € Ly with 1 < k < n. To prove this, assume the con-
trary. Lety € V(a)\V for somea € Ly with 1 < k < n. Sincea € Ly, there exists am € X
such thatr € AN A(a) andx ¢ A; foreachj e {1,2,...,n}\a. Sincef is continuous and
the spaceX is regular, there exists an open neighbourh@odf x such that

fW)SV( and W[ J{A;: 1< j<nandj¢a}=0.

Since X is a Tychonoff space, we have a continuous functiprX — [0, 1] such
that n(x) = 0 and n(X\W) C {1}. Then the functionh:X — Y defined byh(z) =
o(y, f(z),n(z)) for eachz € X, is continuous. Sincg(x) = 0, we haveh(x) = y. We
shall now show that: € ('_;[A;, Vi]. Take anyi with 1 <i < n, and take & € A;.
We have that eithef e a ori ¢ a. If i € a; p-convexity of V; leads us to the fact that
h(z) € V;. If i ¢ a, thenwe havet; "W =@. Soh(z) = f(z), and hencé(z) € V;. There-
fore h € (N/_1[Ai, Vi]. But, sincex € A, h(x) =y andy ¢ V, we haveh ¢ [A, V]. This
gives a contradiction, so we obtain that

Lnj U vacv.

k=1tlELk

SinceA C | J!_; A;, we have

Ago U Aa).

k=laeLy
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We also havef (A(a)) € V(a) for eachk with 1 < k < n anda € Ly. Hence we obtain
that

frmelJYvecv. o

k=laeLy

Theorem 2. If Y isan equiconnected space having a base consisting of ¢-convex sets, then
we (f(X)) < x(f, Ca(X, Y)) for each f € C(X,Y).

Proof. Let f be any element ofC(X,Y), and leto be a base forC,(X,Y) as in
Lemma 4. LetO = {(2,[A}, V/]: A € I} be a local base at the point such that
11| < x(f, Co(X,Y)) andO C o. Let the familyV be the finite unions of the finite in-
tersections of elements of the fami{y/f: rel, i=12,...,n;}. We claim that the
family V is an external base for the subspaae) of the space’. To justify our claim, let
y € f(X), and letU be an open neighbourhood ofin Y. Without loss of generality, we
can assume thdt £ Y. Lety = f(x) for somex € X. Sincef € [x, U] and[x, U] is open
in Cy(X,Y), there exists & € I, such thatf € (/*[A%, V] € [x, U]. From Lemma 4,
there exists & € V such thatf(x) € V C U. HenceV is an external base fof (X).
It follows thatw, (f (X)) < VI < |I| < x(f, Co(X,Y)). O

Theorem 3. Foreach X, Y,a and f € C(X,Y), x(f, Co(X, V)< aa(X) . w.(f(X)).

Proof. Letaa(X) . w.(f(X))=«.LetB C a be ana-cover of X such thatg| < «, and
let V be an external base for the subspge() of the spacer’ with [V| < «. Let V be
the family of all finite unions of the family, and leto = {(V,U) € VxV: UcCV},

and letF be the family of all finite intersections of elements of the fanfily ~ 1(U) N
A, V]: (V,U) e o, A € B}. Itis easily seen that the familf is a local base af in
Co(X,Y)and|F|<k. O

For a dense subsé of a regular space, it is known that, (D) = w(D) [2]. By this
equality and the above theorem, the following is immediate;

Corollary 6. For each X, Y, «, and for each almost onto f in C,(X,Y), we have
x(fs Co(X, Y)) Saa(X) . w(f(X)).

The following theorem gives a characterization of the character of the $RACE Y)
at a pointf. Corollaries 1, 5 and Theorems 2, 3 give us the following.

Theorem 4. If Y isan equiconnected space having a base consisting of ¢-convex sets, then
foreach f € C(X,Y), x(f, Ca(X,Y)) = aa(X) . w.(f(X)).

The following theorem is a generalization of [4, Theorem 4.4.2]..Lbke a compatible
uniformity onY. The function spac€' (X, Y) having the topology of uniform convergence
on « with respect tqu is denoted byCy (X, Y) as in [4].uw(Y), theuniform weight of
an uniform spac#’, is the smallest infinite cardinality of an uniformity baserof
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Theorem 5. Let Y be an uniform space, and let the triple (a, X,Y) satisfy (E2). If
uw(Y) < «, then the following are equivalent:

() x(Ca(X,Y)) <k.

(i) mx(Ca(X,Y)) <k.

(i) Thereexistsa f € C(X,Y) suchthat w x (f, Co(X,Y)) <.
(iv) aa(X) <«.

(V) uw(Ca,M(X, Y)) <«k.

In addition, if Y is not a compact space,

(Vi) h(Cu(X,Y)) <k.
(vii) There exists a compact subset K of C, (X, Y) with x (K, Co (X, Y)) < k.

Proof. Itis clear that (i)= (ii) = (iii) and (vi) = (vii). The implications (iii)= (iv) and

(vii) = (iv) follow from Corollary 5 and Corollary 3, respectively. It is easy to see that
uw(Co,, (X, Y)) <aa(X).uw(Y¥). This inequality gives us (i) (v). Sincew is a hered-

itarily closed, compact network aXi, we haveCy (X, Y) = C,, . (X, Y) [4]. Moreover, the
character of a topological space whose topology is induced by a uniformity is less than or
equal to the uniform weight of it. These give us the implication=v)i). O

We recall that a spac¥ is called ag-space, if for each pointx of X, there exists a
sequencdU,: n € w} of neighbourhoods aof such that each sequenfg,: n € w} with
x, € U, for eachn € w has a cluster point iX.

It is well known that, for a topological spacé uw(X) < Rg if and only if X is metriz-
able space, antl(X) < Xg if and only if X is of pointwise countable type [3]. So, we have
the following.

Corollary 7. Let Y bea noncompact metric space, and let thetriple (o, X, Y) satisfy (E1).
The following are equivalent:

(i) Cy(X,Y) isafirst-countable space.
(ii)y m-character of the space C, (X, Y) iscountable.
(i) Cq(X,Y) isof pointwise countable type.
(iv) There exists a compact subset K of C, (X, Y) such that =-character of K in the
space C, (X, Y) iscountable.
(V) aa(X) < Ro.
(Vi) Cy(X,Y) ismetrizable.
(vi) Cu(X,Y)isaq-space.
(viil) There exists a sequence {O,: n € w} of nonempty open subset of C, (X, Y) such
that each sequence {g,,: n € w} with g, € O, for each n € w has a cluster point in
Co(X,Y).

Proof. From Theorem 5, statements from (i) to (vi) are equivalent. It is clear thatvii)
(viii) and (i) = (vii). There is need to prove the implication (vii}> (v). Let{O,: n € w}
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be a sequence as in (viii). Without loss of generality we can assume that, fon eaeoh
0, is of the form mf?;"f[A,?”), Vl.(")] wherek(n) € w, and AE") e« and Vi(") is an open
subset ofY for eachi with 1 <i <k(n).

Let

B = {supp0,): n € w}.

Sincew is closed under finite uniong, is a subfamily ofx. We claim thatg is ana-cov-
er of X. Assume contrary. LefA € o such thatA is not a subset of sugp,) for each
n € w. Choose a, € A\ supg0,) for eachn € w. SinceY is not a compact space, there
exists a sequendg,,: n € w} in Y such that{y,: n € o} has no cluster point ifr. Since
the triple(a, X, Y) satisfy (E1), there exists an, € C(X,Y) such that:,(x,) = y, and
h, € 0, for eachn € w. From the hypothesis, the sequerikg: n € w} has a cluster point
hin Cy(X,Y). LetL ={x,: n € w}. Since{x,: n e w} C A, A € @ andh is a continuous
map,h(L) is a compact subset of. So the sefy,: n € w} N h(L) has to be finite. Then
there exists & € w such thaf{y,: n >k} Nh(L) =@. LetV = Y\{y,: n > k}. Since the
set[L, V] is an open neighbourhood 6fin C, (X, Y), there exists an € w with m > k
andh,, € [L,V]. Sinceh,,(x,,) = ym, then we havey,, € V. But this contradicts with
the fact thatn > k. This contradiction shows us thgtis an«-cover of X, and hence
a(X)<No. O
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