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SUMMARY

Effective defense responses involve the entire
organism. Tomaintain body homeostasis after tissue
damage, a systemic wound response is induced in
which the response of each tissue is tightly orches-
trated to avoid incomplete recovery or an excessive,
damaging response. Here, we provide evidence that
in the systemic response to wounding, an apoptotic
caspase pathway is activated downstream of reac-
tive oxygen species in the midgut enterocytes
(ECs), cells distant from thewoundsite, inDrosophila.
Weshow that a caspase-pathwaymutant hasdefects
in homeostatic gut cell renewal and that inhibiting
caspase activity in fly ECs results in the production
of systemic lethal factors after wounding. Our results
indicate that wounding remotely controls caspase
activity in ECs, which activates the tissue stem cell
regeneration pathway in the gut to dampen the
dangerous systemic wound reaction.
INTRODUCTION

Epithelial cells, including gut cells and hair cells, undergo turn-

over in mammals (Slack, 2000). Although tissue-specific stem

cells have not been discovered in most tissues in Drosophila,

the gut does possess them and undergoes constant cell turn-

over; therefore, it is often used to investigate the physiological

functions of epithelial cell turnover (Micchelli and Perrimon,

2006; Ohlstein and Spradling, 2006). Epithelial cell turnover is

thought to be indispensable because these cells are often

exposed to direct stress from the environment and can be easily

damaged (Buchon et al., 2009a; Cliffe et al., 2005; Slack, 2000).

Although the epithelia of tissues such as the trachea and

epidermis, unlike those of the midgut and malpighian tubule,

do not appear to undergo self-renewal in Drosophila (Micchelli
and Perrimon, 2006; Ohlstein and Spradling, 2006; Singh et al.,

2007), they are nonetheless maintained. Unlike epithelial cells

that are protected by cuticle, the gut cells in Drosophila are

exposed to the external environment, and the cell renewal

observed in the gut may be in response to environmental insults.

However, even though the cells of the malpighian tubule are not

exposed directly to the external environment, they still undergo

cell turnover. This raises the possibility that epithelial cell turn-

over has functions in addition to maintaining tissue homeostasis

by removing epithelial cells that suffer direct damage from the

environment.

In the gut of young healthy Drosophila, the cell number is

tightly regulated by intestinal stem cell (ISC) proliferation and

cell death (Biteau et al., 2008). Recent studies revealed that

the mechanism of gut cell turnover is quite similar between

Drosophila and mammals (Biteau et al., 2011; Casali and Batlle,

2009). During cell turnover in the Drosophila midgut, which is

functionally equivalent to the mammalian small intestine, ISCs

can divide asymmetrically into an ISC and an enteroblast (EB),

or symmetrically into two ISCs or two EBs (de Navascués

et al., 2012). An EB can differentiate into either an enteroendo-

crine cell (EE) or an enterocyte (EC) (Figure 1A) (de Navascués

et al., 2012; Micchelli and Perrimon, 2006; O’Brien et al., 2011;

Ohlstein and Spradling, 2006). ECs, which are huge, absorptive

cells, and EEs, which are secretory cells, undergo cell death and

are replaced by new ECs and EEs. Previous reports on

Drosophila have shown that, after direct damage to the gut

epithelia by oxidative stress, infection by harmful bacteria, or

ingestion of a toxic compound, ISCs proliferate rapidly to

supply new ECs (Amcheslavsky et al., 2009; Buchon et al.,

2009b; Chatterjee and Ip, 2009; Jiang et al., 2009; Shaw et al.,

2010). An increase in caspase-activated cells is also observed

after midgut damage, suggesting that the ECs undergo

apoptosis (Buchon et al., 2009b). These damaged ECs produce

cytokines, such as Unpaired (Upd), to accelerate ISC prolifera-

tion in a manner similar to the mechanism of compensatory

proliferation observed during tissue repair (Buchon et al.,

2009b; Jiang et al., 2009).
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Figure 1. dpf-1K1 Has Defects in Gut Epithelial Turnover and Structure

(A) Morphological feature of the Drosophilamidgut (left) and a schematic drawing for the self-renewal process of midgut cells at the adult stage (right). All of the

immunohistochemical and EM analyses in this study were performed on the posterior midgut. ISCs proliferate to generate ISCs and EBs, which differentiate into

ECs or EE cells (right). Markers for each cell type: Delta for ISC, Su(H) for EB, and Pros for EE (right). AMG, anterior midgut; PMG, posterior midgut; HG, hindgut;

magenta, Hoechst (left). Scale bar, 100 mm.

(B) BrdU incorporation. Left: Magenta, Hoechst; green, BrdU labeling. Scale bars represent 10 mm. Right graph: The number of BrdU-incorporated cells in each

gut. WT, wild-type.

(legend continued on next page)
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Gut cell turnover is regulated by a balance between cell

death and stem cell proliferation (Jiang et al., 2009). We previ-

ously identified a hypomorphic mutant of the caspase activator

dapaf-1/dark/HAC-1 (Kanuka et al., 1999). Here, we found that

this dark mutant had impaired homeostatic gut cell renewal,

and we used it to analyze the biological significance of homeo-

static epithelial renewal. The mutant flies were viable and fertile,

suggesting that homeostatic epithelial renewal is dispensable

under normal culture conditions. However, the dark mutant

was sensitive to the systemic wound response. We found

that a wound distant from the gut in wild-type flies induced cas-

pase activation in the ECs of the gut downstream of reactive

oxygen species (ROS). These caspase-activated cells were

removed from the gut cell layer to induce gut cell renewal.

We showed that caspase inhibition in the ECs prevented gut

cell turnover, thereby introducing a lethal systemic factor into

the hemolymph after wounding. Thus, homeostatic gut epithe-

lial renewal plays a crucial buffering role in reducing the effect

of gut sensitivity to the wound response and in maintaining

body homeostasis.

RESULTS

Caspase Activity Is Required for Gut Cell Turnover
To investigate whether cell death is required for gut cell turnover

and homeostatic maintenance of the gut in adult Drosophila, we

used a caspase pathway mutant to prevent the cell death of ECs

and EEs. Several apoptosis-executing caspases, such asDCP-1

and drICE, have been identified in Drosophila and are function-

ally redundant (Xu et al., 2006). We therefore used a mutant of

the caspase activator dapaf-1/dark/HAC-1 (Kanuka et al.,

1999; Rodriguez et al., 1999; Zhou et al., 1999). The null mutant

of dark shows pupal lethality (Mills et al., 2006; Srivastava et al.,

2007b), so we used a hypomorphic mutant, dpf-1K1, which has

a P-element insertion in the 50-UTR of the dark gene (Kanuka

et al., 1999). Although cell death and caspase activity are sup-

pressed during development in dpf-1K1 compared with wild-

type, the flies survive to adulthood (Kanuka et al., 1999).

We first examined whether the spontaneous gut cell turnover

of the dpf-1K1 midgut was suppressed, using bromodeoxyuri-

dine (BrdU) incorporation. BrdU is incorporated into proliferating

ISCs and endoreplicating EBs that differentiate into polyploid

ECs. Both ISC proliferation and EB endoreplication were signif-

icantly reduced in the dpf-1K1 flies (Figure 1B). The decreased

number of BrdU-positive cells was rescued by the overexpres-

sion of dark in ECs by an EC-specific driver, NP1-Gal4

(Myo1A-Gal4) (Figures 1B, right, and S1A–S1E) (Jiang et al.,
(C and D) dpf-1K1 has defects in EC turnover at the adult stage.

(C) Experimental procedure (top) and EC turnover (bottom). GFP-negative cells w

represent 10 mm.

(D) Percentage of GFP-positive ECs 6 days after the temporary expression of CD

(E) BM visualization by collagen IV detection in sagittal sections of the posterio

IV-GFP). Scale bars represent 10 mm.

(F) Electron micrographs of the gut. BMs are indicated with green dashed lines. T

those of the WT (asterisks), and the muscle cells between the ECs and body cavit

(G–I) Proportion of gut cell types. Percentage of (G) Dl-lacZ-positive cells (ISCs), (H

midgut. The number of cells that were positive for each marker was counted and

Error bars in all graphs indicate SEM.
2009; Karpowicz et al., 2010; Poernbacher et al., 2012; Ren

et al., 2010). This decrease was also rescued in a line in which

the P-element of dpf-1K1was precisely excised (Figure 1B, right).

These data support the idea that flies have a defect in gut cell

turnover due to the inhibition of gut EC death (see Figure 3D).

To investigate the gut EC turnover rate, we used flies that tran-

siently express a fluorescent protein in the ECs upon heat shock

(Figure 1C, top). We used the CD8::PARP::Venus probe as

a stable fluorescent protein in this experiment to allow us to

mark EC cells with the GFP antibody or CD8 antibody, although

this probe is generally used to observe caspase activation with

the cleaved PARP antibody (as described in Figure 3). The

staining patterns of GFP and CD8 in the ECs were identical

(Figure S1F), and these staining patterns were not affected by

caspase activation (Figure S1G). Because the fluorescence of

CD8::PARP::Venus is very stable, the GFP antibody-positive

ECs remained detectable unless they underwent turnover. Six

hours after adult flies were heat shocked to express the probe,

all of the ECs of the control and dpf-1K1 flies were stained with

the GFP antibody (Figure 1C, bottom). Six days after the tran-

sient expression of this probe, we dissected the fly gut and

observed the remaining GFP-positive ECs. In the controls,

approximately 60% of the ECs were positive for GFP, but in

dpf-1K1 more than 90% of the ECs were GFP positive, indicating

that dpf-1K1 has a defect in EC turnover (Figure 1D). Collectively,

these results suggest that dpf-1K1 has defects in homeostatic

gut cell turnover, and that caspase activity is required tomaintain

homeostatic renewal.

Midgut Structure Is Disrupted in dpf-1K1

To investigate the architecture of the midgut in dpf-1K1, we visu-

alized the basement membrane (BM) structure that surrounds

the muscle by using collagen IV-GFP (Srivastava et al., 2007a).

In the dpf-1K1 gut, the two layers of collagen IV-GFP signal

were farther apart and the cells were more rounded than in the

control (Figure 1E). A similar disorganization of the BM is

observed in dextran sulfate sodium (DSS)-mediated EC injury

(Amcheslavsky et al., 2009), a disease model of colitis, suggest-

ing that the midgut cells were damaged in dpf-1K1. The BM

phenotype in dpf-1K1 was rescued by dark overexpression in

ECs (Figure 1E). Flies overexpressing the pan-caspase inhibitor

p35 in ECs also showed the disrupted collagen IV-GFP signal

(data not shown). We further examined the defects in the muscle

layer by electron microscopy (EM). In the dpf-1K1 gut, structural

changes in the circular muscle (CM) and longitudinal muscle

(LM), such as rounder and taller cells (Figure 1F, asterisks),

were frequently observed, as was the occasional absence of
ith small nuclei (arrows) were EEs. Magenta, Hoechst; green, GFP. Scale bars

8::PARP::Venus.

r midgut by confocal microscopy. White, Hoechst; green, GFP (for collagen

op: Lumen side. The CM and LM cells in dpf-1K1 were rounder and taller than

y were occasionally absent in dpf-1K1 (arrowhead). Scale bars represent 1 mm.

) Su(H)-lacZ-positive cells (EBs), and (I) Pros-positive cells (EEs) in the posterior

calculated as a percentage of the Hoechst-positive cells.
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Figure 2. dpf-1K1 Flies Are Sensitive to

Wounding

(A–C) Survival rate of wounded flies. Flies 2 days

after eclosion were pricked on the abdomen with a

microinjection needle, or halteres were removed.

Day 0 is the day of wounding or removing.

Unwounded flies were used as a control. (A)

Wounding. (B) Haltere removal. (C) Wounding of

the dpf-1EX fly line.

(D) Number of BrdU-incorporating cells in the

posterior midgut. PTENwas overexpressed in flies

from 2 days after eclosion by shifting the temper-

ature from 18�C to 29�C. BrdUwas administered in

the food for 3 days from 6 hr after the temperature

shift to 29�C. Error bars in the graph indicate SEM.

(E) Top: Experimental procedure. PTEN expres-

sion was induced in the ISCs from 6 hr before

wounding. Bottom: Survival rate after wounding.

See also Figures S2 and S3.
muscle cells between the ECs and the body cavity (Figure 1F,

arrowhead).

Because the gut cell turnover and gut structure were altered in

dpf-1K1, we investigated whether the proportion of gut cell types

in this mutant was different from that in wild-type flies. To

examine this possibility, we performed immunohistochemistry

with cell-type-specific markers (Figure 1A). The percentages of

ISCs (Dl-lacZ, lacZ-expressing cells) and EBs (Su(H)-lacZ,

lacZ-expressing cells) were lower in dpf-1K1 than in the control

(Figures 1G and 1H). However, the number of EEs (Prospero-

positive cells) did not differ significantly between dpf-1K1 and

wild-type (Figure 1I). These midgut phenotypes suggested that

a defect in ISC division led to the reduced ISC and EB levels,

and that caspase-mediated gut cell turnover is critical for main-

taining the gut architecture under normal culture conditions.

dpf-1K1 Is Sensitive to Wounding
dpf-1K1 is a viable mutant that is defective in gut epithelial

renewal. This mutant was similar to the wild-type in appearance,

body weight (Figure S2A), and food intake (Figure S2B), and the

adults were fertile; therefore, gut epithelial renewal does not

seem to be essential under normal culture conditions. We next

asked whether gut epithelial renewal is required for survival

under stress. Previous studies suggested that gut cell turnover

is accelerated to maintain homeostasis after direct tissue

damage to the gut (Amcheslavsky et al., 2009; Chatterjee and

Ip, 2009), and our results from DSS feeding experiments indi-

cated that dpf-1K1 is more sensitive to direct gut damage

(Figure S3A). We then asked whether the stress induced by other

tissue damage affects dpf-1K1 survival. To elicit tissue-damage-

induced stress under normal culture conditions without directly

injuring gut cells, we wounded the fly cuticle by pricking it with
922 Cell Reports 3, 919–930, March 28, 2013 ª2013 The Authors
a microinjection needle. This protocol

induces systemic stress as a wound

response. The scab formation was similar

between wild-type and dpf-1K1 flies (Fig-

ure S2C); however, the dpf-1K1 flies died

after wounding (Figure 2A), indicating

that dark might contribute to the flies’
response to wounding. To check the generality of the dpf-1K1

injury-response phenotype, we removed the halteres of

dpf-1K1 flies and again observed the wound-induced lethal

phenotype (Figure 2B). The wound-induced lethality was fully

rescued by the precise excision of the P-element of dpf-1K1,

confirming that this phenotype was not due to the dpf-1K1

genetic background (Figure 2C). We also performed the pricking

experiment under sterile conditions and confirmed that the death

of dpf-1K1 was not due to bacterial infection (Figure S3B).

We then investigated whether ISC proliferation, which is

important for gut cell renewal, was required for the viability of

flies after wounding. PTEN overexpression is reported to nega-

tively regulate the cell division of proliferative histoblasts (HBs)

and cells in the eye during development (Huang et al., 1999;

Nakajima et al., 2011). By using the esg-Gal4 driver to express

a reporter protein in proliferating cells after adult eclosion

(esg-Gal4 driver with tub-Gal80ts), we restricted the expression

pattern to gut cells (Figure S1). To avoid a developmental effect

of overexpressing PTEN, we used a fly line that overexpresses

PTEN under esg-Gal4 starting 2 days after adult eclosion. Using

BrdU incorporation, we confirmed that the ISC proliferation in

the midgut was suppressed in the flies that expressed PTEN

(Figure 2D). The PTEN-expressing flies were, however, suscep-

tible to wound-induced lethality (Figure 2E), supporting the

idea that gut cell turnover is required to overcome wound stress.

Caspase Is Activated in ECs after Wounding
ISC proliferation and gut cell turnover are stimulated when cas-

pase-mediated EC death is induced by DSS feeding, bacterial

infection, or the expression of reaper (cell death inducer via cas-

pase activation; Amcheslavsky et al., 2009; Buchon et al., 2009a;

Jiang et al., 2009). Thus, it was possible that the wound caused



gut cell turnover by activating caspase in ECs. To examine this

possibility, we observed caspase activation in the gut after

wounding. To detect caspase activity in the gut, we performed

imaging analysis on flies expressing the caspase indicator

SCAT3, which is a fluorescence resonance energy transfer

(FRET)-based indicator that enables caspase-3-like DEVDase

activation to be monitored by a decrease in the FRET ratio

(Takemoto et al., 2003). Using a fly that overexpresses SCAT3

ubiquitously (Nakajima et al., 2011), we first investigated whether

caspase was activated in the gut after pricking. In the midgut,

caspase was strongly activated in some ECs with large nuclei,

as early as 30 min after wounding (Figure 3A). We also tested

another tissue, the fat body, which is located between the cuticle

and the gut, but found no caspase activation after wounding

(Figure S4).

To further identify the caspase-activated cells, we used flies

expressing CD8::PARP::Venus, a probe used for immunohisto-

chemical analyses of caspase activity, with an antibody against

cleaved PARP (cPARP), to identify caspase-activated cells (Fig-

ure S5A) (Florentin and Arama, 2012; Lee et al., 2011; Rumpf

et al., 2011; Schoenmann et al., 2010; Williams et al., 2006).

The cPARP-positive cells were negative for Delta (ISC marker)

and Pros (EE marker) (Figures 1A, 3B, and 3C). On the other

hand, in flies that overexpressed CD8::PARP::Venus in the

ECs, cPARP-positive cells were observed in the midgut (Fig-

ure 3D). The cPARP-positive ECs were observed within 30 min

after wounding, consistent with the result from the SCAT3 exper-

iment, and were still observed even 24 hr after wounding (Fig-

ure 3D). The cPARP-positive cells were not observed in

dpf-1K1, confirming that the cPARP antibody detects caspase

activation in ECs after wounding (Figure 3D). Furthermore, no

cPARP-positive cells were detected in the fat body or epidermis

(Figure S5B). We also detected no cPARP signal in the brain (Fig-

ure S5B). The cPARP-positive ECs were not clustered but rather

were scattered throughout the entire midgut, suggesting that the

wound triggers the response in the ECs throughout the midgut.

We also tested the caspase activation in ECs of the fly with

an ISC proliferation defect. When ISC proliferation was inhibited

by PTEN overexpression (Figure 2D), caspase activation was

severely inhibited, suggesting that a mutual interaction between

ISC proliferation and EC cell death is crucial for the systemic

wound response (Figure S5C).

ROS Mediate the Caspase Activation in ECs
after Wounding
Wounding induced caspase activity in the midgut, an organ

distant from the wounded site, suggesting that a wound on the

body could impact gut homeostasis. It was previously reported

that hemocytes monitor body homeostasis (Babcock et al.,

2008), and that the hemocyte-derived serine protease Hayan,

which converts prophenoloxidase to phenoloxidase, is activated

to produce H2O2 in the hemolymph as a systemic wound

response (Nam et al., 2012). When the fly cuticle is injured,

ROS induce melanization at the wound site, which prevents

hemolymph loss and kills locally invading bacteria (Nosanchuk

and Casadevall, 2003; Wang et al., 2010). In addition, ROS are

reported to mediate ISC proliferation in Drosophila during the

defense response against gut damage caused by aging or
pathogenic bacteria (Buchon et al., 2009b; Hochmuth et al.,

2011; Wang et al., 2003).

We therefore investigated the contribution of ROS to the cas-

pase activation in ECs after wounding. Administration of the

antioxidant N-acetylcysteine (NAC) in the food (Buchon et al.,

2009a; Nam et al., 2012) decreased the number of cPARP-posi-

tive cells in the midgut of the wounded fly, suggesting that ROS

function to activate caspase in the ECs after wounding (Fig-

ure 3E). We then asked whether caspase activation after injury

depends on Hayan, a hemocyte-derived serine protease. The

number of cPARP-positive cells did not decrease in the Hayan

mutant (Figure 3F), indicating that caspase activation through

ROS is independent of Hayan. We next investigated the possi-

bility that ECs are a source of the ROS that act upstream of cas-

pase activation. The number of cPARP-positive cells was

decreased by the overexpression of an antioxidant enzyme,

SOD1, driven by EC-specificNP1-Gal4 (Figure 3F). Furthermore,

knocking down NADPH oxidase 1 (NOX1) decreased the

number of cPARP-positive cells after injury (Figure 3F). These

findings suggested that when the epithelium is wounded, ECs

generate ROS to activate caspase, which in turn induces gut

cell turnover. Since melanization at the wound site was the

same in wild-type and dpf-1K1 flies (Figure S2C), the redox

signaling from the wound site to the hemolymph may be the

same in dpf-1K1 as in wild-type flies. NAC-fed flies are sensitive

to wounding, and ROS-mediated activation of neuronal c-Jun

N-terminal kinase (JNK) is required to protect them from

wound-induced death (Nam et al., 2012). In addition to this

JNK-mediated mechanism, our data indicate that ROS-medi-

ated signaling, including caspase activation in ECs, is required

for the systemic wound response.

In addition to ROS, Upd is induced after tissue damage and

the Janus kinase (JAK)/signal transducer and activator of tran-

scription (STAT) pathway is activated to stimulate hemocyte

proliferation (Agaisse et al., 2003; Pastor-Pareja et al., 2008).

Also, direct gut damage by an oral bacterial infection or toxic

chemical causes the production of the secreted mediator

Upd3 in ECs (Buchon et al., 2009b). Thus, together with ROS,

upd3 may be activated and contribute to ISC proliferation even

when a wound is distant from the gut. We observed that upd3

was induced in the gut and near the wound site within 24 hr after

wounding in both wild-type and dpf-1K1 (Figure S6). Thus, in

addition to caspase activation, humoral factors that stimulate

ISC proliferation are rapidly upregulated after wounding.

Caspase-Activated ECs Undergo Cell Death
To gain insight into the fate of the caspase-activated cells, we

checked the position and morphology of the cPARP-positive

ECs. To visualize the gut cell layer, we stained the luminal side

of the gut cells and the muscle cells with phalloidin and cPARP

antibody (Figure 3G). We observed some cPARP-positive ECs

inside the gut cell layer (Figure 3G, arrow) and some that were

emerging from the gut cell layer (Figure 3G, arrowheads, and Fig-

ure S5D). In addition, some of the cPARP-positive cells did not

show staining with the nuclear dye Hoechst 33342 (Figure 3G,

arrowheads). The EM image shows a cell with a faint nuclear

membrane emerging from the gut cell layer at the luminal side

(Figure 3H, arrowhead). These delaminated ECs appeared to
Cell Reports 3, 919–930, March 28, 2013 ª2013 The Authors 923



Figure 3. Caspase Is Activated in ECs after Wounding

(A) Left: Imaging analysis with SCAT3 in the gut of a control fly or a fly 30 min after wounding. High FRET (Venus/ECFP) ratio (red) indicates low caspase activity,

and low FRET ratio (blue) indicates strong caspase activity. Some ECs (arrowheads) showed strong caspase activity. Right: The FRET ratio of individual cells is

represented in the graph. Scale bars, 10 mm.

(B and C) Immunohistochemistry of the gut with CD8::PARP::Venus 24 hr after wounding. The cPARP-positive cells (magenta) were negative for (B, left) Delta

(ISCs; green, arrow) and (C, left) Pros (EEs; green, arrow), although CD8::PARP::Venus was expressed in all of the cells (right panels of C and B for CD8 staining).

Blue: Hoechst. Scale bars represent 10 mm.

(D) Immunohistochemistry of guts expressing CD8::PARP::Venus in the ECs. Left: top, white: Hoechst; middle, white: cPARP; bottom, green: CD8. Scale bars

represent 100 mm. Right: Graph of the number of cPARP-positive cells in each gut after wounding.

(legend continued on next page)
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Figure 4. dpf-1K1 Hemolymph Contains a

Lethal Factor after Wounding

(A) Experimental procedure for hemolymph injec-

tion. The hemolymph of 20 flies was collected into

10 ml of PBS, and 65 nL was injected into the

abdomen of each recipient fly.

(B) Survival rate of WT flies after injection of PBS

or hemolymph from wounded WT or unwounded

or wounded dpf-1K1flies.

(C) Survival rate of dpf-1K1 flies after injection of

PBS or hemolymph from wounded WT flies.

(D) Survival rate of WT flies after injection of

dpf-1K1 hemolymph collected at various time

points after wounding. The lethal factor appeared

within 3 hr after wounding.

(E) Caspase activity observed in a fly expressing

CD8::PARP::Venus in the ECs 24 hr after injection

of hemolymph from wounded dpf-1K1 flies. Green,

Hoechst; magenta, cPARP; white, CD8. Scale

bars represent 100 mm.
die from anoikis (Buchon et al., 2010), which is an apoptosis

induced by the cell’s detachment from the extracellular matrix.

We also classified the cPARP-positive cells in the gut 6 hr and

24 hr after wounding. In control flies, 53% of the cPARP-positive

ECs were located in the gut cell layer 6 hr after wounding (Fig-

ure 3I). However, by 24 hr after wounding, 67% of the cPARP-

positive ECs were located outside the gut cell layer at the luminal

side (Figure 3I). The cPARP-positive ECs in the gut cell layer were

positive for nuclear Hoechst 33342 staining (Figures 3G and 3I),

but most of the ones outside of the layer were not (Figures 3G

and 3I). These results suggest that the cPARP-positive ECs

lost their nuclear DNA and, having been extruded from the gut

cell layer, were undergoing apoptosis.

A Lethal Factor Exists in the Hemolymph of Wounded
dpf-1K1

Wenext examined why blocking the gut cell turnover by caspase

inhibition resulted in fly death after wounding. Larval epithelial

wounding induces humoral immune responses, such as antimi-

crobial peptide secretion, Pvf signal transduction, and JNK

signal induction (Wu et al., 2009). In mammals, a systemic

immune reaction is induced by damage-associated molecular

pattern molecules (DAMPs), which are released from damaged
(E) Number of cPARP-positive cells in each posterior midgut of flies 24 hr after wounding. NAC was adminis

(F) Number of cPARP-positive cells in the posterior midgut of Hayan mutant flies or transgenic flies with NP

knockdown (IR) 24 hr after wounding.

(G) Confocal microscopy of the sagittal section of a control gut (24 hr after wounding). Magenta, arrow: c

arrowheads: cPARP-positive ECs outside the cell layer. Blue, Hoechst; green, phalloidin. L, lumen. Scale ba

(H) EM of the WT gut 24 hr after wounding. Arrowhead: a dying EC. Scale bar represents 10 mm.

(I) Location and nuclear Hoechst staining of cPARP-positive ECs in a control fly 6 hr and 24 hr after wounding.

positive/negative. The number of observed gut samples is shown on top of each column (n = 85, 81).

Error bars in all graphs indicate SEM. See also Figures S4 and S5.
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cells that could not undergo apoptosis

(Lotze et al., 2007; Scaffidi et al., 2002).

We therefore hypothesized that a sys-

temic factor contributes to the wound-

induced lethal phenotype of dpf-1K1.
To examine this possibility, we performed hemolymph transfer

experiments. Fly hemolymph was collected with amicroinjection

needle into PBS by capillary action and injected into the

abdomen of recipient flies (Figure 4A). The dpf-1K1 hemolymph

taken 48 hr after wounding contained a lethal factor, but that

taken from unwounded dpf-1K1 did not (Figure 4B). On the other

hand, the hemolymph of pricked wild-type flies did not rescue

the wound-induced lethal phenotype of dpf-1K1, suggesting

that the hemolymph of wounded wild-type animals does not

contain a protective factor (Figure 4C). We also examined

whether the hemolymph from pricked dpf-1K1 contained more

bacteria than the other hemolymph samples. We plated the

hemolymph samples used in this series of experiments on

a lysogeny broth plate and confirmed that there was no bacterial

growth on the plate of the hemolymph sample (data not shown).

Further examination showed that the lethal factor was present in

the wounded dpf-1K1 hemolymph 3 hr after wounding (Fig-

ure 4D). These results suggested that caspase activity in ECs

suppresses the lethal factor from being released into the hemo-

lymph after wounding.

Caspase activation in the gut of wounded wild-type flies

occurred within 0.5 hr after wounding, which is earlier than the

appearance of the lethal factor in the dpf-1K1 hemolymph (3 hr
tered in the food at 100 mM.

1-Gal4-driven SOD1 overexpression (o/e) or NOX1

PARP-positive EC in the gut cell layer. Magenta,

rs represent 10 mm.

Inside/outside of the gut cell layer: nuclear Hoechst
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Figure 5. Caspase Activity in ECs Is

Required for the Systemic Wound Response

(A–E) Survival rate of wounded flies.

(A) Flies expressing GFP or p35 in the gut in ECs.

(B) The wound-induced lethal phenotype of

dpf-1K1 (control) was rescued by the over-

expression of dark in ECs (NP1 > dark).

(C) Experimental procedure for starting p35 over-

expression in adulthood before wounding (top).

Beginning 6 hr before wounding, p35 expression in

ECs was induced by a temperature shift from 18�C
to 29�C. Survival rate after wounding (bottom).

(D) Flies expressing GFP or p35 in the hemocytes

(blood cells) using the Pxn-Gal4 driver.

(E) Survival rate of WT flies after injection of

hemolymph from wounded control flies or

wounded flies expressing p35 in the ECs (NP1 >

p35). Hemolymph was taken 48 hr after wounding.
after wounding; Figure 4D). This result is consistent with the idea

that a defect in caspase activation results in the induction of

a lethal factor. cPARP-positive ECs were observed in the wild-

type gut after the injection of hemolymph from wounded dpf-

1K1, indicating that the lethal factor does not function upstream

of caspase to suppress its activation (Figure 4E).

Caspase Activity in ECs Is Required to Dampen the
Lethal Factor
Because caspase activation was observed in the ECs of the gut

but not in the other cell types examined (Figures 3B and 3C), we

performed a wounding experiment on flies in which caspase

activity was suppressed in the ECs. The wound was lethal in flies

expressing the pan-caspase inhibitor p35 in the ECs (Figure 5A).

In addition, the wound-induced lethal phenotype of dpf-1K1 was

rescued by overexpressing dark in the ECs (Figure 5B). These

results suggested that caspase activity in the ECs, but not in

other cell types, such as wounded epidermis cells and hemo-

cytes, is required for fly survival after wounding.

To avoid the effects of caspase inhibition during development,

we used a temperature-sensitive allele (tub-Gal80ts) to start

overexpressing p35 in adulthood (Figure 5C). Wound-induced

lethality was also observed in the flies expressing p35 just before

wounding (Figure 5C). We found a statistically meaningful differ-

ence between control flies cultured at 29�C and p35-expressing

flies cultured at 29�C, which supports our idea that wound-

induced caspases activation is critical for survival (Figure 5C).

Caspase inhibition in the hemocytes did not result in lethality

after wounding (Figure 5D), indicating that the caspase in hemo-

cytes is not required for the protective response.

We next investigated whether the loss of caspase activity in

the ECs was responsible for generating the lethal factor, by per-
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forming a hemolymph injection experi-

ment. Hemolymph fromwounded flies ex-

pressing p35 in their ECs induced lethality

in wild-type flies, indicating that the ECs’

caspase activity was important in the

wound response (Figure 5E). These

results support the hypothesis that cas-
pase activity in the ECs can decrease the amount of the lethal

factor in the hemolymph upon wounding.

DISCUSSION

Our results show that adult gut cell turnover is critical for the

maintenance of gut homeostasis and to avoid lethality from

wounding. Although the gut structure was disorganized in dpf-

1K1, a mutant with a defect in gut cell turnover, this phenotype

had little effect on fly survival under normal culture conditions.

However, dpf-1K1 flies showed increased sensitivity to wound-

ing, mediated by the inhibition of caspase in the ECs. We

concluded that caspase activation in the ECs regulates gut cell

turnover to suppress the release of a lethal factor into the hemo-

lymph after wounding (Figure 6).

Caspase Activity in ECs Contributes to Homeostasis
of the Midgut
Since caspase activity is suppressed throughout development

and adulthood in dpf-1K1, there are two possible mechanisms

for the gut defects observed in this mutant: developmental

impairment of the adult midgut, and disruption of midgut homeo-

stasis caused by a cell-turnover defect. A previous report

showed that caspase activity is not required for the replacement

of larval midgut cells by adult midgut cells (Denton et al., 2009).

However, caspase activation could be required for gut formation

after metamorphosis. Indeed, in dpf-1K1 flies, the collagen

IV-GFP signal was disrupted even without wounding. In the

adult, signals frommuscle cells, such as wingless and epidermal

growth factor (EGF), are reported to mediate ISC proliferation

(Buchon et al., 2010; Jiang and Edgar, 2009; Lin et al., 2008).

The disorganized extracellular matrix and muscle layer in



Figure 6. Model for the Caspase-Mediated Systemic Wound

Response

Caspase activation is required to overcome wounding. ROS in ECs activate

caspases. The fat body and hemocytes may also contribute to the systemic

wound response, for example, by mediating signaling from the wound site to

the gut or by generating cytokines as positive feedback. In wounded WT flies,

caspase is activated to induce EC death (1) and ISC proliferation (2), resulting

in gut epithelial turnover. In flies in which caspase is inhibited in ECs, gut

homeostasis—i.e., EC death (1), gut cell turnover (2), gut cell repopulation, and

gut structure—is impaired. Although these flies can survive under normal

culture conditions, they are sensitive to wounding; the mechanism involves

a lethal factor introduced into the hemolymph as a result of the wound. In other

words, the wound changes the fly’s condition from a latent phase to a crisis

phase (3).
dpf-1K1 may affect the release of mitogens from muscle during

development. However, our results from the overexpression of

PTEN or p35 in adult flies (Figures 2E and 5C) indicate that cas-

pase-driven intestinal renewal in adults is crucial for them to

overcomewound-induced lethality, and inhibition of this renewal

is sufficient to induce lethality after wounding. Thus, caspase’s

functions in adult gut cell renewal appear to be important for

the systemic wound response.

As we observed using CD8::PARP::Venus, most of the

cPARP-antibody-positive ECs appear to be excluded from the

gut cell layer, suggesting that they are dying (Figures 3G–3I).

We also observed a subtle decrease in the SCAT3 ratio, which

can be used to quantify caspase activation more accurately

than PARP, in many gut cells after cuticle wounding. It is also

possible that the activated caspase in the gut has nonapoptotic

roles. We previously showed that Wg signaling is regulated by

a nonapoptotic caspase function via Shaggy during neural

precursor development (Kanuka et al., 2005). Since Wg regu-

lates ISC proliferation, a nonapoptotic function mediated by

caspase activation may affect the cell turnover.

Cell-Cell Interaction May Regulate Epithelial Cell
Cycling
In the Drosophila imaginal disc model, undead cells that receive

apoptotic stimuli promote the expression of Dpp and Wg, which

induce the proliferation of neighboring cells (Huh et al., 2004;

Pérez-Garijo et al., 2004; Ryoo et al., 2004). In addition,

damaged ECs secrete Upd3 to induce activation of the Wg,

EGF receptor, and JAK/STAT signaling pathways in muscle

cells, and their activation contributes to ISC proliferation and

gut cell turnover (Buchon et al., 2010; Jiang et al., 2009). The

dying ECs of the wounded fly may function similarly, i.e., by

secreting factors to induce ISC proliferation, much as dying

cells of hydra subjected to midgastric bisection secrete Wnt3

to promote head regeneration (Chera et al., 2009). Inhibition of

caspase activation prevents both cell death and Wnt3 secretion

in the hydra model. The inhibition of executioner caspase by

p35 also prevents Hh expression in photoreceptor neurons

and compensatory proliferation (Fan and Bergmann, 2008).

The inhibition of caspase activation in ECs might likewise

prevent their expression of mitogens that promote ISC

proliferation.

Although upd3 is expressed in the gut after cuticle wounding

(Figure S6), its expression level may be lower than that of upd3

overexpressed by the GAL4-UAS system, which can induce

massive ISC proliferation (Jiang et al., 2009). A previous report

suggested that knocking down upd3 does not affect ISC prolif-

eration under normal culture conditions (Osman et al., 2012),

which suggests that some other factor or factors, such as Wg,

EGF, or ROS, are critical regulators for homeostatic ISC prolifer-

ation. These factors or their downstream signaling may be

reduced in dpf-1 mutants.

During Drosophila metamorphosis, the replacement of larval

epithelial cells (LECs) is regulated through their competitive inter-

action with proliferating HBs (Nakajima et al., 2011; Ninov et al.,

2007). The cell border between the HBs and LECs (called the

replacement boundary) plays critical roles in coordinating the

proliferation of HBs and death of LECs (Nakajima et al., 2011).
Similarly, because ISCs and ECs contact each other in the

midgut, not only humoral factors but also the direct competitive

interaction of proliferating ISCs and dying ECs might coordinate

gut epithelial renewal. In this sense, a proliferation defect of ISCs

could modulate the ECs’ response to wounding, and might elicit

the same situation as seen with EC death defects. This idea was

supported by the wounding experiment using flies with an ISC

proliferation defect (Figures 2D, 2E, and S5C). A cell-cell

contact-mediated signaling pathway, such as the Hippo

pathway, and lateral inhibition signaling through Notch and Delta

are candidate mechanisms for such a direct interaction (de Nav-

ascués et al., 2012; Shaw et al., 2010).

Possible Role of the Gut as a Sensor for Danger Signals
from Damaged Tissues
The gut is reactive to external factors such as diet and bacteria.

To protect the gut epithelia from external factors, the insect

intestinal lumen has a physical barrier called the peritrophic

matrix, which is composed of chitin and glycoproteins (Kuraishi

et al., 2011). The visceral muscles and basal lamina may act as

a barrier for internal factors. However, they are not sufficient to

prevent the access of signals from awound site to the ECs, since
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our present study indicates that ECs may produce ROS and

induce caspase activation after epithelial injury. In mammals,

JAK/STAT signaling pathway regulates NOX1 and NOX4 (Manea

et al., 2010). Because Upd3 expression is upregulated in the

epidermis and ECs after wounding in both wild-type and

dpf-1K1 flies (Figure S6), it is possible that a JAK/STAT amplifica-

tion loop between the wounded tissue, hemocytes, and fat body

mediates signaling from the wound site to the gut (Pastor-Pareja

et al., 2008). Although Hayan was not involved in the mechanism

that induced caspase activation in the gut after wounding, it is

still possible that the gut cell response is mediated through the

nervous system, hemocytes, or ROS generated at the wound

site. Furthermore, mammalian studies have suggested that

damaged cells secrete diffusible molecules other than ROS,

such as ATP, histones, and heat shock proteins (Chen and

Nuñez, 2010). In addition to ROS, these molecules could

mediate signals from the wound site to the gut in Drosophila.

Although further experiments are required to identify the toxic

factor and the factor-producing tissue in the caspase-pathway-

inhibited fly after wounding, we identified the gut as one of the

organs responsible for overcoming tissue injury in Drosophila.

The toxic factor could be a potent molecule, such as a protease

or other enzyme or a hormone, since only a small amount of the

hemolymph fromwounded dpf-1K1 flies induced lethality in wild-

type flies.

The stem cell system in recycling tissue seems to have

a feature that differentiated cells are highly sensitive to stress

and stem cells rapidly respond to the dying differentiated cells.

The gut is one of the first organs to appear in multicellular organ-

isms in evolution, and it is the largest organ in the body, extend-

ing throughmost of the body axis (Stainier, 2005). Thus, it can be

speculated that the function of the gut epithelia as a sensitive

sensor for external and internal danger signals is evolutionarily

conserved. In this respect, caspase activation would be an effec-

tive way to produce factors for stem cell proliferation and cell

replacement in the gut without excess activation of the inflam-

matory response.

EXPERIMENTAL PROCEDURES

Wounding Experiments

Canton S was used as wild-type. Unwounded flies were used as controls

unless otherwise stated. Adult male flies were pricked with a microinjection

needle on the abdomen 2–3 days after eclosion. The survivors were counted

and transferred into a fresh culture vial 1 day after wounding and every

3 days for 15 days thereafter.

Hemolymph Injection

Hemolymph was collected with a microinjection needle from the thorax of 20

flies by capillary action and diluted into 10 ml of PBS on ice. After centrifugation,

65 nL of the hemolymph/PBS mixture was injected into the abdomen of the

host fly.

Immunostaining

Fly midgut, epithelia, brain, and fat bodies were dissected in PBS and fixed for

15 min with 4% (vol/vol) paraformaldehyde/PEM (0.1 M PIPES, 2 mM EGTA,

1 mM MgSO4) buffer. Samples were washed three times for 10 min each

with 0.02% (vol/vol) Triton X-100/PBS and incubated overnight at 4�C with

the primary antibody and 5% donkey serum (vol/vol). The samples were

washed three times for 10 min each with 0.02% (vol/vol) Triton X-100/PBS

buffer and incubated for 2 hr at room temperature with the secondary antibody
928 Cell Reports 3, 919–930, March 28, 2013 ª2013 The Authors
and 5% donkey serum (vol/vol). The samples were mounted with mounting

buffer and analyzed by confocal microscopy (TCS SP5; Leica). X-gal staining

was performed as described previously (Kamiya et al., 2011).

For further details regarding the materials and methods used in this work,

see Extended Experimental Procedures.
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