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a b s t r a c t

The detour order of a graph G, denoted by τ(G), is the order of a longest path in G. A subset
S of V (G) is called a Pn-kernel of G if τ(G[S]) ≤ n − 1 and every vertex v ∈ V (G) − S is
adjacent to an end-vertex of a path of order n− 1 in G[S]. A partition of the vertex set of G
into two sets, A and B, such that τ(G[A]) ≤ a and τ(G[B]) ≤ b is called an (a, b)-partition of
G. In this paper we show that any graphwith girth g has a Pn+1-kernel for every n <

3g
2 −1.

Furthermore, if τ(G) = a+ b, 1 ≤ a ≤ b, and G has girth greater than 23 (a+ 1), then G has
an (a, b)-partition.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V , E) be a finite simple graph. The vertex set and edge set of the graph G are denoted by V (G) and E(G),
respectively. IfH is a subgraphofG and v is a vertex, the openH-neighbourhood of v is the setNH(v) = {u ∈ V (H)|uv ∈ E(G)}.
If S is a subset of V (G), we write NH(S) = ∪v∈S NH(v)− S, and v ∈ S. Also, we let N(S) = NG(S). The subgraph of G induced
by S is denoted by G[S].
Following Kapoor et al. [5], we call a longest path in a graph a detour of the graph. The number of vertices in a detour of

G is called the detour order of G and is denoted by τ(G). The cycle of order n and the path of order n are denoted by Cn and
Pn respectively. The number of vertices in a shortest cycle of G is called the girth of G and denoted by g(G). We shall call a
vertex v ∈ V (G) a Pn-terminal vertex of G if v is an end-vertex of a Pn but not of a Pn+1 in G. A class P of graphs is said to be
a hereditary (an induced hereditary) class of graphs if every subgraph (induced subgraph) of a graph in P is also in P .
The distance between two vertices u and v in a connected graph G is denoted by dG(u, v). If u ∈ S ⊆ V (G) and

v ∈ B = V (G) − S, then dB(u, v) denotes the length of a shortest u–v path with all its internal vertices in B, if such a
path exists. If not, we put dB(u, v) = ∞.
A partition of the vertex set of G into two sets, A and B, such that τ(G[A]) ≤ a and τ(G[B]) ≤ b is called an (a, b)-partition

of G. If G has an (a, b)-partition for every pair (a, b) of positive integers such that a + b = τ(G), then we say that G is
τ -partitionable [2]. The following conjecture is known as the Path Partition Conjecture (or the PPC, for short).

Conjecture 1. Every graph is τ -partitionable.

A summary of the PPC status is given in [3].
A set K of vertices of a graph G is called a Pn-kernel of G if τ(G[K ]) ≤ n − 1 and every vertex in G − K is adjacent to a

Pn−1-terminal vertex of G[K ].
It was conjectured that every graph has a Pn-kernel for every integer n ≥ 2 (see [4,9]), but Aldred and Thomassen [1]

disproved the conjecture by presenting a graph G with τ(G) = 364 and containing no P364-kernel. Recently, Katrenič and
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Semanišin constructed a graph without a P155-kernel in [6]. They also constructed, for each l ≥ 0, a graph with no Pτ(G)−l-
kernel. However, in order to prove the PPC it would suffice to prove the following conjecture, for which no counterexample
is known.

Conjecture 2. Every graph has a Pn+1-kernel for every n ≤ τ(G)
2 .

It therefore remains interesting to examine what conditions can guarantee the existence of a Pn-kernel in a graph.
It is proved in [4,8,7] that every graph has a Pn-kernel for every n ≤ 9.
We shall call a subset S of V (G) a Pn-semikernel of G if τ(G[S]) ≤ n − 1 and every vertex in N(S) is adjacent to a Pn−1-

terminal vertex of G[S].
Obviously, any Pn-kernel of a graph is a Pn-semikernel of the graph, but the converse does not hold. However in [4] the

following result is proved.

Lemma 1.1 ([4]). Let P be a hereditary class of graphs and let n ≥ 2 be an integer. If every graph inP has a Pn-semikernel, then
every graph in P has a Pn-kernel.

The following conjecture is equivalent to Conjecture 2 and hence its truth would imply the truth of Conjecture 1.

Conjecture 3. Every graph has a Pn+1-semikernel for every n ≤ τ(G)
2 .

Dunbar and Frick [4] showed that a graph with girth g has a Pn+1-kernel for every n ≤ g + 1 and pointed out the
importance of the result in connection with the PPC. In this paper, we extend their result by showing that every graph with
girth g has a Pn+1-kernel for every n <

3g
2 − 1.

2. Main results

In order to prove our main theorem we need the following lemma.

Lemma 2.1. Suppose G is a graph with girth g. Let C be a g-cycle in G and B = V (G)− V (C). If x ∈ V (C) and u ∈ B such that
dB(u, x) <

g
2 − 1, then u is not adjacent to any vertex in C − x.

Proof. Suppose, to the contrary, that v in C−x is adjacent to u. Let P be the shortest path in B from u to x, andQ be the shortest
path in C from x to v; the length of Q is no more than g2 . Therefore the length of cycle xQvuPx is less than

g
2 −1+1+

g
2 = g .

This contradiction completes the proof of the lemma. �

Theorem 2.2. If G is a graph with girth g, then G has a Pn+1-semikernel for every n < 3g
2 − 1.

Proof. Wemay assume thatG is connected. If n ≤ g+1, thenG has a Pn+1-kernel by Theorem 4.5 of [4], and if n ≥ τ(G) then
V (G) is a Pn+1-kernel of G. Hence we may assume that g < n < τ(G). Let C := v1v2v3 · · · vgv1 be a g-cycle in G. Initially,
we put t := 0, S := V (C), B = V (G)− S and A = ∅. Then we move vertices from B to S and to A according to the following
steps.
STEP 1: Put t := t + 1.
Let λt be the order of a longest path in S with vt as end-vertex;

Mt := {u ∈ B|dB(u, vt) ≤ n− λt};
S := S ∪Mt;
B := B−Mt .

We note the following:
Since n− λt ≤ n− g <

g
2 − 1, it is clear that G[Mt ∪ {vt}] is a tree and by Lemma 2.1, no vertex inMt is adjacent to any

vertex in C − vt . Thus no new cycle has been created in S and hence τ(G[S]) ≤ n.
By the definition of Mt , every vertex in Mt is either a Pn-terminal vertex of G[S] or has no neighbour in B (because any

such neighbour would have now been moved from B to S as well).
STEP 2: Move all the B-neighbours of Pn-terminal vertices of G[S] to A.
Now no vertex inMt has any neighbour in B.

STEP 3: If t < g , then return to STEP 1. Otherwise stop.
Finally, N(S) ∩ B = ∅, every vertex in A is adjacent to a Pn-terminal vertex of G[S] and τ(G[S]) = n. Thus S is a Pn+1-

semikernel of G. �

The class of graphs with girth equal to 3g2 − 1 is not a hereditary class; however, graphs with less than
3g
2 − 1 do form a

hereditary class.
Since having girth greater than 2n3 is a hereditary property, Lemma 1.1 together with Theorem 2.2 implies the following.

Theorem 2.3. If G is a graph with girth g > 2
3 (n+ 1), then G has a Pn+1-kernel.

Theorem 2.3 has improved a result given in [4].
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Let G be a graph with τ(G) = a+ b, where a and b are positive integers. If G has a Pa+1-kernel or a Pb+1-kernel, then G is
(a, b)-partitionable. So we further obtain:

Corollary 2.4. Let G be a graph with girth g and suppose τ(G) = a + b, with 1 ≤ a ≤ b. If g > 2
3 (a + 1), then G is (a, b)-

partitionable.
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