Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note A note on path kernels and partitions

Wenjie He*, Baoli Wang

Applied Mathematics Institute, Hebei University of Technology, Tianjin 300130, PR China

ARTICLE INFO

Article history: Received 5 November 2008 Received in revised form 20 June 2010 Accepted 22 June 2010 Available online 14 July 2010

Keywords: Path kernel Path semikernel (*a*, *b*)-partition Path Partition Conjecture

ABSTRACT

The detour order of a graph *G*, denoted by $\tau(G)$, is the order of a longest path in *G*. A subset *S* of *V*(*G*) is called a P_n -kernel of *G* if $\tau(G[S]) \leq n - 1$ and every vertex $v \in V(G) - S$ is adjacent to an end-vertex of a path of order n - 1 in *G*[*S*]. A partition of the vertex set of *G* into two sets, *A* and *B*, such that $\tau(G[A]) \leq a$ and $\tau(G[B]) \leq b$ is called an (a, b)-partition of *G*. In this paper we show that any graph with girth *g* has a P_{n+1} -kernel for every $n < \frac{3g}{2} - 1$. Furthermore, if $\tau(G) = a + b$, $1 \leq a \leq b$, and *G* has girth greater than $\frac{2}{3}(a + 1)$, then *G* has an (a, b)-partition.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V, E) be a finite simple graph. The vertex set and edge set of the graph G are denoted by V(G) and E(G), respectively. If H is a subgraph of G and v is a vertex, the open H-neighbourhood of v is the set $N_H(v) = \{u \in V(H) | uv \in E(G)\}$. If S is a subset of V(G), we write $N_H(S) = \bigcup_{v \in S} N_H(v) - S$, and $v \in S$. Also, we let $N(S) = N_G(S)$. The subgraph of G induced by S is denoted by G[S].

Following Kapoor et al. [5], we call a longest path in a graph a *detour* of the graph. The number of vertices in a detour of *G* is called the *detour order* of *G* and is denoted by $\tau(G)$. The cycle of order *n* and the path of order *n* are denoted by C_n and P_n respectively. The number of vertices in a shortest cycle of *G* is called the *girth* of *G* and denoted by g(G). We shall call a vertex $v \in V(G)$ a P_n -terminal vertex of *G* if v is an end-vertex of a P_n but not of a P_{n+1} in *G*. A class \mathcal{P} of graphs is said to be a hereditary (an induced hereditary) class of graphs if every subgraph (induced subgraph) of a graph in \mathcal{P} is also in \mathcal{P} .

The distance between two vertices u and v in a connected graph G is denoted by $d_G(u, v)$. If $u \in S \subseteq V(G)$ and $v \in B = V(G) - S$, then $d_B(u, v)$ denotes the length of a shortest u-v path with all its internal vertices in B, if such a path exists. If not, we put $d_B(u, v) = \infty$.

A partition of the vertex set of *G* into two sets, *A* and *B*, such that $\tau(G[A]) \le a$ and $\tau(G[B]) \le b$ is called an (a, b)-partition of *G*. If *G* has an (a, b)-partition for every pair (a, b) of positive integers such that $a + b = \tau(G)$, then we say that *G* is τ -partitionable [2]. The following conjecture is known as the Path Partition Conjecture (or the PPC, for short).

Conjecture 1. Every graph is τ -partitionable.

A summary of the PPC status is given in [3].

A set *K* of vertices of a graph *G* is called a P_n -kernel of *G* if $\tau(G[K]) \le n - 1$ and every vertex in G - K is adjacent to a P_{n-1} -terminal vertex of G[K].

It was conjectured that every graph has a P_n -kernel for every integer $n \ge 2$ (see [4,9]), but Aldred and Thomassen [1] disproved the conjecture by presenting a graph *G* with $\tau(G) = 364$ and containing no P_{364} -kernel. Recently, Katrenič and

* Corresponding author. E-mail addresses: he_wenjie@yahoo.com, eyou.com.He_wenjie@yahoo.com (W. He).

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter S 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2010.06.029

Semanišin constructed a graph without a P_{155} -kernel in [6]. They also constructed, for each $l \ge 0$, a graph with no $P_{\tau(G)-l}$ -kernel. However, in order to prove the PPC it would suffice to prove the following conjecture, for which no counterexample is known.

Conjecture 2. Every graph has a P_{n+1} -kernel for every $n \leq \frac{\tau(G)}{2}$.

It therefore remains interesting to examine what conditions can guarantee the existence of a P_n -kernel in a graph.

It is proved in [4,8,7] that every graph has a P_n -kernel for every $n \leq 9$.

We shall call a subset *S* of *V*(*G*) a *P*_n-semikernel of *G* if $\tau(G[S]) \leq n - 1$ and every vertex in *N*(*S*) is adjacent to a *P*_{n-1}-terminal vertex of *G*[*S*].

Obviously, any P_n -kernel of a graph is a P_n -semikernel of the graph, but the converse does not hold. However in [4] the following result is proved.

Lemma 1.1 ([4]). Let \mathcal{P} be a hereditary class of graphs and let $n \ge 2$ be an integer. If every graph in \mathcal{P} has a P_n -semikernel, then every graph in \mathcal{P} has a P_n -kernel.

The following conjecture is equivalent to Conjecture 2 and hence its truth would imply the truth of Conjecture 1.

Conjecture 3. Every graph has a P_{n+1} -semikernel for every $n \leq \frac{\tau(G)}{2}$.

Dunbar and Frick [4] showed that a graph with girth g has a P_{n+1} -kernel for every $n \le g + 1$ and pointed out the importance of the result in connection with the PPC. In this paper, we extend their result by showing that every graph with girth g has a P_{n+1} -kernel for every $n < \frac{3g}{2} - 1$.

2. Main results

In order to prove our main theorem we need the following lemma.

Lemma 2.1. Suppose *G* is a graph with girth *g*. Let *C* be a *g*-cycle in *G* and B = V(G) - V(C). If $x \in V(C)$ and $u \in B$ such that $d_B(u, x) < \frac{g}{2} - 1$, then *u* is not adjacent to any vertex in C - x.

Proof. Suppose, to the contrary, that v in C-x is adjacent to u. Let P be the shortest path in B from u to x, and Q be the shortest path in C from x to v; the length of Q is no more than $\frac{g}{2}$. Therefore the length of cycle xQvuPx is less than $\frac{g}{2} - 1 + 1 + \frac{g}{2} = g$. This contradiction completes the proof of the lemma. \Box

Theorem 2.2. If *G* is a graph with girth *g*, then *G* has a P_{n+1} -semikernel for every $n < \frac{3g}{2} - 1$.

Proof. We may assume that *G* is connected. If $n \le g + 1$, then *G* has a P_{n+1} -kernel by Theorem 4.5 of [4], and if $n \ge \tau(G)$ then V(G) is a P_{n+1} -kernel of *G*. Hence we may assume that $g < n < \tau(G)$. Let $C := v_1 v_2 v_3 \cdots v_g v_1$ be a *g*-cycle in *G*. Initially, we put t := 0, S := V(C), B = V(G) - S and $A = \emptyset$. Then we move vertices from *B* to *S* and to *A* according to the following steps.

STEP 1: Put t := t + 1.

Let λ_t be the order of a longest path in *S* with v_t as end-vertex;

$$M_t := \{ u \in B | d_B(u, v_t) \le n - \lambda_t \};$$

$$S := S \cup M_t;$$

$$B := B - M_t.$$

We note the following:

Since $n - \lambda_t \le n - g < \frac{g}{2} - 1$, it is clear that $G[M_t \cup \{v_t\}]$ is a tree and by Lemma 2.1, no vertex in M_t is adjacent to any vertex in $C - v_t$. Thus no new cycle has been created in S and hence $\tau(G[S]) \le n$.

By the definition of M_t , every vertex in M_t is either a P_n -terminal vertex of G[S] or has no neighbour in B (because any such neighbour would have now been moved from B to S as well).

STEP 2: Move all the *B*-neighbours of P_n -terminal vertices of G[S] to *A*.

Now no vertex in M_t has any neighbour in B.

STEP 3: If t < g, then return to STEP 1. Otherwise stop.

Finally, $N(S) \cap B = \emptyset$, every vertex in A is adjacent to a P_n -terminal vertex of G[S] and $\tau(G[S]) = n$. Thus S is a P_{n+1} -semikernel of G. \Box

The class of graphs with girth equal to $\frac{3g}{2} - 1$ is not a hereditary class; however, graphs with less than $\frac{3g}{2} - 1$ do form a hereditary class.

Since having girth greater than $\frac{2n}{3}$ is a hereditary property, Lemma 1.1 together with Theorem 2.2 implies the following.

Theorem 2.3. If G is a graph with girth $g > \frac{2}{3}(n+1)$, then G has a P_{n+1} -kernel.

Theorem 2.3 has improved a result given in [4].

Let *G* be a graph with $\tau(G) = a + b$, where *a* and *b* are positive integers. If *G* has a P_{a+1} -kernel or a P_{b+1} -kernel, then *G* is (a, b)-partitionable. So we further obtain:

Corollary 2.4. Let G be a graph with girth g and suppose $\tau(G) = a + b$, with $1 \le a \le b$. If $g > \frac{2}{3}(a + 1)$, then G is (a, b)-partitionable.

Acknowledgement

This work was supported by NSFC (10871058).

References

- [1] R.E.L. Aldred, C. Thomassen, Graphs with not all possible path-kernels, Discrete Math. 285 (2004) 297-300.
- [2] I. Broere, M. Dorfling, J.E. Dunbar, M. Frick, A pathological partition problem, Discuss. Math. Graph Theory 18 (1998) 113–125.
- [3] J.E. Dunbar, M. Frick, The Path Partition Conjecture is true for claw-free graphs, Discrete Math. 307 (2007) 1285–1290.
- [4] J.E. Dunbar, M. Frick, Path kernels and partitions, JCMCC 31 (1999) 137–149.
- [5] S.F. Kapoor, H.V. Kronk, D.R. Lick, On detours in graphs, Canad. Math. Bull. 11 (2) (1968).
- [6] P. Katrenič, G. Semanišin, Path(ological) partition problem, Discrete Math. 309 (2009) 2551–2554.
- [7] L.S. Melnikovans, I.V. Petrenko, Path kernel and partitions of graphs with small cycle length, in: V.N. Kasyanov (Ed.), Methods and Tools of Program Construction and Optimization, ISI SB Russian Academy of Science, Novosibirsk, 2005, pp. 145–160.
- [8] L.S. Melnikov, I.V. Petrenko, On path kernels and partitions of undirected graphs, Diskretn. Anal. Issled. Oper. 9 (2002) 21–35.
- [9] P. Mihók, Problem 4, in: M. Borowiecki, Z. Skupien (Eds.), Graphs, Hypergraphs and Matroids, Zielona Góra, 1985, p. 86.