Note

A note on path kernels and partitions

Wenjie He*, Baoli Wang
Applied Mathematics Institute, Hebei University of Technology, Tianjin 300130, PR China

ARTICLE INFO

Article history:

Received 5 November 2008
Received in revised form 20 June 2010
Accepted 22 June 2010
Available online 14 July 2010

Keywords:

Path kernel
Path semikernel
(a,b)-partition
Path Partition Conjecture

Abstract

The detour order of a graph G, denoted by $\tau(G)$, is the order of a longest path in G. A subset S of $V(G)$ is called a P_{n}-kernel of G if $\tau(G[S]) \leq n-1$ and every vertex $v \in V(G)-S$ is adjacent to an end-vertex of a path of order $n-1$ in $G[S]$. A partition of the vertex set of G into two sets, A and B, such that $\tau(G[A]) \leq a$ and $\tau(G[B]) \leq b$ is called an (a, b)-partition of G. In this paper we show that any graph with girth g has a P_{n+1}-kernel for every $n<\frac{3 g}{2}-1$. Furthermore, if $\tau(G)=a+b, 1 \leq a \leq b$, and G has girth greater than $\frac{2}{3}(a+1)$, then G has an (a, b)-partition.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Let $G=(V, E)$ be a finite simple graph. The vertex set and edge set of the graph G are denoted by $V(G)$ and $E(G)$, respectively. If H is a subgraph of G and v is a vertex, the open H-neighbourhood of v is the set $N_{H}(v)=\{u \in V(H) \mid u v \in E(G)\}$. If S is a subset of $V(G)$, we write $N_{H}(S)=\cup_{v \in S} N_{H}(v)-S$, and $v \in S$. Also, we let $N(S)=N_{G}(S)$. The subgraph of G induced by S is denoted by $G[S]$.

Following Kapoor et al. [5], we call a longest path in a graph a detour of the graph. The number of vertices in a detour of G is called the detour order of G and is denoted by $\tau(G)$. The cycle of order n and the path of order n are denoted by C_{n} and P_{n} respectively. The number of vertices in a shortest cycle of G is called the girth of G and denoted by $g(G)$. We shall call a vertex $v \in V(G)$ a P_{n}-terminal vertex of G if v is an end-vertex of a P_{n} but not of a P_{n+1} in G. A class \mathscr{P} of graphs is said to be a hereditary (an induced hereditary) class of graphs if every subgraph (induced subgraph) of a graph in \mathcal{P} is also in \mathcal{P}.

The distance between two vertices u and v in a connected graph G is denoted by $d_{G}(u, v)$. If $u \in S \subseteq V(G)$ and $v \in B=V(G)-S$, then $d_{B}(u, v)$ denotes the length of a shortest $u-v$ path with all its internal vertices in B, if such a path exists. If not, we put $d_{B}(u, v)=\infty$.

A partition of the vertex set of G into two sets, A and B, such that $\tau(G[A]) \leq a$ and $\tau(G[B]) \leq b$ is called an (a, b)-partition of G. If G has an (a, b)-partition for every pair (a, b) of positive integers such that $a+b=\tau(G)$, then we say that G is τ-partitionable [2]. The following conjecture is known as the Path Partition Conjecture (or the PPC, for short).

Conjecture 1. Every graph is τ-partitionable.

A summary of the PPC status is given in [3].
A set K of vertices of a graph G is called a P_{n}-kernel of G if $\tau(G[K]) \leq n-1$ and every vertex in $G-K$ is adjacent to a P_{n-1}-terminal vertex of $G[K]$.

It was conjectured that every graph has a P_{n}-kernel for every integer $n \geq 2$ (see [4,9]), but Aldred and Thomassen [1] disproved the conjecture by presenting a graph G with $\tau(G)=364$ and containing no P_{364}-kernel. Recently, Katrenič and

[^0]Semanišin constructed a graph without a P_{155}-kernel in [6]. They also constructed, for each $l \geq 0$, a graph with no $P_{\tau(G)-l^{-}}$ kernel. However, in order to prove the PPC it would suffice to prove the following conjecture, for which no counterexample is known.
Conjecture 2. Every graph has a P_{n+1}-kernel for every $n \leq \frac{\tau(G)}{2}$.
It therefore remains interesting to examine what conditions can guarantee the existence of a P_{n}-kernel in a graph.
It is proved in $[4,8,7]$ that every graph has a P_{n}-kernel for every $n \leq 9$.
We shall call a subset S of $V(G)$ a P_{n}-semikernel of G if $\tau(G[S]) \leq n-1$ and every vertex in $N(S)$ is adjacent to a $P_{n-1^{-}}$ terminal vertex of $G[S]$.

Obviously, any P_{n}-kernel of a graph is a P_{n}-semikernel of the graph, but the converse does not hold. However in [4] the following result is proved.

Lemma 1.1 ([4]). Let \mathcal{P} be a hereditary class of graphs and let $n \geq 2$ be an integer. If every graph in \mathcal{P} has a P_{n}-semikernel, then every graph in \mathcal{P} has a P_{n}-kernel.

The following conjecture is equivalent to Conjecture 2 and hence its truth would imply the truth of Conjecture 1.
Conjecture 3. Every graph has a P_{n+1}-semikernel for every $n \leq \frac{\tau(G)}{2}$.
Dunbar and Frick [4] showed that a graph with girth g has a P_{n+1}-kernel for every $n \leq g+1$ and pointed out the importance of the result in connection with the PPC. In this paper, we extend their result by showing that every graph with girth g has a P_{n+1}-kernel for every $n<\frac{3 g}{2}-1$.

2. Main results

In order to prove our main theorem we need the following lemma.
Lemma 2.1. Suppose G is a graph with girth g. Let C be a g-cycle in G and $B=V(G)-V(C)$. If $x \in V(C)$ and $u \in B$ such that $d_{B}(u, x)<\frac{g}{2}-1$, then u is not adjacent to any vertex in $C-x$.
Proof. Suppose, to the contrary, that v in $C-x$ is adjacent to u. Let P be the shortest path in B from u to x, and Q be the shortest path in C from x to v; the length of Q is no more than $\frac{g}{2}$. Therefore the length of cycle $x Q v u P x$ is less than $\frac{g}{2}-1+1+\frac{g}{2}=g$. This contradiction completes the proof of the lemma.

Theorem 2.2. If G is a graph with girth g, then G has a P_{n+1}-semikernel for every $n<\frac{3 g}{2}-1$.
Proof. We may assume that G is connected. If $n \leq g+1$, then G has a P_{n+1}-kernel by Theorem 4.5 of [4], and if $n \geq \tau(G)$ then $V(G)$ is a P_{n+1}-kernel of G. Hence we may assume that $g<n<\tau(G)$. Let $C:=v_{1} v_{2} v_{3} \cdots v_{g} v_{1}$ be a g-cycle in G. Initially, we put $t:=0, S:=V(C), B=V(G)-S$ and $A=\emptyset$. Then we move vertices from B to S and to A according to the following steps.
STEP 1: Put $t:=t+1$.
Let λ_{t} be the order of a longest path in S with v_{t} as end-vertex;

$$
\begin{aligned}
& M_{t}:=\left\{u \in B \mid d_{B}\left(u, v_{t}\right) \leq n-\lambda_{t}\right\} \\
& S:=S \cup M_{t} \\
& B:=B-M_{t}
\end{aligned}
$$

We note the following:
Since $n-\lambda_{t} \leq n-g<\frac{g}{2}-1$, it is clear that $G\left[M_{t} \cup\left\{v_{t}\right\}\right]$ is a tree and by Lemma 2.1, no vertex in M_{t} is adjacent to any vertex in $C-v_{t}$. Thus no new cycle has been created in S and hence $\tau(G[S]) \leq n$.

By the definition of M_{t}, every vertex in M_{t} is either a P_{n}-terminal vertex of $G[S]$ or has no neighbour in B (because any such neighbour would have now been moved from B to S as well).
STEP 2: Move all the B-neighbours of P_{n}-terminal vertices of $G[S]$ to A.
Now no vertex in M_{t} has any neighbour in B.
STEP 3: If $t<g$, then return to STEP 1. Otherwise stop.
Finally, $N(S) \cap B=\emptyset$, every vertex in A is adjacent to a P_{n}-terminal vertex of $G[S]$ and $\tau(G[S])=n$. Thus S is a $P_{n+1^{-}}$ semikernel of G.

The class of graphs with girth equal to $\frac{3 g}{2}-1$ is not a hereditary class; however, graphs with less than $\frac{3 g}{2}-1$ do form a hereditary class.

Since having girth greater than $\frac{2 n}{3}$ is a hereditary property, Lemma 1.1 together with Theorem 2.2 implies the following.
Theorem 2.3. If G is a graph with girth $g>\frac{2}{3}(n+1)$, then G has a P_{n+1}-kernel.
Theorem 2.3 has improved a result given in [4].

Let G be a graph with $\tau(G)=a+b$, where a and b are positive integers. If G has a P_{a+1}-kernel or a P_{b+1}-kernel, then G is (a, b)-partitionable. So we further obtain:

Corollary 2.4. Let G be a graph with girth g and suppose $\tau(G)=a+b$, with $1 \leq a \leq b$. If $g>\frac{2}{3}(a+1)$, then G is (a, b) partitionable.

Acknowledgement

This work was supported by NSFC (10871058).

References

[1] R.E.L. Aldred, C. Thomassen, Graphs with not all possible path-kernels, Discrete Math. 285 (2004) 297-300.
[2] I. Broere, M. Dorfling, J.E. Dunbar, M. Frick, A pathological partition problem, Discuss. Math. Graph Theory 18 (1998) 113-125.
[3] J.E. Dunbar, M. Frick, The Path Partition Conjecture is true for claw-free graphs, Discrete Math. 307 (2007) 1285-1290.
[4] J.E. Dunbar, M. Frick, Path kernels and partitions, JCMCC 31 (1999) 137-149.
[5] S.F. Kapoor, H.V. Kronk, D.R. Lick, On detours in graphs, Canad. Math. Bull. 11 (2) (1968).
[6] P. Katrenič, G. Semanišin, Path(ological) partition problem, Discrete Math. 309 (2009) 2551-2554.
[7] L.S. Melnikovans, I.V. Petrenko, Path kernel and partitions of graphs with small cycle length, in: V.N. Kasyanov (Ed.), Methods and Tools of Program Construction and Optimization, ISI SB Russian Academy of Science, Novosibirsk, 2005, pp. 145-160.
[8] L.S. Melnikov, I.V. Petrenko, On path kernels and partitions of undirected graphs, Diskretn. Anal. Issled. Oper. 9 (2002) 21-35.
[9] P. Mihók, Problem 4, in: M. Borowiecki, Z. Skupien (Eds.), Graphs, Hypergraphs and Matroids, Zielona Góra, 1985, p. 86.

[^0]: * Corresponding author.

 E-mail addresses: he_wenjie@yahoo.com, eyou.com.He_wenjie@yahoo.com (W. He).

