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OBJECTIVES We investigated cardiac energetics in subjects with mutations in three different familial
hypertrophic cardiomyopathy (HCM) disease genes, some of whom were nonpenetrant
carriers without hypertrophy, using phosphorus-31 magnetic resonance spectroscopy.

BACKGROUND Familial hypertrophic cardiomyopathy is caused by mutations in sarcomeric protein genes.
The mechanism by which these mutant proteins cause disease is uncertain. A defect of
myocyte contractility had been proposed, but in vitro studies of force generation have
subsequently shown opposing results in different classes of mutation. An alternative
hypothesis of “energy compromise” resulting from inefficient utilization of adenosine
triphosphate (ATP) has been suggested, but in vivo data in humans with genotyped HCM
are lacking.

METHODS The cardiac phosphocreatine (PCr) to ATP ratio was determined at rest in 31 patients
harboring mutations in the genes for either beta-myosin heavy chain, cardiac troponin T, or
myosin-binding protein C, and in 24 controls. Transthoracic echocardiography was used to
measure left ventricular (LV) dimensions and maximal wall thickness.

RESULTS The PCr/ATP was reduced in the HCM subjects by 30% relative to controls (1.70 � 0.43
vs. 2.44 � 0.30; p � 0.001), and the reduction was of a similar magnitude in all three
disease-gene groups. The PCr/ATP was equally reduced in subjects with (n � 24) and
without (n � 7) LV hypertrophy.

CONCLUSIONS Our data provide evidence of a bioenergetic deficit in genotype-confirmed HCM, which is
present to a similar degree in three disease-gene groups. The presence of energetic
abnormalities, even in those without hypertrophy, supports a proposed link between altered
cardiac energetics and development of the disease phenotype. (J Am Coll Cardiol 2003;41:
1776–82) © 2003 by the American College of Cardiology Foundation

Familial hypertrophic cardiomyopathy (HCM) is now
known to be a heritable form of cardiac hypertrophy caused
by mutations in genes encoding sarcomeric proteins. Affect-
ing 1/500 of the population, HCM is the most common
identified cause of sudden death in young people (1). More
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than 100 mutations have been described, predominantly in
the genes for beta-myosin heavy chain (�-MHC) (2),
cardiac troponin T (cTnT) (3), and myosin-binding

protein C (MyBPC) (4). Features of HCM due to muta-
tions in these genes are well described (5,6), but penetrance
is variable and there remain subjects who appear to have a
mild phenotype but suffer lethal complications (7).

The lack of a generally accepted disease-modifying treat-
ment in HCM highlights the importance of finding the
pathogenetic mechanisms by which HCM mutations cause
disease. Given the qualitatively similar clinical phenotypes
despite different genetic etiologies, a common mode of
pathogenesis is believed to exist. An abnormality of con-
tractility had been proposed as a possible unifying mecha-
nism (3); however, no consistent changes in contractile
properties are shared by the heretofore described mutant
proteins (8). Therefore, alternative hypotheses are sought.

One feature that the diverse mutations do appear to have
in common is a potential for inefficient utilization of
adenosine triphosphate (ATP), resulting in an increase in
the energetic cost of force production (8,9). Hence, “energy
compromise” has been proposed as a possible stimulus for
the development of cardiac hypertrophy in HCM, poten-
tially mediated through failure to maintain normal calcium
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reuptake (8,9). Energetic abnormalities have been shown in
the �MHC403/� murine model of HCM, in which the
calculated free energy of ATP hydrolysis was at a level
sufficient to compromise SERCA2a activity (10). A number
of phenocopies of HCM have recently been defined at a
molecular level and have been shown to be syndromes
associated with abnormalities of mitochondrial oxidative
phosphorylation (for example, Friedreich’s ataxia [11] and
MELAS syndrome [12]).

To explore in more detail the potential role of car-
diac energetics in the pathogenesis of HCM, we used
phosphorus-31 magnetic resonance spectroscopy (31P-MRS)
to study cardiac energy metabolism in individuals from families
in whom a definitive pathogenic mutation had been identified,
thus allowing assessment of individuals with subclinical, as
well as established, disease. Cardiac 31P-MRS is a nonin-
vasive technique that allows the in vivo determination of the
phosphocreatine (PCr) to ATP ratio (PCr/ATP), which is
an indicator of the energetic state of cardiac muscle (13).
We recruited subjects harboring mutations in the �-MHC,
cTnT, and MyBPC genes to determine whether any ob-
served bioenergetic defects were common to different classes
of sarcomeric mutation associated with differing clinical
(3,7,14,15) and biophysical (8) characteristics.

We provide evidence that a bioenergetic deficit exists in
HCM that is of a similar magnitude in subjects harboring
different sarcomeric protein gene mutations and that is
present in gene mutation carriers without hypertrophy.

METHODS AND SUBJECTS

Subjects. Thirty-one individuals with HCM from 17 fam-
ilies attending specialist clinics participated in the study.
Patients with a pacemaker or implantable defibrillator were
excluded. Familial hypertrophic cardiomyopathy was con-
firmed by genotyping in all subjects, with mutations in the
�-MHC (16 patients), cTnT (8 patients), or MyBPC gene

(7 patients). Subjects underwent transthoracic echocardio-
gram (TTE) and a 31P-MRS heart study. Twenty-four age-
and gender-matched healthy volunteers on no cardiac treat-
ment (13 males; mean age 40.2 years; range 9 to 73 years)
were studied by 31P-MRS. All subjects gave informed
consent, and the study was approved by the Central Oxford
Research Ethics Committee.
Cardiac 31P-MRS. SPECTRAL ACQUISITION. Patients
were studied in a 2-T magnet (Oxford Magnet Technol-
ogy, Oxford, United Kingdom), which was interfaced to a
Bruker Avance spectrometer (Bruker Medical GmbH,
Ettlingen, Germany) using a protocol previously described
(16). In brief, patients lay prone and were positioned with
the heart at the isocenter of the magnet. This was confirmed
using standard multislice spin echo proton imaging. Spectra
were acquired with an 8-cm diameter phosphorus surface
coil using a slice selective, one-dimensional chemical shift-
imaging (1D-CSI) sequence including spatial presaturation
of lateral skeletal muscle (17). An 8-cm-thick transverse
slice was excited followed by one-dimensional phase encod-
ing into the chest to subdivide the signal into 64 coronal
layers each of 1-cm thickness (relaxation time � heart rate,
16 averages). All proton and phosphorus data acquisitions
were cardiac-gated using a pulse oximeter probe placed on
the subject’s finger.

DATA PROCESSING. The proton images were used to deter-
mine those spectra in the cardiac 1D-CSI data set that arose
from the myocardium. After Fourier transformation, the
cardiac rows were extracted for analysis, and rows with a
similar morphology were added. Spectra were fitted using a
purpose-designed interactive frequency domain fitting pro-
gram (16). After fitting, the ATP signal was corrected for
blood contamination, based on the amplitude of the 2,3-
diphosphoglycerate signal (18), and the PCr/ATP was
calculated. The calculated PCr/ATP was corrected for
magnetic saturation effects using previously determined
saturation-correction factors (16).
TTE. The TTE was performed using standard equipment
and stored on videotape or optical disk for later analysis.
Left ventricular dimensions were obtained using M-mode
and maximal wall thickness (MWT) recorded from the
parasternal long- and short-axis views.
Deoxyribonucleic acid analysis. Mutation detection was
performed by screening of polymerase chain reaction-
amplified exons of �-MHC, cTnT, and MyBPC genes
as previously described (19). In brief, amplifications were
performed with “touchdown” polymerase chain reaction using
high-fidelity polymerases, and mutation screening was under-
taken using temperature-modulated heteroduplex analysis
(TMHA) on an automated high performance liquid chroma-
tography instrument (Transgenomic, San Jose, California).
Mobile-phase gradients and melting temperatures for TMHA
of each amplimer were calculated using the Wavemaker
software package. Exons with an abnormal TMHA profile
were sequenced using an ABI377 (Applied Biosystems) and
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compared with published genomic sequences. Mutations
were confirmed, and subsequently typed in family members
and 100 normal controls, by restriction enzyme digest
(where necessary using a modified primer to introduce a new
restriction site).
Statistical analysis. Data are presented as mean � SD.
Nonparametric statistical methods (Mann-Whitney and
Kruskal-Wallis tests) were used to compare subject and
control groups. Spearman log-rank test was used to explore
potential correlations of scale variables. A p value of �0.05
was considered statistically significant. Although the sub-
jects were clustered within 17 families, we considered that
our results would be principally driven by individual subject
variation and, therefore, we did not perform a nested
analysis.

RESULTS

The clinical features are summarized in Table 1 and the
electrocardiographic (ECG) and echocardiographic features
in Table 2. All patients had been established on their
respective treatments for �3 months before the cardiac

31P-MRS study (10 on high-dose beta-blocker therapy and
7 on amiodarone). Sixteen patients were asymptomatic and
were diagnosed through family screening. No patient had
any other significant medical history besides HCM. Twelve
patients had a family history of an HCM-related death in a
first-degree relative; most of these deaths had been sudden
and premature. In most cases (n � 29) the area of MWT
was in the septum/anterior wall of the left ventricle; in no
case was the hypertrophy predominantly apical. Two pa-
tients (subjects 1 and 11) had a residual left ventricular
outflow tract gradient despite treatment at the time of the
study. All patients had a shortening fraction of �0.25.
Seven patients did not have sufficient left ventricle hyper-
trophy (LVH) to confirm a clinical diagnosis of HCM
(defined as an MWT of �1.3 cm) (20). Five of these
subjects were asymptomatic and lacked diagnostic ECG
changes (20) and were included in the study because they
were known to be carriers of an abnormal gene.
31P-MRS data. The PCr/ATP data are summarized in
Figure 1. The mean PCr/ATP for all the HCM patients
was significantly lower than in the controls (1.70 � 0.43 vs.

Table 1. Clinical and Genetic Characteristics of HCM Subjects

Subject Age/Gender Therapy FH of PSD Disease-Gene (mutation) Clinical Status

1 42/M HDBB Y �-MHC missense mutation A
2 12/F HDBB N �-MHC missense mutation A
3 52/F — Y �-MHC missense mutation S
4 37/F HDBB Y �-MHC missense mutation A
5 30/F HDBB N �-MHC missense mutation S
6 60/M Amiodarone N �-MHC missense mutation S
7 26/M — N �-MHC missense mutation A
8 41/F HDBB N �-MHC missense mutation S
9 51/F HDBB N �-MHC missense mutation A

10 16/M HDBB N �-MHC missense mutation A
11 20/F — N �-MHC missense mutation S
12 72/M Amiodarone N �-MHC missense mutation S
13 44/M — N �-MHC missense mutation A
14 37/F HDBB N �-MHC missense mutation S
15 45/M HDBB N �-MHC missense mutation S
16 36/M — Y �-MHC missense mutation A
17 27/M Amiodarone Y cTnT codon deletion A
18 58/M — Y cTnT codon deletion A
19 44/F — Y cTnT truncation S
20 23/F — N cTnT truncation A
21 46/M Amiodarone Y cTnT missense mutation A
22 39/M — Y cTnT missense mutation A
23 29/M — Y cTnT missense mutation A
24 36/F — Y cTnT missense mutation A
25 54/F — N MyBPC missense mutation S
26 62/F Amiodarone N MyBPC missense mutation S
27 13/F HDBB N MyBPC missense mutation A
28 58/M — N MyBPC truncation S
29 42/M Amiodarone N MyBPC truncation S
30 38/M — N MyBPC truncation S
31 69/F — N MyBPC truncation S

Mean 41
SD 15.7

A � asymptomatic; �-MHC � beta-myosin heavy chain; cTnT � cardiac troponin T; FH � family history; HCM � familial
hypertrophic cardiomyopathy; HDBB � high-dose beta-blocker therapy; MyBPC � myosin-binding protein C; N � no; PSD
� premature sudden death in a first-degree relative; S � symptomatic; Y � yes.
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2.44 � 0.30; p � 0.001); this difference was preserved in the
asymptomatic subjects (1.71 � 0.47 vs. 2.44 � 0.30; p �
�0.001) and in those without LVH (1.57 � 0.60 vs. 2.44 �
0.30; p � 0.001). The groups of subjects carrying the
�-MHC, cTnT, or MyBPC mutations were not signifi-
cantly different from one another (�-MHC: 1.80 � 0.34;
cTnT: 1.54 � 0.50; MyBPC: 1.66 � 0.54; p � 0.4). No
correlation existed between PCr/ATP and MWT in the
entire cohort (Fig. 2) or within disease-gene groups, nor
were there any associations with drug therapy or family
history of premature sudden death.

DISCUSSION

In this study we have shown that a striking bioenergetic
deficit exists in HCM that appears to be of similar magni-
tude in three groups of patients from families harboring
mutations in different sarcomeric protein genes. The sever-
ity of the deficit did not correlate with the degree of LVH;
indeed, it was as marked in the carriers without hypertro-
phy. Our data provide in vivo evidence that an abnormality

of cardiac energetics may be an early feature in HCM
pathogenesis. These findings support the hypothesis that
“energy compromise” could be a common mechanism by
which mutations in sarcomeric proteins may cause HCM.

Previous studies demonstrating 31P-MRS abnormalities
in HCM have only addressed the phenotype of established
hypertrophy in clinically diagnosed individuals (21). Our
findings provide new insights into the potential role of
altered cardiac energetics in HCM pathogenesis because
they are based on genotyped subjects. Thus, we were able to
demonstrate energetic abnormalities in confirmed carriers
with normal echocardiographic findings who, without ge-
netic confirmation, would not have been known to be
affected. Demonstration of resting energetic abnormalities
in the absence of measurable hypertrophy suggests that such
changes may result initially from altered sarcomeric function
rather than only being secondary to cardiac hypertrophy.

The time-course of the relationship between alterations
in PCr/ATP and the development of cardiac hypertrophy is
unclear, particularly in humans, because studies have previ-

Table 2. Echocardiographic and Electrocardiographic Characteristics of HCM Subjects

Subject Age ECG ESD EDD IVSd PWd MWT FS

1 42 ND 1.81 3.77 2.10 1.26 2.30 0.52
2 12 Normal 1.81 3.69 0.84 0.92 1.01 0.51
3 52 D 1.94 3.30 2.18 1.66 2.36 0.41
4 37 ND 2.14 4.20 1.16 1.01 1.22 0.49
5 30 Normal 1.81 3.79 1.29 1.14 1.52 0.52
6 60 D 2.40 4.70 2.10 1.00 2.10 0.49
7 26 Normal 2.69 4.62 1.30 1.14 1.44 0.42
8 41 D 1.97 3.93 1.53 1.18 1.60 0.50
9 51 D 3.00 4.39 2.26 1.20 2.26 0.32

10 16 D 2.70 5.20 1.90 0.88 2.29 0.48
11 20 D 2.40 4.20 2.40 1.50 2.40 0.43
12 72 Normal 2.30 4.50 2.00 0.80 2.00 0.49
13 44 Normal 2.90 4.90 1.90 0.70 1.90 0.41
14 37 D 1.70 3.62 1.25 0.98 1.31 0.57
15 45 D 2.62 4.44 1.81 1.16 1.90 0.57
16 36 ND 3.20 5.10 1.30 0.70 1.30 0.37
17 27 D 3.24 5.01 1.60 1.18 1.90 0.35
18 58 D 3.29 4.62 2.08 1.49 2.10 0.29
19 44 Normal 2.93 4.75 0.98 0.76 1.32 0.38
20 23 ND 2.67 4.21 0.66 0.73 0.73 0.37
21 46 D 3.34 5.71 2.30 1.13 2.37 0.42
22 39 D 2.19 3.77 1.12 1.07 1.70 0.42
23 29 ND 3.11 5.01 0.91 0.85 1.09 0.38
24 36 D 2.23 3.99 1.02 1.06 1.13 0.44
25 54 D 3.00 4.70 1.20 0.90 1.20 0.36
26 62 ND 1.56 2.66 2.63 1.73 2.82 0.41
27 13 ND 2.58 4.00 0.91 0.94 1.23 0.36
28 58 ND 2.61 5.09 2.54 1.46 2.54 0.49
29 42 Normal 2.86 4.53 1.76 1.08 1.76 0.37
30 38 ND 2.43 4.41 1.84 0.97 1.97 0.45
31 69 ND 2.49 4.92 1.30 0.96 1.52 0.49

Mean 41 2.51 4.38 1.62 1.08 1.75 0.43
SD 15.7 0.51 0.64 0.56 0.27 0.53 0.07

ECG � electrocardiogram; D � diagnostic of familial hypertrophic cardiomyopathy (20); ND � abnormal but not diagnostic
of familial hypertrophic cardiomyopathy (20); EDD � end-diastolic diameter; ESD � end-systolic diameter; FS � fractional
shortening; HCM � familial hypertrophic cardiomyopathy; IVSd � interventricular septal thickness in diastole; MWT �
maximal wall thickness; PWd � posterior wall thickness in diastole.

1779JACC Vol. 41, No. 10, 2003 Crilley et al.
May 21, 2003:1776–82 Cardiac Energetics in HCM



ously been done in patients with an established disease
process (21,22). More recent work in subjects with other
genetically determined cardiomyopathies suggests that al-
terations in energetics may be a very early as well as a late
feature of pathologic cardiac hypertrophy (23).

Phosphocreatine is an important metabolite in the bio-
chemical pathways that supply ATP for muscle contraction;
PCr can rapidly phosphorylate adenosine diphosphate
(ADP) to ATP through the creatine kinase reaction, which
is believed to be at equilibrium. Thus, PCr buffers the
concentration of ATP during sudden demands in energy
requirements, regulates ADP (a controller of oxidative
metabolism), and may also have a role in transferring
high-energy phosphates from the mitochondria to the

myofibrils (the creatine kinase shuttle) (24). Increased ATP
turnover or inefficient communication between mitochon-
dria and sarcomere may result in higher ADP. This would
be associated with a fall in PCr/ATP through the creatine
kinase equilibrium.

The extent to which the decline in PCr/ATP could also
reflect loss of the total creatine pool is unknown. In other
cardiomyopathies, for example, Xp-21 muscular dystrophy,
the declines in PCr are observed and are attributed to loss of
creatine across damaged cell membranes (16). A drop in
total creatine in HCM was demonstrated in explanted
hearts from HCM subjects with end-stage heart failure
(25). However, because of ethical difficulties in obtaining
cardiac tissue from subjects with preclinical HCM, no data
are available on subjects who are in the early stages of their
disease, in whom cell membrane damage would not be
expected. Although the PCr/ATP should be interpreted in
the context of the total creatine pool, it is noteworthy that
total creatine was unchanged in a rat pressure-overload
model of cardiac hypertrophy with a similar alteration in
PCr/ATP (26). Although reductions in creatine have been
found in other models of heart failure, the percentage of
creatine that was phosphorylated was unchanged (27). A
reduction in the total adenine pool was also found in the
same study, although the reduction was much less marked
than the reduction in creatine, suggesting therefore that the
observed changes in PCr/ATP are principally due to alter-
ations in PCr. Future studies with proton MRS and
absolute quantitation of phosphate-containing metabolites
will help to address these questions.

We suggest that the underlying problem in HCM due to

Figure 1. Phosphocreatine/adenosine triphosphate (PCr/ATP) data for all familial hypertrophic cardiomyopathy (HCM) subjects and controls, HCM
subjects without left ventricular hypertrophy (LVH), and subjects in each disease-gene group. Filled circles � HCM patients; open circles � controls;
filled squares � subjects without LVH; open triangles � beta-myosin heavy chain (�-MHC); filled triangles � cardiac troponin T (cTnT); open squares
� myosin-binding protein C (MyBPC). p � 0.001 for all HCM patients vs. controls, HCM subjects without LVH vs. controls, and for each disease-gene
group vs. controls; p � not significant between each disease-gene group.

Figure 2. Scatterplot showing lack of correlation between max wall
thickness and phosphocreatine/adenosine triphosphate (PCr/ATP). Open
triangles � beta-myosin heavy chain; filled triangles � cardiac troponin
T; open squares � myosin-binding protein C.
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sarcomeric mutations is that inefficient utilization of ATP
increases the cost of force production, putting excess de-
mands on the myocyte. Most functional studies have shown
that �-MHC mutations diminish actin-activated adenosine
triphosphatase activity and velocity of actin filament trans-
location (8,28); because mutant heads are arrayed in series
with normal heads they produce internal drag and could
reduce efficiency and force production. A more recent study
(29) has suggested increased sliding speed and unchanged
force generation; such an effect would also increase the
energy cost of force production. In vitro studies of the cTnT
mutants have demonstrated increased unloaded shortening
velocity and diminished maximum force (9), suggesting a
shortened power-stroke and so less power generated for
each ATP used. The HCM mutations in many of the
contractile proteins increase calcium sensitivity, which
would be expected to produce a “hypercontractile” pheno-
type with increased use of ATP; direct experimental evi-
dence of this has recently been obtained for cTnT mutations
(30). Thus, energy wastage through inefficient chemo-
mechanical transduction would lead to increased turnover of
ATP in certain subcellular compartments, particularly dur-
ing periods of stress.

Recent data have shown that in oxidative muscle cells
mitochondria may be associated into functional units with
the sarcomeres (31). This subcellular organization is
thought to allow the efficient coupling of energy production
to energy utilization. Ultrastructural consequences of muta-
tions in the sarcomere may therefore result in an impaired
energy provision in addition to the increased energy demand
of the contractile proteins. The global abnormalities of
high-energy phosphate stores revealed by the reduced PCr/
ATP even at rest are therefore all the more striking in that
they might be expected to underestimate the functionally
important abnormality in the sarcomeric compartment.

We do not believe that the findings of reduced PCr/ATP
can be explained by regional ischemia. Although myocardial
ischemia is a potent cause of reduced PCr/ATP, perfusion
abnormalities would not be expected at rest in our patient
cohort. Only four patients complained of episodes of exer-
tional chest pain (subjects 15, 18, 30, and 31), and in each
subject these were infrequent and not sufficient to interfere
with daily life. No patients were known to have flow-
limiting coronary disease. Nevertheless, it is clear that an
abnormality of resting high-energy phosphate metabolism
would be exacerbated during stress, especially in the pres-
ence of either large- or small-vessel disease.

Genetic support for the hypothesis that alterations in
myocardial energetics have a role in HCM pathogenesis
may have come from the recent description of mutations in
the gamma2 subunit of the adenosine monophosphate
(AMP)-dependent protein kinase in families with HCM
and Wolff-Parkinson-White syndrome (32–34). This en-
zyme has been described as the “cellular fuel gauge,” and
once activated by a rise in AMP/ATP it alters enzyme
activities in ATP producing and consuming pathways to

maintain essential homeostatic systems (35). The finding of
a “nonsarcomeric” disease gene for HCM argues further
against an abnormality of force generation as the underlying
etiology.

In conclusion, we have demonstrated a bioenergetic
deficit in HCM that is of a similar magnitude in patients
harboring mutations in three different sarcomeric protein
genes and that appears to anticipate development of hyper-
trophy. This study provides in vivo evidence that supports
the hypothesis that an abnormality of cardiac energy me-
tabolism may be the common mechanism by which HCM
mutations cause disease.
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