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INTRODUCTION

In recent papers [9-11] we have proved existence theorems for deterministic
differential games. These are games between two players y and 2z, with
dynamics given by a system of ordinary differential equations

dx
ar = f(t, x, 9, 2),

and a payoff depending on x, y, 2 and the time when the game terminates.
The purpose of the present paper is to obtain such existence theorems for
games in which the dynamics is given by a system of stochastic differential
equations

dé = f(t, £, 9, 2) dt + o(t, &) dw,

where o dw represents the “noise”. We shall also consider games with any
number of players.

In recent years, Fleming (see [1-3], survey in [4], and joint paper with
Nisio [5]) has proved existence theorems for stochastic optimal control
problems. A basic approach here is the reduction of the problem to a setting
in terms of solutions of the second-order parabolic equations and the use of
a priori estimates. In the present work we shall combine this approach with
some ideas developed in [9]-[12] for deterministic games.

In Section 1, we have collected material on second-order parabolic equations
and systems in a form suitable for subsequent applications. In Section 2, we
deal with games of perfect observation. Here the number of players is
arbitrary. The existence of an equilibrium point in pure strategies is proved.
In Section 3 we deal with a 2-player game of partial observation and prove the
existence of value and of a saddle point.

* This work is partially supported by National Science Foundation Grant NSF
GP-5558.
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The basic underlying assumptions of this paper are: (i) the “noise”
coefficient o is independent of the controls, that is, ¢ = (¢, x), and (ii) the
matrix oo* is positive definite. Some remarks concerning (ii) are given in
Section 4.

1. AUxILIARY RESULTS OoN ParaBoLiCc EQUATIONS

We denote by x a variable point in the euclidean space R™, and by ¢ a real
variable. A function f(x) is said to be uniformly Hélder continuous (with
exponent o) on a set S C R™ if, for some C > 0,0 < o < 1,

flx) —f@) <Cix—x| forall x ¥in S.

A function f(#, x) is said to be uniformly Hélder continuous (with exponent o)
onaset GC{—o0 <t < w0} X R™if

[t %) = fE,8) < C(t— R 4 [ —x0).

The constant C is called a Holder coefhicient (with respect to the exponent a).
Let £2 be a bounded domain in R™, with boundary 0£2. Suppose 022 can be
locally represented in the form

X = (}5(.701 seees K15 Xy > xm)y (11)

where ¢ is in C2 Then we say that 02 belongs to C2. If the second derivatives
of ¢ are uniformly Hoélder continuous (exponent «), then we say that 02
belongs to C%+=.

Throughout this paper, O will denote the cylinder

Or ={(t,x);s <t < T,xeQ},

where s, T are fixed real numbers and £ is a fixed bounded domain in R"™,
We also set
Sr={(t,x);s <t < T, xe o} 2, = {(o, x); x € 82},
082, = {(o, x); x € 882}, Iy = S0, .
By D, and D,? we shall mean any partial derivative of the first and second

orders, respectively, with respect to the components »; of ¥ = (¥ ,..., ¥,,).
By the gradient vector V,f we mean the vector

0 0
(W ,...,~Ef);
here, either f = f(x) or f = f(¢, x).
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Let 02 belong to C2. A function @ defined on I'; is said to belong to
C2Y(I'y) if (a) in terms of the local parameters (as in (1.1)), @, é®/ot, oP[ox; ,
oD |[0x; 0x;, for all (j # 1, k 5= 1) are uniformly continuous on Sr; (b) (T, x)
is in C{p), i.e., DD(T,x), D2(T, x) are uniformly continuous in £,
and (c) @ is continuous on 8827 .

Let 822 belong to C?te. If @ e C*(I'y) and if, in addition, the functions
D, 00|ot, 0P|ox; , 0*D|ox; x;, occurring in (a) are uniformly Ho6lder con-
tinuous (exponent a) and D(T), x) € C2+(§2;), then we say that @ belongs to
CEY(Iy).

If & e C2Y(I7), then we denote by || tI>||2 1 an upper bound on all the
derivatives occurring in (a), (b). If ® € C* 1(FT) then we set

“q)“21a - H(DH +Hu((p))

where H,(®) is an upper bound on Hélder coeflicients (with respect to
exponent o) of all the derivatives occurring in (a), (b).

A function ¥ defined in Qy such that ¥, D%, D, ¥, D,*¥ are uniformly
continuous (uniformly Hélder continuous, exponent «) in Qr is said to belong
to C2H(Qy) (C2(Qy))

It is well known that @ € C2Y(I'}) (@ € C%Y(I'y)) if and only if there exists
a function ¥ in C>Y(Qy) (C>Y(Qy)) such that ¥ = @ on I,

A function #(x) is said to belong to W,5(£2) (1 < p < o0, k non-negative
integer) if all its weak derivatives of order <k belong to L?(€2). A function
u(t, x) is said to belong to W2(Qy) if u and its weak derivatives

2
D, D, D 2u

belong to LP(Qr). We introduce the norm

, ou
| u HWz e =|u HL"(Q J\_
v P Lo
ou | <
| :
o Vo, ) k= ax" L)
Consider a partial differential equation
Lu~——+ Z a(t, x) ———— +Zb(tx)—*
i ox; 8
+ e(t, x)u = f(t, %) in QOr, (1.2)
with initial and boundary conditions given by
u=ao on Ig. (1.3)

505/11/1-6
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We shall need the following assumptions:

(A). For all (¢, x) €Oy and all ¢ € R™,

m

vl E2 < Y anlt, 96 <nl €3 (1.4)

Jyk=1

where v, , v; are positive constants.

(Ap)- The a;;(¢, x) are continuous in Or; denote by v a modulus of continuity
for all these functions.

A,). The derivatives 8a,,(t, x)/6x, are uniformly continuous in Q7; denote
3 ik i y T
by v, a constant for which

’ 3aﬂc(t x) ‘<V? for all (z,x)€Qr. (1.5)

(A,). The derivatives da;,(t, x)/&t are uniformly continuous in Qr; denote
by v, a constant for which

l M <, for all (¢, x)eQr. (1.6)

ot

(B). The b,(t, x) and ¢(t, ) are measurable functions in Qr , and
| b;(t, x)| < vy, Le(t, x)] << v,y for all (¢, x)eQr. 1.7

Let u be a function in W2XQy), for some p > 1, continuous in Qr , such
that (1.2) holds almost everywhere, (0u/dt, dujéx; , 9*ulox; Ox; are taken as
weak derivatives) and (1.3) holds. Then we say that u is a solution in W2YQy)
of (1.2), (1.3). When p = 2, we simply say that u is a solution of (1.2), (1.3).

Lovva 1. Let 8Q € C2, & e C21 (Iy), and let (Ay), (A;) and (B) hold. Then,
for any p > 1, fe L?(Qy), there exists a unique solution in WY Qr) of (1.2),
(1.3). Furthermore, if, also, feLy(Qyr) for some p < g < oo, then u is the
unique solution in W2'(Qy) of (1.2), (1.3), and

ol 2, < CUPHRET+1flq, ) (1.8)

w0 LQr)
Here C is a constant depending only on vy, vy, vy, v, Q7.

This lemma is due to Gagliardo [13, 14] for p = ¢ = 2, and, in the general
case to Solonnikov [19, 20].
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We write, for any set Q' in the (¢, x)-space,

| o(¢, x) — o(F, %)
[T iR x— g

g v (a’o’ = l.u.b.

where the Lu.b. is taken with respect to (¢, x) € Q', (f, ¥) €O/, (¢, x) # (, %).

LEmmMa 2, Let 02¢e C?, @ e C*Y(Iy), and let (A))(Ag) and (B) hold.
Then there exists an o, 0 << o« <C 1, such that, for any f € L*(Qy), the solution u
of (1.2), (1.3) satisfies

| Dot lo, 00 < C (1.9)

Jor any set Q" whose closure is contained in Qr; here C is a constant depending
only onvy, vy, vy, vy,v,Q0p,Q andlub. D]

Proof. The lemma was proved in Ladyzhenskaja—Solonnikov-Uraltseva
[17, Chap. 6] in case #, D,u, D, *u, Du are continuous in Qy and |u | < pu; C
depends, in this case, only on vy, vy, vy, v5, v, Or, Q" and u. Note, however,
that i is bounded by a constant depending only on the v; and Lu.b. | @ |.

To prove the lemma in general (i.e., when % is only in W2%(Qy)), we

approgimate a;; , b; , ¢ by sequences of smooth functions af; , b, c*:

aj; ~ a; uniformly in Qr,
bt — b, in L?(Qr) and almost everywhere,
¢t —¢; in L?(Qr) and almost everywhere.

The quantities v, , v for the 4} , b, ¢® can be taken to be independent of #;
they will depend only on the v , v in (A;)+(A;) (B). Hence, the corresponding
solution u” satisfies

| D" |, 00 < C, (1.10)

C as in the assertion of the lemma. Since the u® satisfy (by [17; Chap. 6]) a
uniform Hélder condition (independently of #), there exists a uniformly
convergent subsequence {#™'}. Its limit is easily seen to be the solution u of
(1.2), (1.3). Finally, (1.9) follows from (1.10), upon taking #» = n’ — oo.

Lemma 3. Let 0 <o << 1. Suppose 8Qe C%e, & e CE(Ty), and let
(A))~(A,) and (B) hold. Then, for any f e L™(Qr), the solution u of (1.2), (1.3)
satisfies

| Dl g, < CUIPIEE, + Lub. |71, (1.11)

where C is a constant depending only on vy, vy , vy, vy,v4,v,Or.
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Proof. If ® =0 and b,, ¢, , f are continuous, then the lemma is due to
Friedman [6] (see also [7]). By approximation, the assertion follows for
b;, ¢;, f measurable and bounded, in case @ = 0. If @ == 0, then we extend
it into a function @ defined in the whole (t, x)-space, such that Dm(ﬁ, Df@,
D,® are Holder continuous (exponent «) in O, with coefficients bounded by

Cll |I2 1« (€ depending on Qr).
Applying the special case of @ = 0 to # = u — @, we obtain the assertion of

the lemma.

Remark. Note that instead of assuming that @ € C>}I7), it suffices to
assume that @ e C?Y([}) and D,® is uniformly Hoélder continuous
(exponent &) on Sy , D,P being any tangential derivative at 6£.

We shall deal later on with parabolic systems of the form

+ fults x, Vauil,..., Vu¥) = 0in Qp, (1.12)

au(t V) a a

i,j=1
=@®  on Iy, (1.13)

where k£ = 1, 2,..., N and f;, are nonlinear in the variables V u’. We shall write
4 == (1, ,..., U,) and say that u € W2¥Qr) if and only if u; € W2Y(Qy) for all 5.
We also write

Hall s Z”u]” 2,1

wylon A wlon

A similar notation will be applied to other norms.

If ue W2YQy), ue C(Qy), Du e C(Qr) and if (1.12) holds almost every-
where (with D,2u, D.u being weak derivatives) and (1.13) holds, then we call
u a strong solution in W2Y(Qy) of (1.12), (1.13). When p = 2, we simply call »
a strong solution of (1.12), (1.13).

2. N-PErsON GAMES WITH PERFECT OBSERVATIONS

We assume that the reader is familiar with the basic theory of stochastic
differential equations, and its relation to parabolic equations. Expositions
of these topics can be found in [5, 15, 16].

Consider a system of m stochastic differential equations

dé = f(t, & Y15, Yn) dE + (2, §) dw @n
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for s < ¢ < T; here s, T are fixed real numbers, w(t) = (wy(t),-.., Wn(2)),
where the w,(t) are independent Brownian motions. We also introduce the
initial condition

£(s) = x,, (2.2)

where x, is a random variable independent of the w,(t). We shall denote by
7 the exit time from Q. .

Let Y, be compact subsets of some euclidean spaces R*:; we shall call Y,
the control set for the player y; . When each player y; chooses a pure strategy,
i.e., a measurable function y,(t, £) defined on [s, 7] X R™ with values in Y,
then the system (2.1) takes the form

dE = f(t, €, 3u(t, O)eer Y1, £)) dt + o, £) de. 23)

Under some standard assumptions on f, o (stated below) the system (2.3),
(2.2) has a unique solution £(t).
In addition to (2.1), (2.2), we are given cost functionals

T3t s 330 = Bty | It 631 s ) e + i £ (20

where E, stands for the expectation. When the players choose pure strategies
¥; = ¥4(3, x), if the solution ¢ = £(t) is then uniquely determined, then one
can compute the costs J (¥, ,..., V)

The above setting of the players choosing pure strategies represents a
model of a game of perfect observation. In this model, the players make use
only of the present position of x. In the deterministic games considered by
Friedman [9-12], the players make use also of all the past positions of w.
This more general setting can also be extended to games with dynamics
(2.3); we shall introduce it in Section 3.

Another remark. We assume throughout this work that the “noise”
term ¢ is independent of the control variables , ,..., ¥y . If o depends on the
¥;, serious mathematical difficulties occur, and very little is known (even
when N = 1).

We shall often write y == (¥, ,..., Yn). If all the y; are pure strategies, we
call y a pure strategy.

Suppose now o(t, x) and f(t, x, y) are measurable in ¢, uniformly Lipschitz
continuous in (x, ¥), and bounded by const. (1 4 | x|). Then, for any pure
strategy ¥(¢, x), measurable in ¢ and uniformly Lipschitz continuous in x,
there exists a unique solution £(t) of (2.3), (2.2) (see [15, 16]). Actually, with
a suitable definition of a solution, Stroock and Varadhan [21] proved that a
unique solution of (2.2), (2.3) exists whenever f(t, x, ¥, (¢, x),..., yn(t, x)) is
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bounded and measurable, oft, x) is bounded and continuous, and co* is
positive definite (¢* = transpose of o). This solution is a continuous Markov
process of diffusion, with local drift f and local covariance o. Further, setting

(a;) = } oo*

and assuming that the random variable x, = xy(w) is a constant x,, the cost
functional [, turns out to be (see [5])

T = (s, %), (2.5)
where ;. is the solution of
oy - P X b
6t + iyjz:l az':i(t7 x) ax,i axj + iglﬁ(t’ X, yl(ty x)r--» yN(t) x)) axz
+ (2, %, y1(28, x),..., yn(t, )) = 0in O, (2.6)
Uy == g on I,. 2.7)

Suppose (a;;) is a positive definite matrix. Then, by Lemma 1, the system
(2.6), (2.7) has a unique solution ¢; under some assumptions on o, f and
the y; (¢, »). It will be much more convenient to work with (2.5), (2.6), (2.7),
instead of (2.1), (2.2), (2.4). We shall therefore define the concepts of a
game and equilibrium point with respect to (2.5), (2.6), (2.7); analogous
definitions can be given, however, with respect to (2.1), (2.2), (2.4) also.

We shall assume in what follows that o is such that (a;;) satisfies (A,), (A)
and, at times, (A;), (Ay). Regarding f(¢, x, y) and the 4, , g; , we shall assume:

(©). ft, %, ¥; ,..., ¥yn) and the &(2, %, y1 ..., Yn) are continuous in functions
in [, T] X R*x Y, x XYy, 02eC? and the g(t, x) belong to
C2\(Iy).

Then, to any pure strategies y;(¢, ) (I < j <C N) there corresponds a cost
vector

J= (]1 s J2vees T, where  Ji = (s, %),

and each i, is the unique solution of (2.6), (2.7), in accordance with Lemma 1.

DeriniTIONS.  The system (2.5), (2.6), (2.7) is called an N-person differential
game with perfect observation. Consider the following scheme (or function):
Each player chooses a pure strategy, and then the costs [, are computed. We
refer to this scheme as a game of perfect observation played by pure strategies,
or, briefly (following Fleming [1] for N = 1) a Markovian game.
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DEFINITION. A pure strategy

y*(t, V) = (yl*(t’ x)""’ yN*(t’ x))

is called an equilibrium point in pure strategies (or an equilibrium pure strategy)
of the differential game if

TP sy Vit » Vi s Vit s INT) 2 T2 s Vit > 8™ YR seeer IN™)
(2.8)
for any pure strategy ¥, , 1 < & << N.

An equilibrium point is a “reasonable” solution for noncooperative game
of N players. If N =2 and J, + J, = 0, we say that we have a zero sum
2-person game; the equilibrium point is then called a saddle point in pure
strategies.

We shall prove in this section that an equilibrium pure strategy y*(Z, x)
exists. y*(¢, ¥) is also an equilibrium pure strategy for the game determined by
(2.1), (2.2), (2.3); the concept of a solution of (2.2), (2.3) is taken as in [21].

Let p, (k = 1, 2,..., N) be a variable point in R™, and consider the function

Hk(t; X, Y130 YN Pk) :f(t’ X, Y1 ,---ny) " P + hk(t’ Xy V1 svees yN)' (29)

This function is called the k-th Hamiltonian function associated with the game
(2.5), (2.6), (2.7).
We shall need the following generalized minimax condition:

(D). There exist functions y, *(t, &, p),..., ya*(t, %, p), where p == (p; ,..., pn),
such that

(i) the y;*(t, x, p) are measurable in (¢, x) €Qr for every p, and
continuous in p with modulus of continuity independent of (¢, x) € Oy .

(ii) for all (¢, x) €Oy and for all p,
yi*txp)eY; (1 <j<N)
(iii) for all (£, x) €0 and for all p,
min Hy(t, %, 33°(t & Pres Yialts % 2), i Yesalts %, P)os IN*(E, %, D), Pr)
= Hy(t, %, y.*(t, %, p)ye-es YN, %, D), Pr) (2.10)

for1 <k <N.
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ExamPLE. Suppose

N
f(t’ X, V1 ,---,.yN) = Z F:i(t» Xy yk)
=1
(2.11)

N
h/c(t) Xy V1 500 .yN) = Z hki(t’ X, yk)
i
Then (2.10) is equivalent to

J{;}Ei%{Fk(t’ % Ye) * P+ it % v} = Fuo(t, %, 36%) © P + Pty % V1),
(2.12)
where y,.* = y,*(¢, x, pi). By Lemma 1 of [1], ¥, *(¢, %, py) can be taken to be
measurable in (2, x) for each p,, . If it is also continuous in p, , for each (2, ),

with modulus of continuity independent of (¢, x), then the condition (D)
holds.

THeoREM 1. Let (A)~Ay), (C) and (D) hold. Then there exists a solution
¢* = (b1%,..., pn*) Of the semilinear parabolic system

Dt 5 anlte )t 5,94 5, V) - Vi

ot Pyl Ox; 0x;
+ k2, %, y¥(t, x, Vb)) = 0in Oy, 1<k N, (213)
b = & on Iy. (2.14)

More precisely, ¢ is continuous in Qr and satisfies (2.14), V,¢* is a bounded
function in Qr , uniformly Hélder continuous (with some exponent ) in compact
subsets of Qr , the weak derivatives 9°p,[0x,; Ox; belong to L™(Qy) for any r > 1,
and (2.13) holds almost everywhere.

We have used here the notation

(Vw¢) = (Vw¢1 00 Vm?SN)

Proof. Fix Be (0, 1). Let {£2"} be a sequence of bounded domains such
that Q C Q», 602" € C2+8, and 622" converges to 0f2 in the norm of C2+F, 1.e.,
there is a finite number of neighbourhoods containing 827, 2£2 such that in
each neighbourhood 862" and 6£2 can be represented in the form

Xy = h"(xl yevey Xy s Kigp1 seers xm);

Ky = B(Xy yeers Xiq s Xipq seves Bm)
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for the same 7, and, asn — 0,

h—h, D" — Dh, D 2h" — D, 2h uniformly,

Set

O = (5, T) x @0, 8@ = {(T, x); x € 0Q7),
S = (5, T) X 0Qn, Iy = S0 Qpn.
Let g = (g",..., £x") be functions in C3(0) such that
lg" — gl —0 if n-—> oo
Let al(t, &), f™(t, %, Y1 - Yn)» BL, %, ¥y 5., ¥n) e continuously differen-

tiable functions in all their variables, satisfying the conditions (A;)(A;),
(C) with v, , v independent of #, such that, as n — o,

a}; — a;; uniformly in Qr ,
fn(t; X, yl, yeeny yN) _)f(t! X5 V1 reres yN) ‘miformly in QT X Yl Ko X YN 3

B (2, %, V1 yeres Yar) = B(t, 2, Py oy Yy) uniformly in Op X ¥y X o x V.

Let 5(¢, x, p) = (F,2(¢, %, p),..., F¥"™(t, %, p)} be continuously differentiable
in all their variables such that

]577-"([, X, P)I < Cn ’

where C, is a constant independent of 7, and such that (a) for each p,
FUt, x, p) — y*(t, x,p)  for almost all (¢, x) €07,

as n— oo, and (b) the $7(¢, x, p) are continuous in p, with modulus of
continuity independent of #, x, n. We can take, for instance, §* to be a mollifier
of y* with respect to all the variables.

Consider the semilinear parabolic system

Od,. L. & i
g;k + 221 azt, x) 8x,-¢8kxj —+ fr(t, x, (L, x, Vb)) * Vs
+ hk”(t, X, yNn(t, X, Vm¢)) + Ak’n(t, x) =0 in QTn, (2.15)

b =2g" on Iy~ (2.16)
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Here, A, is a continuously differentiable function having the following
properties: (i) A,%(t, x) = 0 if
. 1
dist((z, x), 082,™) > o )

(i) | A, ®)] < Cy, C; is independent of 7, and (iii) the relation (2.15)
holds at 2£2;%, when the ¢, and their derivatives are computed from (2.16).

By Theorem 7.1 of [17, p. 596], the system (2.15), (2.16) has a unique
solution ¢" = (¢;",..., px™). Indeed, notice first that the following a priori

bound hold:
Lub. [ é7(t, )| < M, (2.17)
or*

where M is a constant independent of #. This follows by considering ¢, as
a solution of the A-th equation in (2.15) and using the proof of Theorem 2.9
in [17, p. 23).

The unique solution ¢” of (2.15), (2.16) satisfies (by Lemma 6.1, p. 589
of [17])

Lub. | Dn(t, %)) < My, (2.18)
or"

where M, is a constant independent of #. We can therefore apply Lemma 2
and conclude that for any set Q" with closure in Q. ,

[ De™(t, D)0’ < My, (2.19)

where M, is a constant independent of 7.
From Lemma 1 and (2.18) we also get, for any r > 1,

16" lp2ron < Ms» (2.20)

where M, is a constant independent of #. We can now extract a subsequence
{¢"'} of {¢"} such that, as n" — c0,

$v —*  weakly in WEYQy),
¢ —¢*  uniformly in Oy,
V.¢™ —> V,¢* uniformly in compact subsets of Q.

It follows that, for almost all (¢, x) € O,

FU(E, 2, Vo™ (2, %)) — ¥¥(E, %, Vap*(2, %))
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as #' — oo. Hence, for almost all (¢, x) €Oy,

237 (0 2 V™ (1, 3)) < Vo™ (1 %) + B (6 2,57 (0 3, Vg™ (0, %)
— f(t, x, v¥(t, x, V,$*(t, ) - Vo ¥(8, %) + Ailt, %, y*(2, %, V,$*(2, x))
(2.21)
as 7' — . From the Lebesgue bounded convergence theorem we then

deduce that (2.21) holds with “—” standing for weak convergence in L¥Qr).
Since also

%R S A AN ST O
ot + 1;,;21 az’i(t) x) 636',- axj ot + i’jzz:l aij(t’ x) 8907; axj

weakly in L¥(Qy), we conclude that ¢* is a solution of (2.13). Clearly, (2.14)
also hold. The proof of Theorem 1 is thus complete except for the assertion
that ¢* € W2Y(Q;) for any r > 1. Note that we have constructed ¢* as a
weak limit of functions in W2Y(Q7) for a particular 7. Taking a sequence of
increasing r’s and using the diagonal method, we obtain a solution ¢* that
belongs to W2*Q;) for any r.

We now state the main result of this section.

THaEOREM 2. Let the assumptions (A)~(A;), (C) and (D). Write
¥5¥(, %) = y,*(¢, %, Vup*(2, %)), (2.22)
where $* is as in the assertion of Theorem 1. Then
u*(t, x) = (3 *(¢, %),..., yn*(2, %))

is an equilibrium point in pure strategies of the differential game associated with
(2.5), (2.6), (2.7).

Proof. Let y(¢, x) be any pure strategy for the player y,. Denote by
¢ = (¢y ,..., $n) the unique solution of

w2 4N

Oy R
i,d=1 't OX;
+f(2, %, yl*(t’ X)yerny yl):—l(tr x), Yilt, %), yltkl(t, ) yN*(t’ x)) * Vo,

+ hr(t’ X, yl*(t: x)’"-’ ylt—l(t’ x)’ yk(t’ x)’ ylt+1(tr x)""’ yN*(t’ 'x)) =0

inQr, (2.23)
¢, =g, on Ip. (2.24)
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By (2.10) we find that the function ¢,* satisfies

5¢k ¢k

+ Y al

4,§=1
+ £t % 3.5 ),y YEA(E ), il %), Yty #)yenes Y0 (2, ) - Vo *
+ Aty %, 3y x)se YA ©) Yilts %), YRl 2 (%)) > 0
almost everywhere in Oy . Setting
bt, x) = f(t, % Y1 (t X)yeers Viat, %), Y22, %), Vira(ty %)sees Y47 (2, %)),

we see that the function y = ¢, * — ¢, satisfies
—l— Z g 6x 6 + b(t, %) - Vox = 0 almost everywhere in O .

By Lemma 2 of [1], x < 0in Q7 . This gives (2.8).

For a zero-sum 2-person game, we can prove Theorem 2 under a condition
weaker than (D), called the minimax condition:
(D"). For any (¢, x) Q7 and for any p; in R™,

min max Hy(, %, 1, ¥p , p1) = max min Hy(4, %, 31,3, p1).  (2.25)
W EY] ¥,€Y, Y2€Y, y1€Yy
Note, by Lemma 1 of [1] that there exist measurable functions
¥y = ¥, x, pp), ¥s = ¥2*(2, %, py) with values in Y, and V,, respectively,
such that
max H 1(& %, 315(8 %, p1), y2 5 1) = ymm max Hy(t, %, 1, ¥, p1),  (2.26)
1

€Y, ¥,€Y,

mm Hl(t % y1s Y2 (8 %, 1) 1) = max ;nem Hy(t, %, 31,52, p1)-  (227)
2 1 l
From this we infer the condition (2.10). However, we cannot infer, in general,
that the y;*(¢, x, p,) are continuous in p; .
Set
H(t, x, p) = min max H(t, x, y, , ¥a , D)- (2.28)

y€Yy 3,6Y,
TueoreM 3. Let N = 2, J, = — ], , and assume that (A,)~(A,), (C) and
(D) hold. Then there exists a solution ¢* of the parabolic equation

% 2 ault, 9) ;‘ FHE V) = 0inQr  (229)
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with the initial-boundary conditions
b =g on Iy. (2.30)

More precisely, ¢ is continuous in Qp and satisfies (2.30), V,¢* is a bounded
Junction in Q. , uniformly Hélder continuous (with some exponent «) in compact
subsets of Op , the weak derivatives 8¢*|0t, 02¢p*|0x; Ox; belong to L™(Qy) for any
v > 1, and (2.13) holds almost everywhere.

Since H(t, x, p) is a continuous function in (¢, &, p), the proof of Theorem 3
is similar to the proof of Theorem 1.

THeOREM 4. Let the conditions of Theorem 3 hold and let y *(t, x, p),

Vv X(t, x, p) be any measurable functions with values in Y, Y, respectively,
satisfying (2.26), (2.27). Write

N x) = y*(1 %, Vo™ (2, %)),
Y2 ¥t %) = 32*(8, %, V™ (2, x))-

Then (y,*(, x), y.*(¢, x)) is a saddle point in pure strategies of the differential
game associated with (2.6), (2.7) (where k = 1, N = 2) and the payoff (2.5)
(with k = 1).

Proof. Let y, choose the strategy ¥,*(¢, x), and let y, choose any strategy
¥a(t, x). Denote by i the solution of

Wt 3, @t ) g+ £ 33070 9, 54t ) - Vi

2,5=1

+ (2, %, 1%t %), 38, %)) = 0in Qr, ¢ =g on I7. (2.31)
Since ¢* = ¢ on I’y and

B+ % ault ¥ g 05,370,930 - T

,j=1
F by(t, %, 3152, %), ¥o(t, %)) < O

almost everywhere in Oy, we conclude, by Lemma 2 of [1], that ¢* > ¢ in
Oy . This gives

Jir* 22%) = Ju(91™, 32)-

Similarly, one proves that

Tl * 3. < Tl 32%)-
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Remark. We have dealt so far with the case where the initial condition
&(s) is fixed. If £(s) is not fixed, that is, if the random variable xy = xo(w)
is not a constant function of w, then suppose that its distribution is given by
a measure p, defined on 2. The cost {,(s, %) is then to be replaced by the cost

T = [ (s, %) duo(o).

The results of this section immediately extend to this more general case.

3. Di1rreRENTIAL GAMES WITH PARTIAL OBSERVATION

We consider, in this section, a game played by 2 players, y and 2. The
dynamics is given by a system of stochastic differential equations

dé =f(t, &y, 2)dt + o(t, £) dw 3.n
with initial point
£(s) = x,. (3.2)

As in Section 2, control sets ¥ and Z are given, and they compact subsets
of some euclidean spaces R? and R, respectively. A payoff is given by

P32 %) = Euy || Br, €3, 2) dt +g(r, €0, (33)

where 7 is the exit time from Qj . The player y wants to maximize the payoft,
while the player 2 wants to minimize it.

If ¥ and » make perfect observations, and if they use only pure strategies,
then the existence of a saddle point follows by Theorem 4. Suppose now that
v and 2, at time #, can only observe a quantity 5(¢), and suppose, further,
that the manner by which %(¢) is related to £(¢) is known to have the form

dﬂ :f(t) f; Y Z) dt + a(t, f) 7]) dZTJ,

where %@ is a Brownian motion independent of w. We then consider the pair
{ = (n, £) as defining a diffusion process, governed by stochastic differential
equations. With respect to this system, the players y and 2z observe a certain
number of components of {, namely the components of 5. The above setting
is thus equivalent (with a different notation) to the following one:

The dynamics of the game is given by (3.1), and the players y, 2 observe
just the first / components &; ,..., & of £ = (&, ,..., &)
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Set

A

é = (gl yeers fl)’ f - (€l+1 3urey fm),

so that ¢ = (£, 2) We define a pure strategy for y as a measurable function
v = y(t, €) from [s, T] X Rlinto Y, and a pure strategy for z as 2 measurable
function # = 2(t, £) from [5, T] x R'into Z.

As in Section 2, under some assumptions on f, ¢, the payoff (2.3) cor-
responding to the solution of (3.1, (3.2) with ¥ = ¥(t, ), 2 = (¢, £) can be
given as follows: If

jab)

L % ) ot 5300, 9, 500, ) - Vol

o e Bx; Ox
+ h(t, , y(t, £)) = 0in Qr, (3.4)
b=g on Iy, (3.5)

then
Py, z) = (s, %) (3.6)

We shall replace the original setting of (3.1)—(3.3) by the setting (3.4)(3.6).
We can define saddle point in pure strategies as in Section 2. However, there is
no simple connection between such saddle points and solutions of equations
of the Hamilton~Jacobi type. This makes it much more difficult to try to
prove the existence of a saddle point in pure strategies. There is also an
intuitive reason why one should not expect, in general, the existence of
a saddle point in pure strategies: In the lack of perfect observation, each
player should make use of all the past history of the game, not just the present
state.

We shall now develop an existence theory based on the partial observation
of the whole past. This method is analogous to that introduced in [9]-[12]
for deterministic games.

Let n be any positive integer, and let § = (T' — s)/n. Denote by I; the
interval #;_; <t < t;, where £; = 5 + 8. Denote by Y, (Z;) the set of all
measurable functions ¥,(t, £) (2,(f, £)) from I; X R™ into Y(Z). An upper
S-strategy I'® for y is a vector

I = (I?°1,..., I'%n),
where %7 is a map from

Zy XY, X XZj 4 XY; 4 X Z;
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into Y; . A lower é-strategy 4; for z is a vector
Ay = (51 ooy A5 1),
where 4; ; is an element of Z,; , and 4; ; (j > 2) is a map from
Zy XY X X 2y X Y,

into Z; .

We shall assume

(C). f(¢, %, v, 2)and h(t, %, ¥, 2) are continuous functionsin[s, 7] X R™ X
Y x Z, 08 e C* for some a € (0, 1), and g € C2Y(Iy).

Any pair (45, I'®) defines a unique pair of pure strategies (¥°(¢, £), 2,(2, £)),
called the outcome of (45, I%). If (A;), (Ap), and (C’) hold, then there is a
unique solution ¢° of (3.4), (3.5), when y = 1%(¢, £), 2 = 2,(t, £), and a payoff

P37, 25) = (s, %).
We denote this payoft also by P[4, I'?], or
Pid,,, 1%, 4,5, , "],

The above scheme of corresponding a payoff P(d,,1?) to each pair
(ds, I'®), is called an upper 8-game, and is denoted by G°. The upper 3-value
V® of this upper 8-game, is defined by

V® = inf sup -« inf sup P[4, , I'%L,..., 45, , I>"].

5
45, TV 45, T

Similarly, we define lower 8-game G, and lower 8-value V. Here, y uses
lower 8-strategies I's and 2z uses upper 8-strategies 4°. The pair of sequence

G = ({G, {Gy) (3 - Tn“s n :‘1,2,...)

is called the differential game with partial observation associated with (3.4)~(3.6).
If
U+ = lim V3, V- =lim V,

8-0 80

exist, we call them the upper value and the lower value of the game. If
V+ = V-, then we say that the game has value V, where V = V+ = ',

A sequence I' = {I';} is called a strategy for y. Similarly, a sequence
4 = {4} is called a strategy for 2. Each pair (4, , I';) determines an outcome
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(¥s , 25) and the corresponding solution i, of (3.4), (3.5). Suppose there
exists a subsequence {8'} of {8} such that, as 8’ — 0,

ys(t, ) — §(t, £) weakly in  LY{(s, T); R?), (3.7
25ty ®) — 2(Z, £) weakly in  LY((s, T); R%), (3.8)
Py(t, x) = J(t,x)  foreach (t,x)eOQr, (3.9)

where j(t, £) € Y, #(t, £) € Z almost everywhere, and ¢ is the solution of (3.4),
(3.5) corresponding to y = 7, = . Then we say that (7, %), or (#, %, ),
is an outcome of (4, I'). The set of all numbers (s, x,), when (7, Z, ) varies
over the set of all outcomes of (4, I'), is called the payoff set of (4, I'), and is
denoted by P[4, I'].

Given two sets of real numbers, 4 and B, we write 4 << B if a < b for
all ae A, be B. We write 4 < B also in case 4 is empty or B is empty.
Suppose the value 17 exists, and let 4*, I'* be strategies such that

P[4*, T < P[4*, T*] = {V} < P[4, T¥] (3.10)

for all strategies 4, I'. Then we call (4%, I'*) a saddle point.

We shall denote the payoff (s, x,) also by P().

We can extend the concept of an outcome of (4,I") by omitting the
conditions (3.7), (3.8). Thus, a solution  of (3.4), (3.5) (corresponding to
some y = y(t, £), ¥ = 2(t, £)) is called a generalized outcome of (4,T) if
(3.9) holds for some subsequence {8’} of {8}. The set of all numbers P(J),
where i varies over the set of generalized outcomes of (4, I'), is called the
generalized payoff set of (4, I'), and is denoted by P[4, I']. A pair (4%, I'*} is
called a generalized saddle point if it satisfies (3.10) with P replaced by P, .

The concept of strategy as introduced in [12] differs from that introduced
here. In [12], the spaces Y;(Z;) consist of all the measurable functions
4(t) (z,(2)) from I, into Y(Z). Here they consist of all the measurable functions
(2, x) (22, x)) from I; x R™ into Y(2). However, if we introduce in [12]
the latter spaces (but restrict the y,(t, x), %%, x) to be uniformly Lipschitz
continuous in x and request f (¢, , y, 2) to be Lipschitz continuous in (x, ¥, 2),
s0 as to have a unique trajectory for each pair of controls), then the resulting
game will have the same value as in [12] (or [9]). In fact, the proof of the
formula

V? = inf sup --- inf sup P21, Y1 3ees B » V)

z6Z y,€Y zneZ V€Y

given in [12] extends also to the present case where control functions have
the form y(t, x), 2(¢, x). This implies that the concept of the upper value

505/11/1-7
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does not change when control functions y(#), 2(¢) are replaced by control
functions y(t, x), 2(¢, x). Similarly, the concept of the lower value does not
change.

Next, we can define a concept of strategy (for deterministic games) based
on controls of the form y(t, x), 2(t, x). As far as the existence of a saddle
point, the max-min principle and the computational methods of [12] are
concerned, we shall not get anything new. The numerical results in [12] for
saddle points of particular games will be the same for the saddle points
based on controls ¥(¢, x), 2(¢, x). We can, therefore, conclude that the approach
of the present section to stochastic games reduces, in fact, to the approach of
[9]-[12] when the games are deterministic.

Another remark. To every pure strategy j(t, £) we can correspond a
constant strategy I as follows (cf. [12]):

ﬁ - {ﬁa}; ﬁa == (ﬁﬁ,l 3oy -f'ﬁ,n)!

where I ; maps the whole space Z, X Y; X -+ X Z;_; X Y, into the
point F,(t, £), the restriction of (¢, #) to I; . Using this correspondence,
we can show that the equilibrium point in pure strategies established in
Section 2 for a 2-person zero sum game, gives a saddle point in constant
strategies—in the context of the present section. The concept of strategy as
defined in this section and the last assertion extend also to /NV-person games.

We shall need the following condition:

(E). The controls y, z appear “‘separately” in f, A, i.e.,

[t %3, 2) = f1(t, %) + (¢ %, 2),
h(t, x, ¥, 2) = h(t, x,y) + BE(t, x, 2).

THEOREM 5. Let the conditions (A,)~(A,), (C') and (E) hold. Then the
differential game with partial observation associated with (3.4)-(3.6) has value.

If the condition (E) is not assumed, one can still prove that '+ and '~
exist, The proof is obtained by combining the methods of [9] or [12, Chap. 2],
with estimates derived in the subsequent proof.

Proof. The proof is similar to the proof of Theorem 1 in [9] (or
Theorem 2.3.1 in [12]); the components z; , ¥; , instead of being functions of ¢
only, as in [9, 12], are now functions of (¢, £). Thus, all we need to prove is
the following lemma.

LemMA 4. Let the conditions (A)~(A,), (C'), (E) kold. Let y,(2, £), z,(, £)
be pure strategies for vy and =z, respectively, for each X from a sequence {A,},
A N O if n  oo. Let %\(t, £) be a pure strategy for z satisfying %\(t, £) =
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2(t — A %) for s + A <t < T, Ae{),}). Denote by i, and i, the solutions of
(3.4), (3.5) corresponding to v, , 2, and y, , &, , respectively. Then, there exists
a function o(}), independent of y, , 2, , such that o(A,) — 0 if n — oo and

S [t ) — it %) < o). (3.11)

Proof. Denote by U(t, 7) (s <t << 7 < T) the fundamental solution of
the parabolic operator

7 < 0*

ot + 3;1 ailt, %) Ox; Ox;

corresponding to the boundary condition # = 0 on 052, (see [8]). Here we
consider the elliptic part

m 2

0
At) = Z a;(t, x) Pm O
X; OX;

i,7=1

as a linear (unbounded) operator in X = L7(£), for some fixed r > 1; later,
we shall take r > .

We shall denote by || || the norm in X. We shall denote norms of bounded
linear operators in X by || | also.

‘We may assume that the resolvent of A(t) exists for all A with Re A == 0, for
otherwise we first perform a transformation b — P4, where B is a suitable
constant. But then, by [8], fors <t <o < T,

C

| AU, o)l| < m

0<6<1). (3.12)

Next, using the identity

~a+A
Ut, o + Nx — U(t, o)x = U(t, 0 + )\)J AE)U(E, o)x dE
0
for x = D4 (see [8, p. 250]) and estimates on U given in [8, Section 4], we
findthat fors <t <o <o-+ALT

P

| AU o+ 2) — Ut o)l < O

0O<8<p<p <1y
(3.13)

here and in what follows, various different constants are denoted by the same
symbol C.
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Set ¢, = ‘ZA ~— . Then, with ¢,(2) = $i(2, ),

djf + AWb = — [t % 9t 4) - Vebi]

— Lf3t % 5t £) - Vah — [ % 2t £) - Vath]

- [hz(t7 X, 'gz\(t’ aé)) - hz(tv X, z}«(t, ‘72))]
B, -B,.

I

We shall write By(t) = B¢, *).

(3.14)

Suppose y,(t, £), 2,(2, £), Z)(t, £), f and / are all continuously differentiable.
By Lemma 3, Vi, , V., are then uniformly Hélder continuous in Qp .

Hence, by [§],

T T T
(1) = f | Ult, 0)By(o) do + f | Ult, @)Byfo) do + f  Ult, @)By(o) do

=@, + P, Dy

We shall estimate the @, . First, for any 0 < 8 < 1,

| 4y < C | | AU, )| Vb, ) do

H 1l Vagalo, Il )H
N

Since (see [8])
I Vaga(o, N < Cll A(0)da(o, NI i 5 <0 <1,

we get

L asepy ey < © [ AL@DBGN 4o g g2,

(o0 =2
By Lemma 3,

|Vt oo, < G 1Vl for < G,

Lub. [Vah(t, 9] < €, Lub. | Vah(t, ) < C

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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To estimate @5 , write
T T—A

0y = [ Ut oo, 3o =& Ndo = [ UGt o)i(o, - 5,(o, ) do
A t

+ JTA U(t, o)k¥(o, +, (o, *)) do — f ; U(t, o), *, z\(c, -)) do
e lh-L. (3.21)

We can write
T~-A
L= "0+ 0 = Ut o)l + A, - (0, ) do
t

U 0+ N+, 30 ) = B (o, ] do

=I,+1,.
By (3.13),

: T—A ,\0—9
[ A |l < CL WH B0 + A, -, 2)(o, ")l do < CX~°

if 6 <p < p << 1. We also have,
| AL, < Ce), )0 i A0,

where €()) depends on the modulus of continuity of A2(¢, x, 2) with respect to .
Hence,

| A% || < Cx=? 4 Ce(A). (3.22)
Next

PO AT —

'—(U—"—7)-6— do g CA-9
T-2A -

Similarly || A%(#)1; || << CA~%8. We conclude that
| AP, || << CX-0 4 Ce(A)  forany 0 <8 <p<<l. (3.23)

Next,

D, = fj U(t, 0)[f¥o, %, %\(0, £)) - Vaha(o, x) — f2(2, %, 2)(0, £) * Valii(o, x)] do

+ [ U6, o)f o, 50, %) - Vit ) do
=&, | Dy . (3.24)
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As for @,, , we have, by (3.17),

| 4% < | Yo t)o | Vatlos ) do
S EA GG

(o0 —2)

f 3 < 6 < 1. As for A%t)®,, , it can be estimated in the same manner as
A¥t)D, . Here we make use of (3.19), (3.20). The inequality we get is
| A%(t)Py || < CX~0 + Ce(d) + CX=.

We conclude that

| A%1)0, || < CX~0 4 Ced) + CX - C J W;)(;ﬂ do.  (3.25)

Combining this with (3.23), (3.18), and (3.15) and setting

yat) = 1 B, BQ) = mine(x), %, X3,

we get

() < CBQ) + C f (”A("Z)a do. (3.26)

By iteration we find that

) <), BN -0 i A0,
Le.,

Il A% (01 < B*A)- (3.27)

In deriving (3.27) we have assumed thaty, , 2, , £, , f and 4 are continuously
differentiable. However, the function $*(}) occurring in (3.27) depends only
on the constants which enter into the conditions (A,)-(A,) and on bounds and
moduli of continuity of f, 4. Hence, by approximating y, , 2, , &, , f by smooth
functions and applying (3.27) to each of the corresponding ¢, , we conclude
that (3.27) holds in general.

Since (by [8], for instance)

[t )] < CANDGE N if r>n F<0<],

the assertion of the lemma follows from {3.27).
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Our next objective is to prove the existence of a saddle point. We shall need
the following conditions:
(F). f(2, =, v, 2) and A(t, x, y, z) are linear functions of y, z, ie.,
[, %, 9, 2) = fot, x) +FYe, x)y + F¥¢, )z,
h(t, x, y, 8) = B¢, x) + K\(t, x) * y ++ B2(t, %) * =,
and Y, Z are convex sets.
(F"). For any (¢, x) € Or and p € R™, the set
f, 2, Y, Z) - p+h{t,x Y, Z)
={f(t,x,y,%) p+htxy2);yeY, zeZ}

15 a convex set.

Levmma 5. Let (A))—(A,) hold. Let f(t, x,y, 2) be continuous in [s, T] X
R™ X Y % Z, 22 € C?*= (for some o > 0), g e C>YIYy), and let (F) hold.
Then, given any sequence of pure strategies (yu(t, £), 2,(t, £)) and the corre-
sponding solutions ,, of (3.4), (3.5), there exists a subsequence {n'} of {n} and
pure strategies 5(t, £), Z(¢, £), such that, as n’ — o,

Vo — ¥ in LY{(s, T); R?), 2, — Fin LY(s, T); R9), (3.28)
P (t, ¥) — &(t, x) uniformly in Qy (3.29)

where | is the solution of (3.4), (3.5) corresponding to ¥, 3.

Proof. We may assume that g = 0, for otherwise, we consider ¢, — g,
where § is a C*! extension of g into Oy .

The proof of (3.28) follows by a standard argument (cf. [12, proof of
Theorem 2.4.1]). Since, by Lemma 3,

‘ ‘/’n(t: x) - ‘l’n(t’; xl)l + l Vm‘/’n(t) x) - Vm‘l’n(tla x’)l
SC(t—t 2+ x—a"]%,

we may also assume, by the Ascoli-Arzela lemma, that

(2, x) — {p(t» x),

(3.30)
Vb (2, x) — Vxlp(t, x)
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uniformly in Q; , where i} is some function. Writing

bt ) = [ U0, ) + Filo, )3, 4
+ F¥o, £)3,(0, £)] * Vohu(o, %) do

T
+ f U(t, o\{5o, x) + Ao, x) - ya{o, £) - B0, x) - z,(0, £)} do,
t
and taking # = n' — o0, we find that

Koy = [ UG oNf ) + Flo, 9300, 9)
-+ F¥(o, x)%(o, £)] - Vxxp(a, x) do

+ J‘;: U(t, o){A’o, x) + H(a, x) - ¥(o, £) -+ F*(o, x) + Z(o, £)] do.
( (3.31)

The solution of (3.4), (3.5) corresponding to ¥, ¥ satisfies the integral
Eq. (3.31). Further, from the estimates (3.12), (3.17) we can deduce that there
is at most one solution of (3.31). It follows that § is the solution corre-
sponding to 7, 2. This completes the proof of the lemma.

The next lemma is analogous to Filippov's theorem in “Ordinary
Differential Equations.”

LemmA 6. Let (A))(Ay) hold. Let f(t, x,y, z) be continuous in {s, T] %
R xY x Z, 082 e C*¥*= (for some o > 0), g C*YI7), and let (F') hold.
Then, given any sequence of pure strategies (V,(t, x), 2,(t, %)) (here | = m)
and the corresponding solutions , of (3.4), (3.5) (with & = x), there exists a
subsequence {n'"} of {n} and a solution J of (3.4), (3.5) (for some pure strategies
(¢, x), 2(¢, x)) such that (3.29) holds.

Proof. Write U =Y X Z, u, = (¥, , %,). As in the proof of Lemma 3
we may assume that ¢ = 0 and that (3.30), (3.31) hold with # = x. We can
write

T
balt, ) = f , Utt, oo, ) do, (3.32)
where

ki{a, xy = f(o, x, {0, %)} - Vapo{o, ) + ho{o, x, n, 0, x)). (3.33)
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We may assume that the subsequence {n'} is such that

ko, x) — (o, x) in LYQy),
koo, ) — Ko, ) in LY(s, T); LN(£2)).

By arguments used in the proof of Theorem 2.4.2 of [12], we deduce that
k(o, x) € f(o, x, U) - Vli(o, x) + k(o, x, U).

From the proof of Filippov’s lemma (with ¢ replaced by (¢, x)) we deduce that
there exists a control function #(t, x) = (§(z, x), 2(¢, x)) (with values in
Y x Z)such that

(o, x) = f(o, x, i(o, x)) - Vab(a, x) + h(o, «, ii(a, x)).
But then, from (3.32), (3.33) we conclude that

B ) = | : U(t, 0)f (o, x, (0, ), (o, x)) * Vaih(o, %) do
+ f j U(t, oYh(o, %, §(o, %), ¥(o, x)) do.

Hence ¢ is a solution of (3.4), (3.5) corresponding to y = §, 2 = 5. This
completes the proof of the lemma.

Using Lemma 5 we can apply the method of proof of Theorem 2.5.1 in
[12], and thus deduce the following result concerning the existence of a saddle
point.

THEOREM 6. Let the conditions of Theorem 5 hold, let 82 € C*+> (for some
o > 0), and let (F) hold. Then there exists a saddle point for the game of partial
observation associated with (3.4)-(3.6).

Similarly, using Lemma 6 one can establish the existence of a generalized
saddle point for the game of perfect observation associated with (3.4)-(3.6)
(with £ = x), replacing the condition (F) by the weaker condition (F’).
However, in Section 2 we have already established a stronger result for games
of perfect observation, concerning the existence of a saddle point in pure
strategies. The usefulness of Lemma 6 lies then only in establishing the fact
that the generalized payoff set Py[d, I"] is never empty.

Theorems 5 and 6 extend to the case where one player observes Ky yoees ¥y,
and another player observes x; ..., x; , for some indices 7, ,..., %}, Jy youry Jic -

Remark 1. One can show that the value of the game V' (s, %) is 2 continuous
function of (s, x,). The proof is analogous to the proof of the corresponding
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result for deterministic games (in [9, 12]). One uses here estimates from
Sections 1 and 3.

Remark 2. Theorems 5 and 6 and the last remark extend to the case
where the initial random variable x, = xy(w) is not the constant function.

4. Stocuastic GamMEes wWITH DEGENERACY

If oo* is not positive definite, then the parabolic Eq. (3.4) is degenerate.
The results of Sections 2 and 3 are based on estimates that have been
established in the literature for nondegenerate parabolic equations only.
Therefore at present the results of Sections 2 and 3 cannot be extended to the
degenerate case. To illustrate the kind of difficulty that is encountered in the
degenerate case, and also to suggest a possible line of approach, consider the
following special case: The dynamics is given by

ﬁ = k(t) Y z)) 7](3) =T - (41)
d¢ = f(t, &, m, 9, 2)dt + o(t, §) dw,  £(s) = &, 4.2)

where oo* is positive definite, and
P(y, %) = pln) + By | [ Wt 6,3, 2) dt + g(r &) (43)

((n) is a continuous functional of % in a suitable topology. The control
functions are either of the form y(z, £, ), 2(¢, £, n), where a uniform Lipschitz
condition with respect to % is assumed, or of the form y(t, £), 2(t, £). For
simplicity, assume the latter form.

Solving 7 == 7(y, 2) from (4.1) and substituting into {(4.2), we obtain

d¢ = f(t, & m(y, 2), 9, 2) dt +o(t, ) dw, &) =& . (44)

Note, however, that this system is not a stochastic differential system of the
usual type, since 5(y, 2) at time ¢ depends on the controls y = y(a, £(0)),
2 = 2(o, £(0)) for all s < o < ¢. Thus (4.4) is, in effect, a stochastic integral
equation of Volterra type. By the methods of [16] one can establish the
existence of a solution for (4.4). However, there is no connection, in general,
between such a system and parabolic equations. Thus, in order to extend
the results of Sections 2 and 3 to the present degenerate case, one has to
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study stochastic integral equations and relate them, perhaps, to some
“integro-parabolic” equations.

sp

For the one player case, the system (4.1), (4.2) represents a slightly more
ecialized case of degeneracy than that treated by Fleming [2]. A solution of

the optimal problem for the one-player case has been recently obtained by
Rishel [18].
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