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D E P T H - B O U N D E D  B O T T O M - U P  E V A L U A T I O N  
O F  L O G I C  P R O G R A M S *  

JAN CttOMICKI 

t> We present here a depth-bounded bottom-up evaluation algorithm for logic 
programs. We show that  it is sound, complete, and terminating for finite- 
answer queries if the programs are syntactically restricted to Datalogns, a 
class of logic programs with limited function symbols. Datalogns is an ex- 
tension of Datalog capable of representing infinite phenomena. Predicates 
in Datalogns can have arbitrary unary and limited n-ary function symbols 
in one distinguished argument. We precisely characterize the computa- 
tional complexity of depth-bounded evaluation for Datalogn8 and compare 
depth-bounded evaluation with other evaluation methods, top-down and 
Magic Sets among others. We also show that  universal safety (finiteness of 
query answers for any database) is decidable for Datalogns. <1 

1. I N T R O D U C T I O N  

1.1. Nontermination of Bottom- Up Query Evaluation 

Among query processing algorithms in deductive database systems bot tom-up eval- 
uation is one of the most popular, as evidenced by the survey of Bancilhon and 
Ramakrishnan [4] and the textbook of Ullman [47, 48]. Most deductive database 
systems in use today [27, 35, 50] are based on bottom-up evaluation. This algoritfim 
starts from a finite set of facts (a database) and derives from it new facts using de- 
ductive Horn rules. The algorithm terminates when no new facts can be derived. 
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It should be immediately clear that,  in the presence of function symbols and re- 
cursion in rules, infinitely many facts may be derived, and consequently bottom-up 
evaluation may fail to terminate. 

Example 1.1. The following rules describe the schedule of meetings of a given 
professor with his students: 

meets(T, X)  ~-- meets_first(T, X). 
meets(T + 1, Y) ~ next(X, Y), meets(T, X). 

The recursive rule expresses the following: "if a student X meets the professor at 
time T and Y is the next student after X, then Y meets the professor at time T+ 1." 
Let us consider a database containing the following facts: 

meets_first(O, emma). 
next(emma, kathy). 
next(kathy, emma). 

The rules can be used to derive the following infinitely many facts from the database: 

meets(O, emma). 

meets (1, kathy ). 

meets(2, emma). 

meets(3, kathy). 

where 1 = 0 + 1,2 = (0 + 1) + 1, etc. 

The termination problem has two distinct subproblems. First, can bottom-up 
evaluation of finite-answer queries be always made to terminate? In Example 1.1, 
the query "List all students that meet the professor at time 1" has a finite answer, 
namely, kathy. So does the query "List all students that meet the professor at some 
time." However, straightforward bottom-up evaluation of the above queries requires 
the computation of the inifinte relation meets. The second subproblem involves 
queries with infinite answers, for example, the query "List all time instants when 
the professor meets emma." 

1.2. Datalog,~s--An Extension of Datalog 

In this paper, we address the issue of termination of bottom-up evaluation of finite- 
answer queries in the context of Datalog,~s a class of logic programs with limited 
function symbols [8, 10-12]. In Datalog,~s programs, the type and the occurrences 
of function symbols are restricted in the following way: function symbols can only 
be unary or limited n-ary (having a single distinguished argument), and they can 
appear in a single distinguished argument of predicates. In addition to Datalog,~s, 
we study its subset Datalogls where only a single unary function symbol (written 
in postfix as +1) is allowed. The program in Example 1.1 is a valid Datalogls 
program. Datalog,~s is decidable [8, 16]. Moreover, in the context of Datalogns, 
infinite query answers can be finitely represented [11, 12]. 

Datalogns programs have potentially many applications in knowledge-based sys- 
tems, for example, such as temporal reasoning, event scheduling, planning, and 
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pathfinding. We also envision that  Datalogns programs will be used as an input 
language for intelligent office tools like a calendar or a personal planner. Sub- 
sequently, these tools can provide answers to user queries using the algorithms 
developed in this paper. 

The syntactic restrictions introduced above can be motivated in the following 
way. The distinguished argument where function symbols may appear plays the role 
of a state index or a time instant. A set of facts with the same distinguished argu- 
ment may be looked upon as a set of facts holding in a state. This set is finite and 
may be treated as a snapshot--a relational, function-free, database. Unary function 
symbols can be seen as denoting operators that  map states to states (+1 maps a 
state to the next state). The above restrictions on the type and the occurrences 
of function symbols are essential to guarantee the termination of all finite-answer 
queries. If any of them is lifted, the resulting class of logic programs becomes 
undecidable. 

Example 1.2. In Example 1.1, the distinguished variable T denoted a time instant. 
Here, it plays the role of a state (situation). Function symbols correspond to oper- 
ators available to a robot [17]. For example, move(t, x, y) stands for "robot moving 
from position x to position y in situation t" (this is an example of a limited 3-ary 
function symbol, i.e., a function symbol with a single distinguished argument). A 
complex term corresponds to a sequence of robot moves (a path). The constant 0 
denotes the empty path. The predicate path(t, x, y) is true if t is a path connecting 
x and y. The predicate mem(t, x, y) is true if (x, y) is an edge in the path t. 

path(O, X, X) ~-- position(X). 

path(move(T, Y, Z), X, Z) ~-- connected(Y, Z), path(T, X, Y). 

mere(move(T, Y, Z), Y, Z) ~ path(T, X, Y ), connected(Y, Z). 

mere(move(T, Y, Z), U, V) ~ path(T, X, Y), connected(Y, Z), mere(T, U, V). 

w( X, Y, U, V) +-- path(T, X, Y), mere(T, U, V). 

The query "List all (x, y, u, v) such that w(x, y, u, v) holds" returns quadruples of 
points (x, y, u, v) such that  the robot can move from position x to y through a path 
containing the edge (u, v). 

We argue here that  it makes sense to define and study syntactically restricted 
logic programming languages, particularly those for which query termination can 
be guaranteed, like Datalog or Datalogns. Such languages, although insufficient 
for general purpose programming, are suitable as concept definition languages. For 
example, the concept of transitive closure can be defined in Datalog, and the con- 
cepts of infinite periodic set or repeating path can be defined in Datalogns. If query 
termination cannot be guaranteed, an undesirable situation arises in which the user 
can formulate rules to which no well-defined concept corresponds. In the cases of 
Datalog and Datalogns, query termination is guaranteed and every program corre- 
sponds to a well-defined concept. Moreover, in those cases, specific bounds on the 
complexity of query evaluation are established. Also, the research in this direction 
should pave the wa:~ for query evaluation methods that  not only terminate for syn- 
tactically restricted classes of logic programs, but also work efficiently for arbitrary 
logic programs. 
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1.3. Depth-Bounded Evaluation 

We want to be able to evaluate a finite-answer query without computing the entire 
least fixpoint which is infinite. To achieve this goal, we have to make use of the 
finiteness of the query answer. Consider only queries which are single atoms, i.e., 
p(tl,...,t,~). In Datalogns, the finiteness of the answer is guaranteed if the first 
(distinguished) argument of the query atom is a ground term or an existentially 
quantified variable (see the queries in Example 1.1). Therefore, we have to find a 
way to propagate the information about the first argument from the query to the 
program. 

This is a well-known problem in the area of deductive databases, studied under 
the names of pushing selections or projections into rules. There are many methods 
[4, 28, 48] that  achieve either of the above goals by rule rewriting. Surprisingly 
enough, none of them seems to be able to guarantee the termination of bottom-up 
evaluation of finite-answer Datalogn$ queries. Some of the methods, e.g., Magic 
Sets defined by Bancilhon et al. [3], introduce additional termination problems of 
their own, as noticed by Ramakrishnan [33] and Seki [39]. Therefore, we obtain ter- 
mination in a different way. Essentially, we show that  in the context of Datalogns, 
it is sufficient to consider ground refutations containing terms of bounded depth. 
Consequently, in bottom-up evaluation, only facts with terms of bounded depth 
have to be generated. We provide tight upper and lower bounds on term depth 
in refutations. We call our algorithm depth-bounded evaluation. Depth-bounded 
evaluation is a bottom-up counterpart of bounded depth-first search proposed by 
Stickel [42]. 

Depth-bounded evaluation works well for queries with a ground or existentially 
quantified distinguished argument. However, in some cases, even queries with the 
distinguished argument which is a free variable have finite answers. Therefore, 
depth-bounded evaluation should be complemented by a safety tester--an algorithm 
that  checks whether the query answer is finite. We show that  testing both relative 
safety (finiteness of the answer for a given set of rules and a given set of facts) 
and universal safety (finiteness of the answer for a given set of rules and every set 
of facts) is decidable for Datalogns. In fact, depth-bounded bottom-up evaluation 
can be used for testing relative safety (report "unsafe" when the generated facts get 
"too large"). This shows that  Datalogns is more akin to Datalog (for which both 
kinds of safety are decidable) than to full Prolog (for which neither is recursively 
enumerable [19, 40]). 

It is interesting to compare depth-bounded evaluation with other query process- 
ing algorithms for Datalog,~s[8]. The data complexity I of the latter algorithms 
matches the corresponding lower bounds: query evaluation is PSPACE-complete 
for Datalogls, EXPTIME-complete for Datalogns. This is not the case for depth- 
bounded evaluation which requires exponential time for Datalogls and double ex- 
ponential time for Datalogns. However, we have shown elsewhere [9] that  for 
Datalogls, a polynomial bound on refutation size guarantees that  depth-bounded 
bottom-up evaluation will terminate in polynomial time. This property was used 
to identify several polynomial-time computable subclasses of Datalogls. 

There are also other reasons for studying depth-bounded bottom-up evaluation. 
First, bottom-up evaluation, like other resolution-based algorithms, constructs 

lInformMly: complexity as a function of the database size, not the size of the rules. 
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bindings for existentially quantified variables in the query. Therefore, it can be 
used to provide yes-no (Boolean) answers, as well as enumerate all the answer sub- 
stitutions. This is not the case for the lower bound algorithms (mentioned above) 
which yield only yes-no answers. Second, rule optimization methods [4, 28, 48] 
work under the assumption that  queries are evaluated bottom-up. We would like 
to be able to combine those methods with depth-bounded evaluation to obtain a 
practical query processing system for Datalogns. Third, it seems better  to have 
a single evaluation mode (bottom-up or top-down) that  works for arbi trary logic 
programs rather than many incompatible procedures applicable only to restricted 
classes of logic programs. 

1.4. Summary of the Paper 

The following is a summary of the paper. In Section 2, we define the syntax and 
the semantics of Datalogns. In Section 3, we introduce depth-bounded evaluation 
and show upper and lower bounds on its execution time for Datalog,~s. In Section 
4, we compare depth-bounded evaluation with other query evaluation algorithms 
for Datalogns. In particular, we consider the lower bound algorithms [8] and the 
algorithms that  construct finite representations of infinite query answers [11, 12]. 
We also discuss the algorithm of Joyner [18] and top-down algorithms based on 
resolution. We show a close connection between depth-bounded evaluation and 
bounded depth-first search. Finally, we discuss Magic Sets [3]. In Section 5, we 
show that  both relative and universal safety are decidable for Datalogns. We 
also relate our results to other works dealing with the safety problem. Finally, i~ 
Section 6, we summarize the results of this paper and discuss the prospects for 
further work. 

2. B A S I C  N O T I O N S  

We begin by recalling some standard definitions and terminology used in logic pro- 
gramming and Datalog. For further details, the reader is referred to the books of 
Lloyd [26] and Ullman [47]. The definitions below at tempt  to capture the intuition 
that  in Datalogns we deal with two separate domains: the domain of standard, 
unstructured database constants (called here data terms), and the domain of in- 
ductively built objects (called functional terms). 

2.1. Syntax 

An atom is of the form p(tl,.. .  ,t,O, where p is a predicate symbol of arity n and 
each t~ is a term (in the usual first-order logic sense). A term or an atom is said 
to be ground if it is variable-free. A fact is a ground atom. A database is a finite 
set of facts. Given a set of facts D, the extension of a predicate symbol p of arity 
n is the set of all facts of the form p(tl,.. .  ,t,O in D. A rule is formula written 
as A ~- B1 , . . .  ,Bin (in clausal form: A V ~B1 V . . - V  --~Bm), where A, B1,... ,Bin 
are atoms; A is called the head and B I , . . . , B m  the body of the rule; individual 
B~(1 < i < m) are called subgoals. A logic program is a finite set of rules together 
with a database. All variables in rules are implicitly universally quantified. 

A query is an atom in which the functional argument is either a variable or a 
ground term. We will also consider queries closed with existential quantifiers. A 
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query with at least one free variable is open; it is closed otherwise. A / a c t  query is a 
ground atomic query. A simple query is an atom whose arguments are all distinct 
free variables. (Although every query defined above can be represented as a simple 
query and an additional rule, we have found it more convenient not to make this 
assumption in the first part  of the paper, namely, Sections 3 and 4.) A formula is a 
logic program with the possible addition of the negation of a query (thus, a formula 
is in clausal form). 

We distinguish extensional database ( EDB) and intensional database ( IDB) pred- 
icates. The EDB predicates correspond to the relations defined by the database,  
whereas the IDB predicates correspond to the derived relations, tha t  is, those tha t  
are defined by the rules. EDB predicates may thus appear  in database facts and in 
bodies of rules, whereas IDB predicates can only appear  in rules and queries, and 
not in database facts. 

Datalog [47] is the language of function-free logic programs, tha t  is, logic pro- 
grams in which the only terms are constants or variables. We call such terms data 
terms. 

Datalogns is an extension of Datalog in which atoms and terms may have a single 
distinguished (first) argument, which is said to be functional, in addition to the 
usual data arguments. Functional arguments are functional terms, which are built 
from a distinguished functional constant 0, data  constants, functional variables, 
data  variables (distinct from functional variables), and function symbols. Other 
(data) arguments of an a tom or a term can only be da ta  terms. Every functional 
te rm contains either 0 or a single occurrence of a single flmctional ariable. For 
instance, if T is a functional variable, then 0, T, f(T) and g(T, a) are functional 
terms, but g(T, T) is not. A functional term or a tom can be viewed as a tree 
where each node has at most one son that  is not a leaf. We distinguish between 
functional predicates (those with a functional argument) and data predicates (those 
with da ta  arguments only). The depth of a variable or a constant or 0. The 
depth of a complex functional term is equal to one plus the depth of its functional 
argument.  

Often the definition of Datalog allows two special built-in predicates: equality 
(=) and inequality (~).  Most of the results in this paper  hold if equalities and in- 
equalities between data  t e rms  are allowed. The proof of the decidability of universal 
safety, however, requires the exclusion of inequalities. 

We study separately Datalogls programs which are Datalogns programs with 
exactly one unary function symbol (+1). This class was first defined in our earlier 
work [10], and has the same expressive power as function-free Templog studied by 
Abadi, Manna, and Baudinet [1, 5]. 

2.2. Restrictions 

We make a number of assumptfons: 

Rules are range-restricted, i.e., every variable is limited [47]. A variable is 
limited if it appears  in a literal in the body of the rule or is equated by an 
equality to a limited variable (we assume on constants in rules). 
Equalities are eliminated by picking one variable for every class of equated 
variables and substituting it for all these variables. After this transformation,  
in a range-restricted rule, every variable has to appear  in some literal in the 
body. 
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• Rules do not contain ground terms. Such terms can be eliminated by intro- 
ducing additional predicates. 

• Rules are normal. A Datalogns rule r is semi-normal if r contains at most one 
functional variable, and if this variable appears in r, it has to appear  as the 
functional argument of some atom. A Datalogn8 rule r is normal if it is semi- 
normal and functional terms in r are of depth at most 1. For convenience, 
we also assume that  in a set of normal rules, functional variables in different 
rules are identical, i.e., there is just one functional variable in a program, 
usually named T. For every set of Datalogns rules, there is an equivalent set 
of normal Datalogns rules. We show how to obtain it elsewhere [8]. 

• Nonunary function symbols have been eliminated by instantiating da ta  vari- 
ables appearing in functional terms with all da ta  constants appearing in the 
program and creating a new unary function symbol for every such combina- 
tion. After this transformation,  the number of function symbols and rules in 
the program may be database-dependent.  This, however, does not affect any 
of the results obtained here, except universal safety. 

The last assumption justifies the name Datalogns (Datalog with n successors), 
as we are considering only programs with unary function symbols (successors). 
Treating every different successors as a letter and 0 as the empty  string, we can view 
ground functional terms tha t  use only successors as strings over a finite alphabet.  

Notation. We generally follow the Prolog notation, f k - ' "  f l  (t) denotes the com- 
plex te rm f k ( ' " f l ( t ) ' " ) ,  n denoted ( . . .  ( (0+1)  + 1) - . -  + 1), and T + n denotes 

n t '~mes 
( . . -  ( ( T + I )  + 1) - . -  + 1)) A vector of terms is writ ten as 7, X (if the terms are 

n t~rnes  
variables), or ~ (if the terms are ground). 

2.3. Semantics 

By an interpretation, we mean a Herbrand interpretation of a formula (which is 
identified with a subset of its Herbrand base), and by a model, a Herbrand model. 
Both the Herbrand universe and the Herbrand base of a Datalog,~s formula which 
has at least one function symbol are infinite. By the results of Van Emden and 
Kowalski[51], every Datalogns program S has a least (Herbrand) model M s  which 
is the intersection of all Herbrand models of S and contains all the facts implied by 
S. The least model M s  is considered the intended meaning of a program S. This 
model can be infinite in the presence of function symbols---see Example  1.1. 

Van Emden and Kowalski define a mapping Ts from Herbrand interpretations 
to Herbrand interpretations: 

Ts( I )  = {A : A i s  a fact in S or A1 E I , . . . , A k  E I and A ~-- A 1 , . . . , A k  

is a ground instance of a rule in S}. 

The successive iterations of Ts are defined as follows: 

= O. 

Tks +1 : Ts(  Tks ). 

: U >oX . 
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T~ is equal to the least fixpoint of Ts denoted by lfp(Ts). Moreover, lfp(Ts) = 
Ms [51]. 

2.4. Query Evaluation 

Assuming M is an interpretation and both II and ¢ are formulas, M ~ • means 
"M is a model of ~" and H F • means "II implies ~." 

A substitution ~ to the free variables of a query Q is an answer substitution 
w.r.t, a set of facts X if Q8 is ground and X ~ Q0. If Q is open, then the answer 
to Q w.r.t. X, denoted by ans(X, Q), is the set of all answer substitutions to Q 
w. r . t .X .  If Q is closed, then the answer to Q w.r.t. X is "yes" if X ~ Q, "no" 
otherwise. The evaluation of Q in X is the computation of the answer of Q w.r . t .X.  
Queries cofisidered in this paper are clearly monotonic, i.e., ans(X, Q) c ans(Y, Q) 
i fXC_Y. 

For a logic program S and query Q, the answer substitutions of interest are 
those w.r.t, the least Herbrand model Ms, i.e., ans(Ms, Q). If function symbols 
are present in rules, there may be infinitely (but countably) may ground answer 
substitutions w.r.t. Ms. An algorithm evalauting a query Q is sound if every com- 
puted substitution is an element of ans(Ms, Q); complete if every substitution in 
ans(Ms, Q) is computed in finite time; terminating if its computation terminates. 
The task of obtaining all answer substitutions to a query w.r.t. Ms (or a finite 
representation of those) is called generation, the task of providing a yes-no an- 
swer w.r.t. Ms-recognition. A query q is a finite-answer query of ans(Ms, Q) is 
finite. 

Because Ms may be infinite, it is not explicitly given, and answer substitutions 
w.r.t. Ms cannot be computed directly from the definition. Nevertheless, if Q is 
a quantifier-free positive query, the condition Ms ~ 3Q (where 3Q is Q closed 
with existential quantifiers) is equivalent to S F 3Q. In particular, if Q is already 
ground, Ms ~ Q is equivalent to S F Q. 

The condition S F 3Q is equivalent to the unsatisfiability of the formula (the 
set of clauses) S U {-~3Q}. Thus, procedures that determine the existence of a 
Herbrand model of S U {~3Q} can be used for recognition. 

3. D E P T H - B O U N D E D  B O T T O M - U P  EVALUATION 

In this section, we show a bottom-up evaluation algorithm that computes that 
least fixpoint of any set of Horn rules. Because of the presence of function sym- 
bols in rules that may lead to an infinite least fixpoint, the algorithm may fail 
to terminate for Datalog~s. We then show a depth-bounded bottom-up evalua- 
tion algorithm for Datalog~s that terminates for finite-answer queries. We prove 
its correctness and analyze its complexity. In the next section, we compare this 
algorithm with other evaluation algorithms for Datalogns. In the following sec- 
tion, we study the problem of detecting infinite query answers for Datalog~s 
(safety). 

3.1. Bottom- Up Evaluation 

We describe here the standard algorithm for bottom-up evaluation of logic pro- 
grams. This algorithm is a straightforward implementation of the T8 operator [51] 
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L ! :-~ D 

repeat  
L : = L  I 
L'  := L U Z(L)  

untilL = L'  

F I G U R E  1 Bottom-up evaluation: algorithm B. 

defined in the previous section. I t  may also be seen as a form of hyperresolution 
[36, 51]. In the sequel, we will assume tha t  a logic program Z U D consists of a 
finite set of rules Z and a finite database D. 

An application Z(I)  of a set of rules Z to a database I is defined on a rule-by- 
rule basis. Take a rule A ~ A1. . .  Am E Z. For every ground substi tution 0 such 
tha t  for all i = 1 . . . m ,  A~0 E I ,  we have that  AO c Z(I) .  Figure 1 describes the 
bo t tom-up  algorithm B. After w iterations of the loop, L -- l fp(TzuD) : MzuD. 
If  MzuD is infinite, w iterations are necessary to compute it. 

This algorithm can be easily adapted to evaluate a query Q in the least Herbrand 
modal MzuD. In is enough to add the evaluation of Q w.r.t. L inside the loop. This 
is correct because is every iteration, L c_ MZ(gD and the queries tha t  we consider 
are monotonic. Moreover, after finitely many iterations, L is finite because the 
rules are range-restricted. Therefore, Q can be evaluated in L as in a relational 
database. 

The above algorithm is usually termed naive evaluation [47], and can be improved 
in many ways. In particular, semi-naive evaluation [47] is an incremental variant of 
this algorithm. In the rest of this paper, we will, however, assume naive evaluation 
for simplicity. Our results can he easily adapted to its variants, like semi-naive 
evaluation. 

Clearly, if a query has an infinite answer, generation of this answer will not ter- 
minate. But even recognition cannot be guaranteed to terminate if the logic pro- 
gramming language under consideration is capable to expressing the computations 
of an arbitrary Turing machine. This is the case of unrestricted logic programs, as 
shown by Andreka and Nemeti [2] and T~irnlund [45]. 

Datalogns is an intermediate case. There, least fixpoints and query answers 
may be infinite (see Example i.I), but there is "a terminating, sound, and complete 
recognition algorithm [8, 16]. This algorithm is very different from bottom-up 
evaluation. It is not even based on resolution or hyperresolution. On the other 
hand, bottom-up evaluation does not terminate for Datalogns because it requires 
the computation of the entire least fixpoint which may be infinite. So the question 
is: can bottom-up evaluation be made to terminate while preserving soundness 
and completeness in the case of Datalogns? We are interested in the termination 
of recognition and, more generally, in the termination of the evaluation of finite- 
answer queries. 

To achieve this goal, we introduce the notion of depth-bounded bottom-up evalu- 
ation. Intuitively, we are going to impose a finite bound on the depth of atoms that 
are derived during bottom-up evaluation. The bound has to be large enough for the 
query evaluation to remain complete. Such a finite bound does exist for arbitrary 
logic programs, but it does exist for Datalogns due to the syntactic restrictions 
imposed on the type and the occurrences of function symbols. 
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Assume m is a nonnegative integer. Define the m-bounded version of a Datalog,~s 
rule r E Z as the rule rim, which is identical to r except that  its body also con- 
tains the subgoal depth(t) <_ m, called a depth constraint, where t is the te rm tha t  
appears  in the functional argument of the head a tom of r. For example, the rules 
from Example 1.1 will have the following m-bounded version: 

meets(T, X) ~-- meets_first(T, X), depth(T) <_ m. 

meets(T + 1, Y) ~- next(X, Y), meets(T, X), depth(T + 1) < m. 

In a similar way, define Z tm-- the  m-bounded version of a set of Datalogns rules 
Z. We have to slightly extend the notion of rule appl icat ion--only those ground 
substitutions will be considered that  make the added depth constraint true. 

Now, depth-bounded evaluation is defined in the following way. In the algorithm 
B (Figure 1), the application of Z is replaced by the application of Z im- - the  m- 
bounded version of Z. The resulting algorithm always terminates because only 
finitely many facts are generated. When used to evaluate a finite-answer query, 
it is sound for any value of m. To achieve completeness, however, m has to be 
sufficiently larger. Therefore, in order to to find an appropriate  value for m, it is 
necessary to look closer at various parameters  of a Datalog,~s program. 

3.2. Deriving the Depth Bound 

At first glance, it is not obvious that  m-bounded bot tom-up evaluation for any finite 
m can be a complete evaluation procedure for finite-anwer Datalogns queries. For 
arbi t rary logic programs, it is not; however, least fixpoints of Datalogns programs 
have a "repetitive" structure, and this fact can be used to bound the depth of terms 
appearing in bot tom-up evaluation. 

To formally characterize the "repetitiveness," we introduce several new notions. 
In the following definitions, assume that  M is a set of functional and data  facts, 
and to is a ground functional term. M does not have to be finite. However, it 
has to be finitely generated; the number of different constant and function symbols 
appearing in the elements of M should be finite. The least fixpoint Ms  (defined 
earlier) has this property. 

Define the snapshot M(to) of M as 

M(to) = {p(t0,~):  p(to,~) e M)}. 

M(to) may be thought of as the result of the selection (7$1=to(M). Additionally, 
M(to) is always finite because data  arguments can assume only finitely many  values. 

Define the state M[t0] of M as 

M[t0] = {p(~): p(to, (~) c M)}. 

M[t0] may be thought of as a result of "projecting out" the functional arguments 
in the predicates in M(to). Therefore, it is a finite, function-free database.  Every 
M has only finitely many different states. Moreover, if for every tM[to] is known, 
the entire set M can be reconstructed. 

Define the data part M d of M as the set of all the da ta  facts in M. This set is 
also finite. 

Consider a Datalogns program consisting of a set of rules Z, a database D, and 
a query Q. The following parameters  of the program and the query are identified: 
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k - - t h e  maximal  arity of a predicate in Z and D 
n - - t h e  number of facts in the database D 
d - - t h e  number of different da ta  constants in D 
c - - t h e  maximum depth of a (ground) functional te rm in D (c = 0 if there is 

no such term) 
h - - t h e  depth of the functional term in Q (h = 0 if there is no such term). 

Denote by s i ze / the  number of facts that  a state MzuD[t] may contain (only facts 
built with symbols appearing in Z U D are considered). If there are s~ functional 
predicates of arity i(1 < i < k) in Z [2 D, then 

sizef ,~k , i -  1 : 2 ~ i = l s i a  . 

Similarly, if there are ti data  predicates of arity i(0 < i < k) in Z and D, then the 
da ta  part  MduD may contain at most sized facts where 

sized = F~=ot~d i. 

For a fixed set of rules Z, both  s i ze /and sized are polynomial functions of the num- 
ber of da ta  constants in the database D (and therefore also polynomial functions 
of the number of facts in the database).  

Define the range of Z U D as the number of different states in MzuD. Because 
the number of facts in any state is bounded by size/, 

range(Z U D) < 2 sizel 

where s i ze / i s  a polynomial function of the number of facts in the database. How- 
ever, there are special cases [9] where range (Z U D) can be bounded from above 
by a polynomial in the size of the database D. 

As mentioned in the previous section, evaluating a ground query Q in (the least 
model of) of logic program Z U D is equivalent to testing the unsatisfiability of 
the formula Z U D U {~Q}. Evaluating a query Q with free variables consists of 
constructing all ground substitutions 0 such that  Z U D U {-~Q0} is unsatisfiable. 

Consider now only closed queries. Define the basis of a Datalogns formula 
= Z U D U {-~Q} in the following way: 

basis(O) = max(c, h) + range(Z U D). 

Therefore, 
basis(G) ~ max(c, h) + 2 sizel. 

We show now how to reduce the satisfiability of a Datalogns formula • to the 
existence of a finite model for a formula @rn derived from ~. Define a functionally- 
grounded instance O{t} of a Datalog,~s formula @ as the result of substi tuting the 
ground functional te rm t into the single functional variable T in ~. The instance 
@{t} does not have to be g round- -da t a  variables may be still unbound. I t  is clear 
that  M is a model of @ iff M is a model of every functionally-grounded instance 
¢{t}. 

Example 3.1. Assume the rule r is as follows: 

p(f(T),  X) ~-- p(T, Z) .  

The functionally-grounded instance r{0}: 

p(f(O), X)  ~-- p(O, X). 
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For a Datalogns formula 4~, define ¢m(m = 1, 2 , . . . ,  w) as follows: 

Orn : Ut:depth(t)<mffP{t }. 

Only ground functional terms t built from 0 and function symbols appearing in 
are considered. Notice that  epm is finite formula if m < w. 

Lemma 3.1. ¢ is satisfiable iff ~m is satisfiable for m = basis( ¢ ). 

PROOF. This seems to be a folk result, referenced in several papers [13, 16]. We 
have not been able to locate its proof, so we reprove it in the Appendix. [] 

One more result is needed--a  fundamental property of least models of Datalogns 
programs. 

Lemma 3.2. [8, 12]. Let Z U D be a Datalogns program and c the maximum depth 
of a functional term in D. For all ground functional terms tl  and t2 of depth 
greater than or equal to c, and every function symbol f: 

(MzuD[tl] = MZuD[t2] =~ (MzuD[f(tl)] = MZuD[f(t2)]). 

Corollary 3.1. Let p(t0, a) be a fact in MZUD. If  

depth(to) >_ c + range(Z U D) 

then there are infinitely many different terms t l, t2,. .. such that for all i, p(ti,-5) 
is in MZUD. 

PROOF. Because there are range (ZUD) different states in MZuD, then there must 
be two different terms Wl and w2 of depth greater than or equal to c and such that  
(a) Wl is a proper subterm of w2 which is a subterm of to, and (b) MzuD[Wl] = 
MZoD [w2]. Therefore, using Lemma 3.2 repeatedly, we can conclude that  there is 
a proper subterm w0 of to of depth on less than c such that  MZUD [w0] = MZuD [to]. 
Assume to = f l f2" ' "  fk (wo). Using Lemma 3.2 repeatedly, we obtain that  MzuD [tl] 
= MzoD[tO] for t l  = f l f2" ' "  fk(to). Therefore, the fact p( t l ,~)  is in MZuD. In this 
way, infinitely many facts satisfying the thesis are obtained. [] 

We now prove the main results of this section. Theorem 3.1 shows soundness and 
completeness of depth-bounded bottom-up evaluation of yes-no queries. Theorem 
3.2 shows that  with a somewhat larger, but still finite bound, finite-answer queries 
can also be completely evaluated. In the following, we use the notation introduced 
earlier in this section. 

Theorem 3.1. For m = basis(C), m-bounded bottom-up evaluation of a yes-no 
(closed) query Q is sound and complete. 

PROOF. Let L be the (finite) set of fact computed by m-bounded bottom-up eval- 
uation. If L ~ Q, then also MzuD ~ Q (because L C MZuD and Q is monotonic), 
and for every Herbrand model M of Z U D, M ~ Q. Thus, (I) = Z U D U {-~Q} is 
unsatisfiable (soundness). 
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If 4) is unsatisfiable, so is 

(~rn : Ut:depth(t)<m ¢~{t} 

by Lemma 3.1. The formula (I)~, the fully grounded version of (bin, is also unsatisfi- 
able. Moreover, q ~  is finite, as we obtain it from ~m using only the da ta  constants 
of • and there is only a finite number of those. By completeness of ground hyperres- 
olution [36], there is a ground hyperresolution refutation of (I)tm . By construction, 
this refutation consists of data  facts and also of functional facts with functional 
terms of depth at most m. By induction on the length of the refutation, it is easy 
to see tha t  is refutation is also obtained by m-bounded bot tom-up evaluation. In 
this way, completeness is obtained. [] 

Theorem 3.2. For m = max(c, h) + 2. range(Z U D), m-bounded bottom-up eval- 
uation of a finite-answer query Q is sound and complete. 

PROOF.  If only data  variables in Q are free, then the above analysis still applies. 
So we have to examine only the case when the functional variable is free. Soundness 
is immediate  because if the evaluation of Q in L gives a substitution 0, then also 

MzuD ~ Q~. 
Assume now tha t  ~ is an answer substitution w.r.t. MZUD, i.e., MZUD ~ Q8. 

Denote by to the ground functional term to which the functional variable in Q is 
mapped  by 0. If depth(to) > c + range(Z U D), then there are infinitely many  
different answer substitutions w.r.t. MZUD that  differ from ~ only in the terms 
assigned to the functional variable (Corollary 3.1). Therefore, the answer to Q 
w.r.t. Ms is infinitc a contradiction. So we can conclude that  depth(to) < c + 
range( Z U D). Consequently, 

basis(Z U n U {~QO}) = max(c, depth(to)) + range(Z u D) 

< c + 2. range(Z U D). 

Thus, there is a ground refutation of ZUDU{~QO} containing only facts with terms 
of depth at most c + 2 • range(Z U D). This refutation is obtained by m-bounded 
bo t tom-up  evaluation for m = c + 2 - range(Z U D) (see the proof of the previous 
theorem). [] 

Note tha t  in view of Theorem 3.2, in the context of Datalogns, the answer to 
a query is finite iff it can be computed by a terminating algorithm. Therefore, in 
this context, the notions of safety (query answer finiteness) and Capturability [20] 
(existence of a terminating algorithm to compute the answer, also called effective 
computability [4]) coincide. 

In Figure 2, we finally present the depth-bounded evaluation algorithm B F .  
Note tha t  it is mr-bounded evaluation for m -= max(c, h) + 2 sizeI+l rather  than  
m-bounded evaluation for m' = max(c, h) + 2. range(Z U D). The reason for this 
modification is as follows: m cannot be calculated directly from the text  of the 
program Z U D, while m t can. Sometimes a tighter bound on range(Z U D) than  
2 s ~ I + l  can be provided, and then this bound may be used in the algorithm B F  [9]. 

The termination of depth-bounded evaluation can also be obtained in a different 
way. Instead of introducing depth constraints, the termination condition in B can 
be changed to the following: no atoms with terms of depth less than or equal to 
basis(@) are in L ~ - L. 
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n ! : ~  D 

repeat 
L : = L  I 

L' := L • Zm'(L) 
untilL = L ~ 
evaluate Q in L 

F I G U R E  2 Depth-bounded bottom-up evaluation: 
algorithm BF.  

3.3. Computational Complexity 

In estimating the execution time of depth-bounded evaluation for Datalog,~s, we 
will assume that  the set of rules Z is fixed, and only the database D and the query 
Q vary. This is a common assumption in database theory, called data complexity 
(Chandra and Harel [7] and Vardi [53]). 

Theorem 3.3. The execution time of m-bounded evaluation where m = basis(O) 
can be bounded from above by a function double exponential in the number of 
facts in the database. In the case of Datalogls,  this bound can be reduced to a 
single exponential. 

PROOF. In every loop iteration, at least one new fact is obtained. The number of 
generated facts is thus bounded from above by 

nr = (m + 1). # (m)  • s i z e / +  sized 

where # ( i )  is the number of ground terms of depth i built using the constant and 
function symbols appearing in O. 

Now, m = basis(O) is exponential in the size of the database D. In the presence of 
just one unary function symbol (+1), there is exactly one ground term of any given 
depth. However, if there is more than one unary function symbol, the number 
of terms of any given depth i is exponential in i. Thus, the time bound on the 
execu t ion  of BF is single exponential for Datalogls and double exponential for 
Datalogns. [] 

Theorem 3.4. There is a set of Datalog]s rules Z, a ground Datalogls query Q, 
and an infinite family of Datalogls databases ~) with the following property: 
for every n, there is a Dn E T) of size polynomial in n such that to test the 
unsatisfiability of • = Z U Dn [2 {~3Q} the interpreter B F  will derive a set of 
facts whose cardinality is exponential in n. 

PROOF.  The basic idea is to encode adding 1 to an n-bit number. The following 
predicates are used (1 < i < n): 

one(t, ai) - "at time t, the i th bit is 1." 

zero(t, ai) =- "at time t, the i th bit is 0." 

chng(t, a~) - "at time t, the ith bit is changed." 

unchng(t,  ai) - "at time t, the i th bit is not changed." 
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The database Dn contains the facts zero(O, a~) for every 1 < i < n(ai # aj for 
i ~ j), next(ai, aj) for every 1 _< i , j  <_ n and j = i + 1 and additionally the fact 
chng(O, al) .  The set of rules Z is as follows: 

chng(T + 1, al)  ~-- chng(T, al). 

chng(T + 1, Y) ~-- next(X, Y), one(T, X),  chng(T + 1, X). 

unchng(T + 1, Y) ~-- next(X, Y),  zero(T, X),  one(T + 1, X). 

unchng(T + 1, Y) ~ next(X.Y) ,  unchng(T, Z) .  

one(T + 1, X) +-- chng(T + 1, X),  zero(T, X). 

one(T + 1, X)  ~ unchng(T + 1, Z) ,  one(T, X). 

zero(T + 1, X)  ~ chng(T + 1, X) ,  one(T, X). 

zero(T + 1, X)  ~ unchng(T + 1, X), zero(T, X). 

sometimes_one(X) ~-- one(T, X ). 

The first pair of rules describes the pat tern  of bits that  change between t and t + 1. 
The second pair of rules describes the pat tern of bits that  do not change between 
t and t + 1. The third pair of rules describes the bits tha t  become 1 at t ime t + 1, 
and the forth pair of rules describes the bits tha t  become 0 at t ime t + 1. The first 
rule contains a constant, but such a rule can be replaced by a constant-free rule 
and an additional database fact. 

The yes-no query Q -- sometimes_one(an) requires the derivation of a set of 
facts whose cardinality is exponential in n. [] 

Theorem 3.5. There is a set of Datalogns rules Z, a ground Datalogns query 
Q, and an infinite family of Datalogns databases T) with the following property: 
for every n, there is a Dn E 7P of size polynomial in n such that to test the 
unsatisfiability of (I) = Z t2 D U {--gQ} the interpreter B F  will derive a set of 
facts whose cardinality is double exponential in n. 

PROOF.  The database D is identical to the one in the proof of the Theorem 3.4. 
For the set of rules Z, we take two copies of the rules from the same proof: one with 
the function symbol f replacing +1, the other with g replacing +1. Additionally, 
we add two rules: 

r(T) e--- one(T, an). 

r(T) ~-- r(f(T)),  r(g(T)). 

The query is now simply Q : r(0). For every ground functional te rm t where 
depth(t) : 2 n - l ,  the fact r(t)  will be generated by the interpreter BF .  All of them 
are necessary to derive r(0); therefore, the execution of B F  will now require the 
derivation of a double exponentiM number of facts. [] 

4. C O M P A R I S O N  OF E V A L U A T I O N  A L G O R I T H M S  

Here, we survey a number of approaches to evaluating Datalogn8 queries. We 
will compare depth-bounded bot tom-up evaluation with a number of evaluation 
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algorithms for Datalogns that we presented in our earlier work. We will analyze the 
sources of differing computational properties of those algorithms. Moreover, we will 
briefly comment on an algorithm of Joyner [18] and, more extensively, on top-down 
evaluation (SLD-resolution). In particular, we are going to show a close connection 
between depth-bounded evaluation and hounded depth-first search. Finally, we will 
discuss the impact of rule rewriting methods like Magic Sets on the termination of 
bottom-up evaluation. 

4.1. Evaluation Algorithms for Datalogns. 

Lemma 3.1 immediately suggests a method to check the satisfiability of a Datalogns 
formula ~) = ZUDU {-~Q}. The formula (I)m does not contain nonground functional 
terms, and therefore may be considered a function-free formula. Thus, to establish 
satisfiability of era, it is sufficient to consider finite Herbrand interpretations. In 
fact, we have to consider only the interpretations M defined by the states M[t] such 
that depth (t) <_ m. 

So the first approach will be to simply enumerate such interpretations, and for 
each, to check whether it is a model of 0m. We will not present the details of 
this approach, but just mention that it leads to recognition algorithms of PSPACE 
data complexity for Datalogls (algorithm T) and EXPTIME data complexity for 
full Datalogns (algorithm F). The algorithms axe presented in our earlier work 
[8]. They are based on the work by Plaisted [30] and Ffirer [16]. The above 
bounds cannot be improved because unsatisfiability of Datalogls (resp. Datalogns) 
is PSPACE-data-complete [8, 13] (resp. EXPTIMF_~data-complete [8, 25]). 

In our previous work [11, 12], we presented another approach--a method to ef- 
fectively construct a finite representation of the least model MZUD. Lemma 3.2 
provides a theoretical foundation for this method. The finite representation can be 
subsequently used to evaluate queries. We have shown that this method of evalua- 
tion (called hereafter algorithm QF) can also achieve the best possible complexity 
bounds mentioned above. The algorithm QF uses some recognition algorithm as 
a subroutine; thus, we have two variants of it: Q F / F  (QF using F) and Q F / B F  
(QF using BF). 

We are interested in finding out 

1. whether the algorithm under consideration can be used for recognition, for 
generation (computing the entire answer), or for both, 

2. whether the algorithm terminates and achieves the lower complexity bound 
(i.e., PSPACE for Datalogns, EXPTIME for Datalogls), 

3. whether the algorithm scales down, i.e., runs in polynomial time for restricted 
classes of rules, 

4. whether the algorithm works for supersets of Datalogns. 

For a recognition algorithm to be used for generation, the algorithm has to ac- 
cept existentially quantified variables in queries and to evaluate such queries by 
computing the bindings for the variables. 

The recognition algorithm F cannot be used for generation because it answers 
an existential query without computing bindings for the existentially quantified 
variables in the query. It terminates and achieves the lower bound, but does not 
scale down. We know of no nontrivial restriction on rules (a trivial one is, for 
example, the exclusion of function symbols in recursive rules) that would guarantee 
that F runs in polynomial time. The algorithm F also works for an extension of 
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Datalogns in which clauses are not required to be Horn. The recognition algorithm 
T for Datalogls shares all of the above properties of F. 

Depth-bounded evaluation (algorithm BF) can be used for recognition, and also 
for generation if the query answer is finite (see Section 5 for methods to check this 
condition). The algorithm BF always terminates, but does not achieve the lower 
bound. On the example from Theorem 3.4, both the algorithm T and the algorithm 
BF execute an exponential number of steps. However, in contrast with T, it cannot 
be guaranteed that BF runs in polynomial space. The algorithm F works in single 
exponential time; thus, BF, which requires in general double exponential time, is 
clearly deficient. However, if a polynomial bound on basis((~) is guaranteed, BF  
will run in polynomial time on Datalogls programs. This is not the case for either 
F to T because of the enumeration approach inherent in both. Depth-bounded 
evaluation requires that the clauses be Horn, so in this sense, BF  is less general 
than F (or F if only Datalogls programs are considered). 

The generation algorithm Q F / F  terminates and achieves the lower bound for 
both closed and open queries. It is complete even for queries with infinite answers 
because it constructs a finite representation of the answer. However, it does not 
scale down because it uses F as the recognition algorithm. 

The generation algorithm Q F / B F  terminates, does not achieve the lower bound, 
but scales down, and like BF, runs in polynomial time for Datalogls if a polynomial 
bound on basis((~) is guaranteed [9]. 

Both Q F / F  and Q F / B F  require that the rules be Horn because they construct 
a finite representation of the least Herbrand model of a program. 

All of the above algorithms presuppose that the input program is a Dataldgns 
program. Some of them can handle simple extensions of Datalogns, e.g., non-Horn 
clauses. They are not, however, complete refutation procedures for arbitrary logic 
programs. 

Recently, many rule rewriting methods were introduced [4, 28, 48] in order to 
more efficiently evaluate a query using some additional information from the query 
itself (variable bindings or existential quantification). Those methods are applicable 
and yield significant gains in performance if the rules are executed bottom-up. So 
the algorithm BF should be able to benefit from them. It is unclear whether the 
algorithms F, T, and QF will be able to make use of those methods. 

Finally, let us look at the possible sources in the differences in complexity of the 
above algorithms. 

In the case of Datalogls, BF sometimes constructs an exponentially-sized ground 
hyperresolution refutation (Theorem 3.4). It is clear that any ground resolution 
refutation of the formula constructed in the proof of Theorem 3.4 has to contain 
clauses with ground terms of any given depth between 0 and 2 n-1. Thus, the size of 
such a refutation is exponential. For nonground resolution, the issue is more subtle. 
There are exponentially-sized ground refutations whose nonground counterparts are 
polynomial. 

Example 4.1. Take the following Datalogns program 

p0(0). 

p(T) ~- pO(T). 

p(T + 1) ~ p(T). 
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together with the query 

p(2n). 

To evaluate this query bottom-up, 2 ~ + 2 steps are needed. This is also the minimal 
size of any ground resolution refutation. However, if the rule can be resolved with 
itself, a much shorter, (n + 3)-step refutation suffices. A sequence of n clauses is 
obtained: 

p(T + 1) ~- p(T). 

p(T + 2) p(T). 
p(T + 4) p(T). 

p(T + 2 n) ~- p(T). 

and the last clause yields unsatisfiability in three steps. If terms are encoded in 
binary, the size of the above refutation is polynomial. 

However, our lower bound example (Theorem 3.4) contains nonlinear clauses 
where such "acceleration" is not possible because the size of the obtained nonground 
resolvents grows exponentially. We will not pursue this issue further here, but we 
conjecture that  our lower bound example for Datalogls (Theorem 3.4) will produce 
exponentially-sized refutations for any variant of resolution. 

In the case of full Datalogns, the interpreter F works in single exponential time, 
while B F  requires, in general, double exponential time. We can trace this deficiency 
to the inability of ground resolution or hyperresolution to deal with many isomor- 
phic subrefutations. It is an open problem whether a resolution-based method can 
match the upper bound achieved by F. 

Joyner [18] proposed a resolution procedure R2 that  uses atom ordering and 
clause condensation (which is essentially tableau minimization [48]). This procedure 
has several attractive properties. First, it is a complete recognition procedure for 
arbitrary logic programs. (In fact, it is also a refutation procedure for arbitrary 
first-order formulas.) Second, it is terminating for Datalog,~s queries with finite 
answers, and does not require for termination that  a bound (calculated from the 
text of the program) be supplied. However, if R2 is combined with SLD-resolution, 
the resulting procedure is incomplete. For completeness, R2 seems to require the 
ability to resolve rules among themselves. It is not clear how to efficiently implement 
such a facility. 

Recently, a number of researchers further pursued Joyner's ideas. Tammet [44], 
Zamov [56], Leitzsch [24], and Fermfiller [14] considered various classes of formulas 
in clausal form that  can be decided by resolution or hyperresolution. In particu- 
lar, the book [15] gives a hypersoLution decision procedure that  can be applied to 
Datalogns. This procedure requires, similarly to depth-bounded bottom-up evalu- 
ation, that  a program-dependent bound be supplied. 

4.2. Top-Down Evaluation 

Top-down evaluation (SLD-resolution) in its practical incarnations, e.g., the Prolog 
evaluation procedure, introduces additional problems with termination. Guaran- 
teeing termination through memoing [43, 55], breadth-first search, or ground loop 
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checking is possible for Datalog programs or, more generally, for logic programs 
with finite least fixpoints. However, in the presence of infinite least fixpoints, those 
methods are insufficient to obtain termination of all finite-answer Datalogns queries. 
A technique is necessary which would make use of the finite bound on the size of 
ground refutations. Bounded depth-first search, proposed by Stickel [42], is such 
a technique. We present here its version due to O'Keefe [29] by means of an 
example. 

Example 4.2. We extend here Example 1.1. The predicate names are shortened. 

n(a, b). 

n(b,a). 

m0(0, a). 

m(T, X) ~ m0(T, X). 

m(T + 1, Y) n(X, Z). 

r(T, X) +-- m(T, X). 

r(T, X) ~-- r(T + 1, X). 

let the query be r(0, b). O'Keefe's method yields the following rules: 

m(T, X, s(g), M) ~-- m0(T, X, N, M). 

m(T + 1, Y, s(N), M) ~ n(X, Y, N, g) ,  m(T, X, K, M). 

r(T, X, s(Y), M) ~- m(T, X, N, M). 

r(T, X, s(Y), M) ~-- m(T + 1, X, N, M). 

The added arguments count the number of resolution steps in a refutation. The 
database is also modified and contains the following facts: 

n(a, b, s(T), T). 

n(b, a, s(T), T). 

toO(O, a, s(T), T). 

The facts contain variables, but this is not a problem bacause we are considering 
top-down evaluation here. Finally, the query is as follows: 

r(O,b,k, W). 

where k is equal to the number of steps of SLD-resolution that  are necessary to 
evaluate the query. This number is less than or equal to g n r  where g is the max- 
imum number of literals in the body of a rule and nr is equal to the number of 
distinct facts that  can be generated by depth-bounded bottom-up evualuation of 
the program (Theorem 3.3). (In the context of Datalog, it was shown by Naughton 
and Ramakrishnan [28] that  top-down evaluation can, in fact, be exponentially less 
efficient than bottom-up evaluation.) 

Top-down bounded depth-first search terminates because it counts the number 
of resolutions. If only a bound on term depth in top-down refutations is imposed, 
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loop detecting techniques are still required to obtain termination. In the method 
above, we had to come up with the correct value for the bound k. Can we dispense 
with this knowledge? The iterative deepening algorithm [42, 29] invokes bounded 
depth-first evaluation with consecutive integer bounds. At some point, the value of 
the bound reaches g~r, and by that  time, any possible refutation is found. However, 
it is not clear how to terminate iterative deepening if the correct value of nr is not 
given in advance. Using a saturation test, i.e., terminating when no new answer 
substitutions are obtained in the current iteration, leads to incompleteness, even 
for Datalogns. 

4.3. Rule Rewriting Methods 

We argue here that  the termination of bottom-up evaluation of (finite-answer) 
Datalogns queries cannot, in general, be obtained by using existing rule rewrit- 
ing methods whose goal is to push selections or projections into rules [4, 48, 28]. 
Clearly, we will not be able to consider all such methods. We will study only 
Magic Sets [3, 33], one of the best known methods of pushing selections into 
rules. We will try to show that  methods of this kind seem incapable of guaran- 
teeing termination, and that  they actually introduce additional sources of nonter- 
mination. 

Example 4.3. Consider the program from Example 4.2, together with the query 
r(0, X). The result of applying Magic Sets is as follows: 

n(a, b). 

n(b,a). 

m0(0, a). 
m(T, X) ~- m0(T, X). 

¢n(T + 1, Y) ~ magic_m(T + 1), n(X, Y), re(T, X).  

r(T, X) ~-- magic_r(T), r(T + 1, X). 

r(T, X) ~ magic_r(T), m(T, X ). 

magic_m(T) ~-- magic_r(T). 

magic_m(T) ~-- magic_m(T + 1). 

magic_r ( O ) . 

magic_r(T + 1) ~-- magic_r(T). 

The query r(0, X) has a finite answer, but its bottom-up evaluation using the 
transformed version of the program does not terminate because the relation magic_r 
is infinite. 

To achieve completeness in the above example, the relation magic_r has to con- 
tain a finite, but database-dependent, number of facts. It does not seem possible to 
achieve this effect using Magic Sets or any other rule rewriting method. In addition 
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to magic predicates and rules, we need a "magic" bound that  will limit the magic 
facts generated bottom-up to a finite number. 

It  should be mentioned that  the inherent difficulty in evaluating programs like 
the one in Example 4.3 has been noticed in the literature. Kifer and Lozinskii [20] 
call it "a diverging cycle feeding into a converging one." They present a technique, 
called signatures, that  is helpful in the opposite situation, i.e., a converging cycle 
feeding into a diverging one. Seki [39] presents a variant of the same technique in 
the context of Magic Sets. The technique actually originates in the work of Sato 
and Tamaki [38, 43]. Finally, Ramakrishnan [33] also recognizes the additional 
sources of nontermination introduced by the Magic Sets transformation. Clearly, 
for some Datalogns programs and queries, Magic Sets will provide termination. In 
Example 4.3, if the rules for r were not present and the query was m(1, X),  then 
we would have the "magic" fact magic_m(1), magic_m would be a finite relation, 
and bottom-up evaluation of the program would terminate. 

The program in Example 4.3 can be transformed by hand to a program whose 
bottom-up evaluation terminates. However, if we deal with a more complicated pro- 
gram, for example, one resulting from adding the following clauses to the program 
used in the proof of Theorem 3.4, 

q(T) (-- one(T, X). 

q(T) ~ q(T + 1). 

it is no longer clear how to obtain from it an equivalent terminating program 
that  evaluates the query q(0) or even whether such a program exists at all. We 
conjecture that  there are Datalogns programs and finite-answer queries tha t  cannot 
be rewritten in a database-independent way to yield a program whose bottom-up 
evaluation terminates. If this claim is true, it will highlight an inherent limitation 
of rule rewriting methods when applied to the task of improving the termination 
behavior of logic programs. Nevertheless, proving or disproving the claim seems to 
be a formidable task, and we leave it for further research. 

It should be noted that  rule rewriting methods can be applied to improve the 
execution time of Datalogns programs. We only claim that  combining these meth- 
ods with standard bottom-up evaluation will not by itself guarantee termination of 
finite-answer Datalogns queries. To achieve termination, bottom-up evaluation has 
to be replaced by its depth-bounded version. 

. S A F E T Y  

In this section we deal with the issue of infinite query answers. If the answer to a 
query is infinite, depth-bounded bottom-up evaluation is not complete. We discuss 
two approaches to this problem. 

In the first approach, we are interested in relative safety [19], i.e., whether the 
answer to a query is finite for a given set of rules and a given database. Relative 
safety can be determined by depth-bounded evaluation with a sufficiently large 
bound. So the user will get, in addition to a finite set of answer substitutions, one 
of the following replie~: "those are the only answer substitutions" or "there are 
infinitely many more answer substitutions." 

In the second approach, a set of rules and a query are tested for universal safety 
[19], i.e., whether the answer to the query is finite for every database. If a query 
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is universally safe, the user will know that  depth-bounded evaluation of this query 
with an appropriate bound is complete. A query has to be retested for universal 
safety only if the rules change. Updates to the database which are much more 
common than rule changes do not influence universal safety by definition. We show 
that  testing universal safety for Datalog,~s is decidable, similarly to Datalog. 

We consider only simple queries (queries consisting of a single atom whose ar- 
guments are all different variables). This is not a restriction because, if a query Q 
is not simple, we can always add a new rule whose body will be Q and whose head 
will be an atom with a new IDB predicate symbol and the arguments all distinct 
and equal to the free variables of Q. 

5.1. Relative Safety 

Theorem 5.1. Let Z U D be a Datalogn8 program and c the maximum depth of a 
functional term in D. Let m = c + 3. range (Z U D). The answer to a simple 
Datalogn8 query Q is infinite iff m-bounded bottom-up evaluation of Q returns a 
substitution where the functional variable is mapped to a ground term to such that 

c + range(Z U D) <_ depth(to) <_ c + 2. range(Z U D). 

PROOF.  The right-to-left direction follows immediately from Corollary 3.1. As- 
sume now that  m-bounded evaluation does not return a substitution satisfying the 
above condition. If such an answer substitution existed, m-bounded evaluation 
would return it (Theorem 3.2). Therefore, we can conclude that  it does not ex- 
ist. Can there be an answer substitution with the functional variable mapped to 
a ground term tl of depth greater than c + 2 • range(Z U D)? Such a substitution 
might be "missed" by m-bounded bottom-up evaluation. It is an easy consequence 
of Lemma 3.2 that  there is a term t2 such that  

c + range(Z U D) < depth(t2) < c + 2. range(Z U D). 

and MzuD[tl] = MzuD[t2] .  Therefore, if there is an answer substitution 0 that  
maps the functional variable to t2, there is also one identical to t~, except that  it 
maps the functional variable to t l - -  a contradiction. Consequently, no substitutions 
are "missed" by m-bounded evaluation, and the answer to Q is finite. [] 

There is another approach to testing relative safety of Datalogns queries. The 
finiteness of the query answer can be detected from the finite representation of the 
least model MZuD[12]. That  algorithm works in exponential time for Datalogns 
and polynomial space for Datalogls; thus, it seems superior to the above method 
whose complexity is double exponential time (Theorem 3.5) and single exponential 
time, respectively (Theorem 3.4). However, testing relative safety by bottom-up 
depth-bounded evaluation has its advantages. For example, bottom-up evaluation 
scales down better, as pointed out in the previous section. Also, rule rewriting may 
be used to improve the execution time. 

5.2. Universal Safety 

Theorem 5.2. Let Z be a set of Datalogns rules and Q = r ( x l , . . . , x n )  a sim- 
ple Datalogns query. It is decidable whether ans(MzuD, Q) is finite for every 
database D. 
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PROOF. The proof consists of two major steps: a reduction to Monadic Datalogns 
(a subset of Datalogns where predicates have arity at most 1), and a proof that  
universal safety is decidable for Monadic Datalogns. 

If ans(MzuD, Q) is infinite for some database D, ans(MzuDo, Q) is also infinte 
for a database Do obtained from D by replacing every data  constant in D by an 
arbitrary single data  constant. (The reverse implication is trivially true.) This is 
easily seen because bottom-up computation of MzuDo mimicks that  of MZUD. If 
the latter requires infinitely many iterations to compute the answer to the query 
Q, so does the former. It is crucial here that  rules are range-restricted and do not 
contain the inequality symbol. 

Define the skeleton S(A) of a Datalogns term (atom) A to be the result of 
removing all data  arguments of A. This definition is extended in an obvious way 
to clauses and sets of clauses. 

We claim that  ans(MzuDo, Q) is infinite iff ans(Ms(zuDo), S(Q)) is infinite. It 
is easy seen that  bottom-up computation of Ms(ZUDo ) simulates that  of MzuDc) 
step-by-step. 

The skeleton of Z U Do is a Monadic Datalogns program. We show now that  
detecting universal safety is decidable for Monadic Datalogns by formulating uni- 
versal safety as a sentence of the monadic second-order theory of the infinite n-ary 
tree (SnS), shown decidable by Rabin [32]. We are going to show the construction 
on the following example: 

R(T) ~-- p(f(T)), w(T). 

p(g(T)) +-- r(T). 

The query Q is p(T). Consider the formula ¢(P, R, W) where P, R, and W are 
second-order variables (they correspond to predicates p, r, and w, respectively): 

¢ ( P , R , W ) = - V z ( f ( x )  e P Ax e W ~ x e P) A (x e R ~ g(x) • P). 

This formula expresses the property that  P contains the result of the query Q on 
the database consisting of R and W. We are interested in the smallest P satisfying 
¢(P, R, W). This can be expressed as 

smallest(A, R, W) = ¢(A, R, W) A (VX¢(X, R, W) ~ A C_ X).  

Now, universal safety can be expressed as 

-~3P, R, W finite(R) A finite(W) A -~finite(P) A smallest(P, R, W). 

Thomas [46] shows how to express finite(X) (meaning X is finite) using the lex- 
icographic ordering of strings, and how this ordering can in turn be expressed in 
SnS. 

The above construction is possible because of the correspondence between ground 
functional terms and strings over a finite alphabet. It may appear at first tha t  
nonunary function symbols allowed in the definition of Datalogns may create addi- 
tional problems. Such symbols cannot be eliminated here because the result of the 
elimination is database-dependent and universal safety is a database-independent 
property. However, the skeleton construction can be easily generalized to Datalogns 
programs with nonunary function symbols. The resulting Monadie Datalogns pro- 
grams will have a database-independent set of unary function symbols. [] 
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Note. One can provide an elementary (fixed-height exponential) upper bound 
on the time complexity of the universal safety problem for Datalogns as follows. 
First, notice that  for any Datalogns program, the SnS formula that  expresses uni- 
versal safety of a simple query involving a predicate of this program contains only 
a bounded number of negations (after the elimination of V, A, and first-order vari- 
ables). Then one can use the recent result of Klarlund [22] that  the complementa- 
tion of Rabin tree automata can be done in single exponential time and the well-. 
known correspondence between these automata and SnS [46] to conclude that  the 
complexity of universal safety for Datalog,~s is elementary. The exact complexity 
of universal safety for Datalogns remains an open problem. 

5.3. Related Work on Safety 

Shmueli [40] and Kifer [19] show that  relative and universal safety for Datalog are 
decidable, while for arbitrary logic programs, neither is recursively enumerable. As 
far as we know, Datalogns is the only class of logic programs with function symbols 
for which both problems are decidable. 

The notion of safety was also studied by, among others, Ramakrishnan et al. 
[34], Kifer et al. [21], and Sagiv and Vardi [37]. However, a different model was 
assumed: instead of function symbols--infinite EDB relations with finiteness and 
monotonicity constraints. This model is usually called Extended Datalog. (The 
extension of an EDB predicate r satisfies a finiteness constraint r : X -~ Y where X 
and Y are sets of argument numbers if, for every tuple w in it, the set of Y-values 
in the tuples that agre e with w on X is finite. The extension of an EDB predicate 
r satisfies a monotonicity constraint r : N -< M if, for every tuple w, the value in 
the argument N is less than that  in the argument M.) 

When comparing these two models (infinite relations versus function symbols), 
two issues have to be addressed. First, the error of the approximation, namely, 
which queries that  are safe in the function symbol model fail to be safe in the infinite 
relation model. 2 Second, the computational complexity of safety testing in both 
models. However, to reflect the special role of the functional argument in Datalogns 
predicates, we should compare Monadic Datalogns with Monadic Extended Datalog 
(monadic IDB predicates). Universal safety for Monadic Extended Datalog with  
finiteness constraints can be checked in polynomial time [37]. In this case, however, 
the approximation provided by constraints is too crude, and many safe queries will 
be missed. 

Example 5.1. Consider the following Datalogns program: 

and the query Q = q(T). 

p(T) ~-- pO(T). 

p(T) ~-- q(s(T) ). 

q(T) *-- p(T). 

This program corresponds to the following Extended 

2Any query that is safe in the infinite relation model is also safe in the function symbol 
model because function symbols provide special instances of infinite relations with appropriate 
constraints. 



D E P T H - B O U N D E D  B O T T O M - U P  EVALUATION OF LOGIC P R O G R A M S  25 

Datalog program: 

p(X) ~-- pO(X). 

p(X) ~-- q(Y), s(X, Y).  

q(X) ~- p(X) 

The binary EDB relation s captures the successor function symbol. The finiteness 
information is expressed by the following finiteness constraints: 

pO:O ~ 1 

s : l  -~2 

s : 2 ~ l .  

However, universal safety in this model requires that  the answers to a query are 
finite not only for all extensions of p0 that  satisfy the first constraint (i.e., are finite), 
but also for all extensions of s that  satisfy the remaining two constraints. One of 
the latter codes exactly the successor, but there are others as well. For example, 
consider the following infinite extension of s: 

s(1,0). 

s(2,1). 
s(3,2). 

and the extension of p0 consisting of p0(0). The answer to Q for such EDB is 
infinite. Thus, Q is classified as unsafe in the infinite relation model, although it is 
clearly safe. 

Monotonicity constraints do not really help, as witnessed by the next example. 

Example 5.2. Consider the following Datalog,~s program: 

p(T) ~-- pO(T). 

p( f(T))  ~- p(T). 

q(T) ~ qO(T). 

q(g(T)) ~- q(T). 

r(T) ~-- p(T), q(T). 

When this program is modeled as an Extended Datalog program in which the func- 
tion symbols f and g are replaced by binary relations f and g, respectively, with 
the monotonicity constraints f : 1 ~ 2 and g : 1 -~ 2 and the appropriate finiteness 
constraints, the property that  the intersection of the extensions of p and q is always 
finite is lost. Consequently, the query r(X) will be classified in this model as unsafe, 
although it is clearly safe. 

Moreover, the complexity (or even decidability) of testing universal safety for 
Monadic Extended Datalog in the presence of monotonicity constraints (in addition 
to finiteness constraints) has not been, to our knowledge, established yet. The 
decidability of universal safety for Extended Datalog is unknown [37]. Therefore, 
various sufficient conditions for universal safety have been developed [21, 23]. 
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6. C O N C L U S I O N S  A N D  F U R T H E R  W O R K  

We have shown a bottom-up query evaluation algorithm for Datalogn8, a class of 
logic programs with limited function symbols. The algorithm is always sound and 
terminating; it is also complete for all finite-answer queries. We have also shown 
that  both relative and universal safety for Datalogns are decidable. Using several 
criteria, we have compared different query evaluation methods for Datalogn8. This 
analysis should be complemented by a comparison of practical implementations 
of those methods. For example, we have only classified the algorithms according 
to the membership in specific complexity classes, which is a very rough measure. 
In general, depth-bounded evaluation looks promising because it can make use 
of various implementation techniques developed for logic programs, for example, 
incremental evaluation and rule rewriting methods. Following our earlier results 
for Datalogls [9], tractable classes of Datalogns should also be identified. 

It is interesting to see whether other classes of logic programs can be evaluated 
using a depth-bounded approach. Our depth bound can be easily obtained from 
the text of the program, and is validated by referring to nontrivial properties of 
Datalogns. There might be other ways for obtaining depth bounds, ways that  rely 
on the analysis of a single program rather than on properties of the entire class 
of programs. In this context, it may be fruitful to explore the connections to the 
work of Ullman, Van Gelder, and Sohn [41, 49, 52], Pliimer [31], and Brodsky 
and Sagiv [6] on deriving constraints among argument sizes in logic programs. 
The simple notion of a depth bound used in this paper, namely, an inequality 
of the form depth(t) < m, may be generalized to bound constraints--constraints 
built from arithmetic expressions involving various parameters of terms like depth 
or number of subterms. Similar ideas were pursued in the context of top-down 
evaluation by Vasak and Potter [54]. It is also challenging to establish the power 
of depth-bound evaluation vis-h-vis rule rewritting methods like Magic Sets. Can 
they replicate its termination behavior? A positive or a negative answer to this 
question would be very interesting. Finally, it would also be interesting to compare 
the exact and approximate (using the infinite relation model) safety analyses for 
various syntactically restricted classes of logic programs. The properties of interest 
include error of the approximation and computational complexity of the analyses. 

We believe that  the research reported in this paper is a step towards finding a 
general evaluation method for logic programs that  will also terminate for interesting, 
syntactically defined classes of programs. 

A P P E N D I X .  

F I N I T E  S A T I S F I A B I L I T Y  L E M M A S  

We prove here Lemma 3.1, which asserts that  a Datalogns formula • = ZUDU{-~Q} 
is satisfiable iff 0m is satisfiable for m = basis(O). 

The nontrivial direction is right-to-left. The formula 0m for m =basis(O) does 
not contain nonground functional terms; therefore, it can be looked upon as a 
function-free formula. Therefore, if Om is satisfiable, then it has a finite model 
M. The maximum depth of ground functional terms in Om is m; therefore, the 
model M is completely characterized by its states M[t] for ground terms t such 
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that  depth(t) <_ m. Other states of M are empty. Given M, we construct a model 
N for • which has a "repetitive" structure. 

We star t  with a few definitions. A formula (I) is in basic/orm if it satisfies the 
following restrictions: 

• all the predicates are functional. 
• 0 is the only ground functional te rm in the facts of the program or the query. 

Assume first that  (I) is in basic form. A ground functional te rm to is initial if 

Vt, (t • subterms(to) A t ~ to ~ Nit] ~ Nit0]). 

A ground functional te rm is repeating if it is not initial. 
We construct N inductively by induction on k - the depth of terms. 
If k = 0, we take g[0] = M[0]. Now, assume Nit] has been constructed for all 

terms t of depth smaller than k. Therefore, it can be determined for every such 
term whether it is initial or not. Take a term to = f ( t l )  of depth k. 

If  t~ is initial, put N[t0] = M[t0] (copying from M).  If t l  is repeating, there is an 
initial subterm t2 of tl  such that  g[tl] = N[t2]. We put N[t0] = N[f(t2)] (reusing 
N). 

It  can be shown by easy induction that  N (as constructed above) satisfies the 
following properties: 

• Yt, w, if t is not initial and t is a subterm of w, then w is not initial. 
• Vt, w, if t is initial and w is a subterm of t, then w is initial. 

From the above, it follows that  all subterms of an initial term correspond to 
different states. Because only range(Z U D) different states are considered (only 
the states from MZuD are considered), we conclude that  if t is initial, then 

depth(t) < range(Z U D) = m. 

Therefore, we see tha t  only facts with terms of depth at most m are copied from 
M to N. The remainder of N is constructed by reusing N. 

Finally, we show tha t  N is a model of (~. Take an instance ~{t0}. 
If to is initial, then by the construction of N, 

• Vt • subterms(to), N[t] = M[t] (in particular, N[0] = M[0] and Nit0] = 
M[to]). 

• N[f(to)] = M[f(to)] for all function symbols f .  

Using Lemma A.1 (proved below), we can conclude the t ruth  of ~{t0} in N from 
the t ru th  of O{t0} in M. 

If to is repeating, we can find a subterm t l  of to such tha t  Nit0] = N[tl] and tl is 
initial. Consequently, M[tl] = Nit0]. Moreover, by the construction of N,  we have 
tha t  N[f(to)] = Nil(t1)] = M[f( t l )]  for any function symbol f .  Using Lemma 
A.1, we can conclude the t ruth  of (I){t0} in N from the t ru th  of O{t~} in M. 

If ~ is not in basic form, we have to guarantee that  for all ground terms t 
in (I),N[t] = M[t] and the data  parts of both agree: N d = M d. Therefore, if 
to is a subterm of a te rm in • and Nit0] = N[tl] for a subterm tl  of to, we 
cannot simply put N[f(to)] = Y[ f ( t l ) ]  as before because tha t  might result in 
N[t] ~ M[t] for a terin t in (I). So to preserve the agreement between N and M, 
a bigger initial part  of M will have to be "copied" to N. However, for to and 
t] such tha t  depth(to) >_ max(c, h), depth(Q) >_ max(c,  h),N[to] = N[Q], and tl 
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is a s u b t e r m  of to, we can agains t  pu t  N[f(to)] = N [ f ( t l ) ] .  Therefore ,  s t i l l  on ly  
the  facts  wi th  t e rms  of d e p t h  at  most  m are  copied from M to N (where now 
m =basis(D) = max(c, h) + range(Z U D)). The  rest  of the  a rgumen t  is essen t ia l ly  
the  same. L e m m a  A.1 should be  a p p r o p r i a t e l y  general ized.  

Lemma A. 1. Assume that M and N are Herbrand interpretations for a Datalogns 
formula • in basic form such that, for two ground functional terms t M and tN, 
M[tM] = N[tg], and for every function symbol f,  M[f(tM)] = N[f(tg)].  Then 

M ~ ~(tM}iflfN ~ ~{ tg ) .  

PROOF. Take a g round  subs t i t u t i on  0 such t h a t  (I){tM}O and ff~{tN}O are  g round  
(assume t h a t  d a t a  var iables  in different clauses are r enamed  apa r t ) .  A n y  func t iona l  
a t o m  p(t,5) in ~{tM}O is ground.  Moreover,  t is tM, or t is f ( tM) for some 
funct ion symbol  f .  Therefore ,  in view of the  assumpt ions ,  t he  co r respond ing  l i tera l  
in ~{tg}O has the  same t r u t h  value in N as p(t, ~) in M .  The  subs t i t u t i on  0 makes  
an equa l i ty  or an inequal i ty  t rue  in bo th  ~{tM} and ~{tg} ,  or false in bo th .  

Thus ,  we have tha t ,  for all g round  ~, 

M ~ ~{tM}O iff N ~ ~{ty}O 

and  the  thesis  follows. [] 
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