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A b s t r a c t - - A  technique is presented to shift an eigenvalue of a complex matrix. It can be used in 
the power and inverse power method to accelerate convergence to a single eigenvslue or to eliminate 
an eigenvalue degeneracy. Error bounds are presented that indicate how the remaining eigcmvalucs 
are perturbed with each shift. 

B A C K G R O U N D  

The power method and inverse power method are two convenient numerical techniques for cal- 
culating the maximum and minimum eigenvalues of a matrix [1--4]. These methods begin with a 
guess to an eigenvector and successively refine it until an eigenvalue/eigenvector pair is obtained. 
For example, in the power method, the largest eigenvalue and its corresponding eigenvector is 
obtained. The initial guess is assumed to be composed of a sum of the eigenvectors of a matrix M: 

i=1 

where ~ is an eigenvector of the n x n matrix M so that 

M~'~ = Ai~ (2) 

Repeated multiplication of equation (1) by the matrix produces 

('~)kv-'~l) _. Ck) ._ X[k) Otl~ 1 + ~ti ~ 1  ~i 

i----2 
(3) 

where X1 is assumed to be the largest eigenvalue. If this eigenvalue is assumed to be unique, then 
the sum in equation (3) will approach zero as k approaches infinity and 

v--(~+l)tCk) 
X1 = ~ k ) t ~ )  as k --* c~ (4) 

where ~ denotes the complex conjugate transpose. In a similar manner, the inverse power method 
produced the smallest eigenvalue. For k iterations, equation (3) indicates that the error term is 
proportional to (X~/~I) ~, where ~2 is the eigenvalue closest to XI. If X2 and XI are close together, 
then convergence to the proper eigenvalue/eigenvector pair will be slow. If it were possible 
to shift the maximum eigenvalue in this case, then convergence would become proportional to 
[,~2/(~1 + ,~,)]~, where ~, is a shift variable. This paper presents a method to create this shift. 

Present shifting methods used in the inverse power method shift the entire spectrum of eigen- 
values according to [1-4]: 

( ~ _  ,~,7)¢k+1) = Ck) (5) 
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where 7 is the identity matrix. By decomposing the matrix into its eigenvector decomposition, 
it is easily seen that  this formula shifts all the eigenvalues [5,6] 

= (6 )  

where "A is a diagonal matrix of eigenvalues and V is the matrix of normalized eigenvectors. 
Equation (6) shows that  the shift variable is subtracted from every one of the eigenvalues. 

T H E  S H I F T I N G  O F  A S I N G L E  E I G E N V A L U E  

Equation (6) suggests a simple way to shift a single eigenvalue. Create a new matr ix defined 
by 

= _ ( 7 )  

where the matr ix  A~ has zeros everywhere except at the kth diagonal element at which the element 
is A°. This new matrix has eigenvalues Az,A2, . . . ,Ak-1 ,  (A~ - A , ) ,  A t+ l , . . .  ,An, i.e., the same 
eigenvalues as before, but with a single one shifted by Aa. Multiplying equation (7) produces 

= -~t(~ _ A, ~',~)~ = ~ / _  A, ~',~0"~ (8) 

where e'k is the unit vector with one at its kth element and with zeros elsewhere; e'k~ is an 
outer product,  and it produces an n x n matrix with a nonzero element only at the kth diagonal 
location. 

For the shift defined by equation (8) to work, the eigenvector fit must be known. During 
the process of the power and inverse power methods, each iteration creates a successively bet ter  
approximation to this eigenvector. In the power method, this eigenvector corresponds to the 
largest eigenvalue, whereas in the inverse power, it corresponds to the smallest eigenvalue. This 
shift can then be applied to one of these two eigenvalues using equation (8) during the course of 
iteration. 

P E R T U R B A T I O N  B O U N D S  OF  AN I N E X A C T  E I G E N V E C T O R  
F O R  S Y M M E T R I C  M A T R I C E S  

The shift defined by equation (8) assumes that  the eigenvector ~Tk is exact. Unfortunately, 
the eigenvector used is likely to contain error, and the shift defined by equation (8) will likely 
per turb all the eigenvalues of the original matrix. It will be necessary to know bounds for these 
perturbat ions in order to determine when this shift can be applied. 

Perturbat ion bounds for the eigenvalues are derived from theorems due to Wielandt and Hoff- 
man [7] and discussed in Lawson and Hanson [8]. These theorems are derived for symmetric 
matrices; the authors know of no similar theorems for general matrices. 

Given three n x n symmetric matrices such that  

M = M 4- P (9) 

denote their eigenvalues by ~ ,  rni, pi, i = 1 , . . .  , n. Then 

n 

- = _< IPI  ( i o )  
i = I  

where F denotes the Frobenius norm [9]. 
Assume now that the eigenvector used in equation (8) is close to the actual eigenvector so that 

= Ak + 6A (12) 
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m 
M~'t = Akgk 

Creating the shifted matrix based on the vector v*k produces 

(13) 

~~t "-- 
S = M - A, gk~'~ = M - A°(gk6v -'t + 6 ~ [  + 6~'6~) (14) 

N 

where M is defined by equation (8). The remaining terms in equation (14) are perturbational 
terms so that, from equation (10), 

n 

i = l  

<_ 1~°1"~(~1,5~1 + 1,5;1") (15) 

If 16~ is small, then the root mean square perturbation of the eigenvalues is approximately 
bounded by 

(~, - -n)  2 < v ~ l ~ o l x / ~  (16) 

Equation (16) indicates that for small systems (n small), small shifts (2° small), and small 
eigenvector errors (6~" small), the shifting process disturbs the eigenvalues little. 

USING SHIFTS TO C O M P U T E  MULTIPLE EIGENVALUES 

The shift defined by equation (8) can be applied after an accurate value for the eigenvector 
has been obtained, and the resulting eigenvaiues will be perturbed little. This fact suggests an 
algorithm to compute several eigenvalues of a matrix. Assume that the largest eigenvaiue A1 and 
its corresponding eigenvector gl has been found using the power method. Apply the shift 

~--(1) 

M = ~- AI~I~I (17) 

This shift creates a new matrix with the next largest eigenvalue A2 as its largest eigenvalue. 
Continuing with the power method will produce the eigenvalue As and its corresponding eigen- 
vector v'2. The next shift can be applied: 

~ ( 2 )  ~(1) 
M - M - ~ 2 v ' 2 ~  ( 1 8 )  

This process can be continued, but errors will accumulate after each shift. This process is therefore 
not recommended for more than a limited number of eigenvaiues. 

Note that in the case of eigenvalue degeneracy, if the eigenvectors are not degenerate, this shift 
will remove the degeneracy. 

NUMERICAL RESULTS 

This section presents results testing the error bounds of an eigenvalue shift (equation 16). 
Matrices with known eigenvalues were created and a single eigenvalue was shifted. The error E 
is defined as the left-hand side of equation (16): 

1 E = ( ~ i  - mi) ~ (19) 

Shifting used with the power method is considered first. Figure 1 shows the effect of an eigenvahe 
shift for different eigenvector errors ([6~1 in equation 16). The matrices tested had 4, 8, 16, and 
32 rows, and convergence was to the largest eigenvaiue whose value was 4. The staircase nature 
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Figure 1. The error of the perturbed eigenvalues of the matrix M. The largest 
eigenvalue (4) is shifted to zero at the eigenvector errors shown for (a) 4 x 4, (b) 
8 x 8, (c) 16 x 16, and (d) 32 x 32 matrices. 

of the plot is f rom the discrete nature  of the shifting process. The shift is applied only after a 
certain number  of i terations in which the error is below that  specified. 

Figure 1 shows two aspects of the eigenvalue shift. First, increasing the matrix size from 
4 to 32 only approximately doubles the error instead of increasing it by 2.8, as equation (16) 
suggests. Second, the approximately linear increase in the eigenvalue error with an increase in 
16~'1 is somewhat  worse than expected. 

Figure 2 shows how variations in the amount  of eigenvalue shift (IAa i in equation 16) affect the 
error of the per turbed eigenvalues for 16 x 16 matrices. The largest eigenvalue is shifted below 
an eigenvector error i6~'[ of 1 x 10 -4.  Although the eigenvalue errors are widely scattered, they 
seem to show a linear increase with an increase in the amount  of shift [A,], as expected with 
equation (16). 

Since equation (16) is an upper  bound on the eigenvalue error, it is useful to take a specific case 
and show how restrictive this bound is. Consider the max imum error in Figure 2. Equation (16) 
gives 

E < x /~(12 .75)~/2  x 10 -4 = 0.7212 

The  actual error is about  1 x 10 -3, almost three orders of magnitude less than tha t  given by 
equation (16). 

Consider now the inverse power method.  Figure 3 shows the per turbat ion error on the eigen- 
values as the smallest eigenvalue varies between 0 and 1. This eigenvalue is shifted to (nearly) 
zero and iteration proceeds. The final eigenvalue is the sum of this shift and the new eigenvalue. 
The  next eigenvalue is 1, so that  this case tests the range of shifting an isolated eigenvalue to a 
degenerate one. Shifting is at an eigenvector error ]6~ of 1 x 10 -4, as in the previous case. 

Little difference exists between the 8 x 8 and the 32 x 32 matrices tested. The error increases 
with larger shift, as with the power method,  but the error is considerably smaller (< 1 x 10-s).  
The  reason for this difference is tha t  iterations continue to the smallest eigenvalue after the shift. 
The  final eigenvalue is a sum of the first shift and a "residual" eigenvalue left from an inexact 
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Figure 2. The ¢~'ror of the perturbed eige~v,dues of the 16 x 16 matrix M'. The 
largest eige~value (shifted to zero) varies between 3 and 13. 
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Figure 3. The eigenvalue error in the inverse power method with varying shift for 
(a) 8 X 8 and (b) 32 × 32 matrices. 

shii't to zero. This residual corrects the final eigenvalue to be considerably more accurate than 
that suggested by equation (16). 

Figure 4 shows how shifting can accelerate the convergence of the inverse power method. 8 x 8 
matrices are tested, and the smallest eigenvalue varies between 0 and 1, with a degeneracy at 1. 
The number of iterations needed for convergence increases the closer the minimum eigenvalue 
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Figure 4. The natura l  logari thm of the number  of i terations needed (a) with and  (b) 
without  shifting with variations in the size of this shift (8 x 8 matrices). 

gets to being degenerate, as expected. Shifting approximately decreases the number of iterations 
needed by one half. Of course, this case has not been optimized to better this factor, so greater 
acceleration is probably possible, especially considering the possibility of multiple shifts. 

CONCLUSIONS 

A technique has been presented that  is able to shift a single eigenvalue of a matrix. This shift 
can be used in the power or inverse power methods to accelerate convergence to an eigenvalue. 
It can also be used to compute successive eigenvalues by shifting the largest eigenvalue to zero. 
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