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A b s t r a c t - - I n  this note, we propose a formal argument identifying the hydrodynamic limit of 
a Fokker-Planck model for granular media appearing in [1]. More precisely, in the limit of large 
background temperature and vanishing friction, this hydrodynamic limit is described by the classical 
system of isentropic gas dynamics with a nonstandard pressure law (specifically, the pressure is 
proportional to the cube root of the density). Finally, some qualitative properties of the hydrodynamic 
model are studied. (~) 1999 Elsevier Science Ltd. All rights reserved. 

1. T H E  F O K K E R - P L A N C K  MODEL 

A simple  model  for granular  media,  proposed in recent publ icat ions (see, for instance,  [2]) consists 
of  a one-dimensional  sys tem of like N part icles subjec t  to inelastic b inary  collisions. Specifically, 
each part ic le  moves  freely between two consecutive collisions. T h e  change in velocities due to  
those  collisions is given by 

v~ -- Vl + ~ (v2 - v l ) ,  v~ ---- v2 - e (v2 - Vl),  (1.1) 

where  the  p a r a m e t e r  e E]0, 1/2[ controls the  dissipat ion of kinetic energy while Vl and  v2 (respec- 
tively, v~ and  v~) are the  velocities of  the  two colliding part icles immedia te ly  before (respectively,  
af ter)  the  collision occurs.  More  precisely, assuming the  mass  of  the  part icles  equals  1, the  loss 
of  kinetic energy  per  collision is (e - e 2) x relative veloci ty before collision. 

In  [2] (see also [3,4]), a Vlasov type  kinetic model  is derived formal ly  f rom this p a n i c l e  model  
in the  l imit  as N --, +c~  and ~ --, 0 in such a way tha t ,  for some & > 0, N e  --, &. This  mode l  

reads  
cgtf + v Oxf + .~ Ov(F f )  = 0, (1.2) 

This work was partially supported by MURST and CNR-GNFM (Italy). 

0898-1221/99/$ - see front matter. (~) 1999 Elsevier Science Ltd. All rights reserved. Typeset by .A~tS-TEX 
PII:S0898-1221(99)00243-6 



122 D. BENEDETTO et al. 

with 

F = F(t, x, v) = / R  Iv' -- vl (v' -- v) / (t, x, v') dv', (1.3) 

f = f(t, x, v) denoting the density of particles which, at time t, are in position x with velocity v. 
The present note is devoted to an inelastic particle system as above, modeled as in (1.2) but 

immersed in a thermal bath at a constant temperature. In [5] this problem has been considered 
from a numerical point of view. The simulations show, in certain regimes, nontrivial clustering 
phenomena. In [1] the effect of the thermal bath is modeled by adding to the Vlasov equation (1.2) 
a Fokker-Planck term: instead of (1.2), the phase space density f must satisfy 

a t / +  v O j  + AOv(F/) = ~Cgv(V/) + aO, v/, (1.4) 

where/~ is the friction coefficient and a//~ the temperature of the thermal bath. 
In the case where the phase space density vanishes at infinity (with sufficiently high order) in 

the v-variable, one can integrate (1.4) with respect to v to obtain the continuity equation (local 
conservation of mass) 

Otp + Ox(pu) = O, (1.5) 

denoting as usual the macroscopic density by p and the bulk velocity by u, or in other words 

= f s(t, ,v)dv, = (1.6) 

Multiplying (1.4) by v and integrating with respect to v gives the momentum equation 

Ot(pu) + Cgx frt v2 f dv = -/~pu. (1.7) 

Indeed the contribution of the force is 

A I v  Ov(Ff)dr= -A/Ffdv=-A// , v ' - v ,  ( v ' - v ) f ( t , x , v ) f  ( t , x ,v ' )dvdv '=O,  
JR JR J J R  xR 

as can be seen by changing variables according to (v, v') ~-* (v', v) in the double integral. Observe 
that  (1.7) is not in closed form because it involves the second-order moment 

r y 2 / d r ,  

which is not a function of p and u unless some closure assumption is made. In addition, if the 
friction coefficient ~ = 0, observe that  (1.7) takes the form of a local conservation law, that  of 
momentum. 

Instead of looking at the limit as t ~ +co of only the spatially homogeneous solutions of (1.4) 
as was done in [1], it is also natural to look for the hydrodynamic limit (i.e., the infinite volume 
and long time limit) of (1.4). More precisely, one defines a velocity scale V > 0, a macroscopic 
length scale L > 0 and consider the dimensionless variables 

tV x v 
= -~--, • = ~ ,  V = V" (1.S) 

Defining 
7(t,~,~) = f(t,x,v) 

leads to the dimensionless form of (1.4) 

~7 + v O-~x7 + ALV O-~v (F--7) = ~O-~v(~f-)#L + ~aL ~vvT, 

(1.9) 

(1.1o) 
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with / h  

Y ( t ' : ' v )  = Jet IF' - : l  (v' - v ) f  ( t , : , v ' )  d'~'. (1.11) 

The hydrodynamic limit of (1.4) consists in letting V > 0 as well as the parameters A, t3, 
and a fixed and taking L ~ +oo. 

Notice that,  multiplying (1.10) by : and integrating with respect to ~ and : under the assump- 
tion that  the number density f vanishes (of sufficiently high order) at infinity in both • and 
leads to 

Hence, if f~ > 0 and as L ~ +c¢ and unless/~ = 0, the total momentum is instantaneously 
dissipated under the effect of the large dimensionless friction coefficient, thereby leading to the 
trivial dynamics 

• / R f ( t , : , ~  ) d ~ = 0 ,  / e t ~ f  ( t , : , ~ ) a ~ = 0 .  (1.13) 

Therefore, in the sequel, we set once and for all f~ = 0. To simplify notations, we define 

V 3 AV 4 
e---- aL and A a ' (1.14) 

and substitute this in (1.10); after dropping all bars, we get 

Or f ,  -t- vOxf ,  + 1 [A Ov (F , f , )  -- Ovvf,] = O, (1.15) 

with 
f 

F~(t ,x ,v)  = JR Iv' - vl (v' - v) f~ ( t ,x ,v ' )  dv'. (1.16) 

This problem is posed for all (x, v) E R x let with prescribed initial data 

f (0,x,v) = f i " (x ,v ) ,  (x,v) e I t  x R.  (1.17) 

The question of global existence and uniqueness for (1.15)-(1.17) with e > 0 is open. In the pure 
Vlasov case (a = f~ = 0), global existence and uniqueness of classical solutions of the Canchy 
problem for (1.2) on Rx x 1~  is established in [4] under the condition that  A be small enough 
(in terms of suitable Loo norms of the initial data). 

In the new dimensionless variables, the hydrodynamic limit of (1.4) consists in the limit as 
e ~ 0 of the singular perturbation problem (1.15)-(1.17). 

A last object naturally associated with the Fokker-Planck model (1.4) is the free energy, which 
for the dimensionless form (1.15) for f~ = 0 is defined by 

=/et dv + ') d,,d¢, (1.1s) 

defined on nonnegative measurable functions ¢ of the velocity variable v. 
A natural question is that of the existence and uniqueness of stationary states with respect to 

the free energy ~/~ above; these states minimize the free energy under the constraints of given 
total mass and momentum. Thus, we consider, for all p _> 0 and u E R,  

Kmu={¢ELl(it,(l+v2) dv),¢>_Oa.e., /etCdv=p,/etvCdv=pu}. (1.19) 
LEMMA 1. For all A > O, ~ is strictly convex with values in [0, Woo] on K1,0 and reaches its 
minimum there at a single point denoted by G~. This function G~ is even and belongs C c¢ (It). 

This is precisely Theorem 2.1 of [1] in the case of 13 = 0. 
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COROLLARY 2. For a11 A > 0 and all p > O, u E R 

inf ~/x is attained by the unique function v ~ pG~p(v - u). 
Kp,u 

PROOF. Let ¢ E Kp,=; then ¢ : v ~ (1/p)¢(v + u) belongs to K1,0 and a trivial change of 
variables shows that 

1 

y~p(¢) = p~?~ (¢) - log p. (1.20) 

One then concludes by a direct application of Lemma 1. 

As explained in [1], y~ is a Lyapunov function for the spatially homogeneous version of (1.4), 
and the functions G~ above are the spatially homogeneous steady states for (1.4). It also satisfies 
the self-consistent equation 

e-()~/3) f dv'lv'-vlaGx(v ') 

GX = f dve -(A/3) f dv'lv'-vl3Gx(v') ' (1.21) 

which is consequence of the stationary condition A O~(fF) - O . . f  = 0 for the homogeneous 
equation associated to equation (1.15). 

2. T H E  S T A T I O N A R Y  STATES A N D  
T H E  H Y D R O D Y N A M I C  LIMIT 

Defining as in (1.6) the macroscopic density p¢ and bulk velocity u~ associated to the micro- 
scopic density f~ solving (1.15)-(1.17), we see that (p~, u~) satisfy the system of conservation 
laws (1.5) and (1.7) with t3 = 0. One formulation of the hydrodynamic limit is to find a closure 
for (1.7), i.e., a function (~ such that 

limc [ fev2 dv = ¢ (lim pe, lim pcue~ (2.1) 
0 J R  \~  0 ~--*0 / 

(where the limit as e --* 0 is taken in some weak topology). One way of finding • is by postulating 
the local equilibrium condition, that  is, to leading order as e --. 0: 

f~( t , z ,  , )  ~_ p ~ ( t , z ) c ~ . ~ ( ~ , = )  ( v  - u ~ ( t , z )  ) . (2.2) 

Indeed, since the spatially homogeneous steady states for (1.4) (with ~3 = 0) are microscopic 
densities of the form (2.2) with p and u constant, it is natural to look for approximate solutions 
of (1.15),(1.16) on finite time intervals by slowly modulating the parameters of the steady state 
(that is, by letting them depend on the slow time and space variables defined by (1.8)). 

Another, more mathematical method is to apply the Hilbert expansion method to (1.15),(1.16), 
i.e., to look for solutions f~ of (1.15),(1.16) as formal series 

f~(t ,x ,v)  = ~ k f k ( t , x , v )  e C°°(R × R × a)[[~]]. 
k_>0 

(2.3) 

Observe then that model (1.15) has a nice gradient structure with respect to the free energy y~. 
Indeed, the differential of ~?~,0 is 

Since 

D~?~(f) -- l og f ( t , x , v )  + -~ Iv' - vla f ( t , x , v  ') dv'. (2.4) 

A (F,f , )  - 0 .A  = - A  O,D~l~ (A) ,  (2.5) 
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equation (1.15) can be recast in the form 

Otfe -~ v Oxfe = 1 0 v  Ire OvD~?x (fe)] • (2.6) 
e 

The Hilbert expansion method applied to (2.6) gives, to the leading order, 

at order e -1 : Ov If00vDyx (f0)] = 0. (2.7) 

Equation (2.7) is the equilibrium equation for the homogeneous version of equation (1.15). The 
regular, positive, summable, and stationary solutions of the homogeneous equation must coincide 
with a minimum of the functional O with the constraints for the density and the momentum, 
being ~ strictly convex. Then 

fo(t ,  z ,  v) = p(t,  - u(t, z)). (2.8) 

Hence, (2.8) is a justification to the formal approximation 

£ ( t ,  z ,  v) ~- p(t, z)Gxp(t,z) (v - u(t,  x ) ) ,  as e ~ O. (2.9) 

As a consequence, one is led to define (I) by the relation 

LEMMA 3. 

(I)(p, pu) = / R  pG~p(v - u)v 2 dv. (2.10) 

For all A > O, one has 

\ / 
v E R .  

PROOF. Let ¢ • K1,0; for all a > 0 the function ~ : v ~ a¢(av)  also belongs to K1,0 and one 
has 

~/a(¢) = ~/a/a3(¢) + log(~. (2.11) 

Putting ¢ = Ga and a = A1/3 shows that ¢ : v ~ A-1/3Ga(A-X/3v) minimizes ~h,0 on K1,0 and 
must by the uniqueness part of Lemma 1 coincide with G1, thereby proving our claim. 

COROLLARY 4. For all p > 0 and m • R, the function ~ defined by (2.10) is given by the formula 

m 2 
¢(p,  m)  = ~ + kp 1/3, (2.12) 

P 

with the constant k > 0 defined by 

PROOF. Indeed 

k = A I/a f i t  Gl (w)w2 dw. (2.13) 

*("'") _..)) (2.14) 

in the integrand of the right-hand side of (2.14), split 

v 2 = u 2 + 2u(v - u) + (v - u) 2. (2.15) 

Since G1 belongs to K1,0 by definition, changing variables by v ~-* w = ) ~ l / 3 p l / 3 ( v  - u )  gives 

(2.16) 
JR \ / 
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with k given by (2.13), while 

/Rp4/3.~1/3G1(.k1/3pl/3(v- u)) dv = p, 
(2.17) 

/R p4/3"~I/3G1 (~l/3pI/3(u - u)) (v - u)dv -.~ O. 

The announced formula (2.12) directly follows from the decomposition (2.15) in the integral (2.14) 
and from (2.16),(2.17). 

Thus, the hydrodynamic limit of (1.15),(1.16) is formally given by the approximation (2.9), the 
parameters p and u of the stationary state being governed by the system of conservation laws 

a ,p  + 0 (m) = 0, 

Otm + ox (m---~ + kp 1/3) = 0 .  (2.18) 

The system (2.18) coincides with the Euler system of isentropic gases with pressure law 

1 
P(P) = kP "Y, 7 = ~. (2.19) 

However, the exponent 7 = i /3  is extremely nonstandard; in classical gas dynamics, 7 = 1 + 2/N 
where N is the number of degrees of freedom for the gas molecule. The mathematical theory of 
the P-system is by now well understood for 7 > 1; see [6, p. 275, Remark 8.6] and the references 
therein. When 0 < 7 < 1, the qualitative properties of the P-system change radically (see the 
few remarks below); somehow, system (2.18) is intermediate between the standard P-systems 
with 7 > 1 and the system of pressureless gases, the mathematical theory of which is completely 
different from that  of P-systems with 7 > I; see [7,8]. 

3. SOME QUALITATIVE PROPERTIES 
OF THE H Y D R O D Y N A M I C  MODEL 

In this section, we develop a few considerations about the hydrodynamical model (2.18),(2.19) 
which we also recast in the nonconservative form 

a ,p  + = o, 

1 Otu + uOxu = "~ Ox (p-2/3) . (3.1) 

Obviously the system (3.1) is equivalent to equations (2.18),(2.19) at least in the case of smooth 
solutions. 

3.A. T h e  C loud  of  Gas  in t h e  Vacuum:  T h e  Local Exis tence  P r o b l e m  

The first natural problem arising for system (3.1) is the construction of a local solution. We 
analyze the problem in the case of finite total mass, describing an expanding cloud of a granular 
gas (maintained at an infinite temperature). 

The difference with the usual equations of the dynamics of an isentropic gas with a pressure 
law p = kp ~, ~ > 1 is clear. In the latter case, if p --* 0 as Ixl --* c¢, the force term given 
by the pressure vanishes as Ixl --* +oc. On the contrary, in the former case the force, given 
by (1/2)axp -2/3, becomes infinite, so that  the particles axe accelerated towards +o0. This is 
a consequence of our scaling. Indeed, both the thermal fluctuations as well as the inelastic 
interactions are very strong. Thus, a test particle in the vicinity of +c~ has almost all the 
mass to the left. The thermal fluctuations towards the left are damped by the inelastic collision 
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mechanism while on the right almost no barrier prevents large accelerations. All these facts 
make it difficult to establish a local existence theorem for the hydrodynamic model (2.18) or its 

equivalent form (3.1). 
To present a more convincing argument consider a smooth solution to system (3.1). In the 

case of smooth solutions, such a system is equivalent to the following Hamiltonian system: 

~(t, =) = - o = v  (t, x(t ,  z ) ) ,  

x(O,=) = z, ~(o,x)  = =o(~), 

v(t ,=) = -~-p-~/3(t,x). where 

(3.2) 

(3.3) 

The density p = p(t, x) is transported along characteristics X = x(t ,  x) according to the formula 

fR p(t, = f. (x(t,x)) (3.4) 

where ¢ is any test function and (P0, u0) is the initial data for the system (3.1). Assume that  for 

x > 7, P0 is decreasing and that  

Po = 0 ( I x l - " ) ,  (3.5) 

and, for the sake of simplicity, that  u(0, x) = uo(x) = 0 for all x. Suppose also that  there exists 
a smooth local solution (p(t, x), u(t, x)) and a positive time to, small enough so that ,  for t < to, 
p and O=p can be considered for all practical purposes as constant in time. Therefore, we are led 
to consider the Hamiltonian system 

~(t, x) = -O=Vo (x(t, x)) , (3.6) 

where 

For this system the energy 

is conserved. 
given by 

1 ,._213/,,4 Vo(=) = - p ' o  ~ , .  (3.7) 

1 E(x) = 5 Ix(t '=)12 + Vo (x(t,=)) (3.8) 

Then the t ime that  a particle initially at position x0 > • needs to reach +o~ is 

ri 
o d= ~ ~o~ .a£ 

t (=o) = o ~/2 (E(=o)  - Vo(=)) - o ~/po~/3(x) po 2/3 (=o) (3.9) 

o V X  2a/3 -- X0 2a/3 ~/y2(~/3 _ 1 

Thus, if a > 3, t(xo) ---* 0 as Xo ~ +oo. 
In particular this implies that  there exist particles which reach an infinite speed in an arbitrary 

small time. As a consequence we do not expect existence of local smooth solutions if p decays 
faster than 1/x 3. 

If a <_ 3, the energy 

1 /  3 / p l / 3 d x ,  (3.10) E = -~ pu 2 d x -  

and the second term in the right-hand side of (3.10)--the potential energy--is  unbounded. There- 
fore, the only possibility for the energy to be finite is that  both the kinetic energy and the potential 
energy be infinite and that  their divergences be compensated. In particular, an upper bound on 
the energy of a solution does not guaranty that  the solution remains bounded for all times. In 
the next section, we exhibit a family of solutions all the mass of which concentrates at a single 
point in finite time, but which has finite energy, in the case where (3.5) holds with a = 3. 
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3.B.  T h e  C l o u d  o f  Gas  in t h e  V a c u u m :  C o n c e n t r a t i o n s  

The physical nature of the system under consideration and its similarity with the pressureless 
gas (see Section 3.D below) suggests to look for solutions concentrating in a finite time. We seek 
such solutions in the class of self-similar solutions of (3.1). 

Let to > 0, set T = t0--  t and 

p ( t , x )  = (3.11) 

for some critical exponent a and some universal function Po > 0, Po E LI(R) .  Obviously, 
as t --* to, p --, MS(x) in the sense of weak convergence of bounded measures on R,  where 

M = frt po(x) dx is the total mass of the density Po. 
Next assume that  p satisfy the continuity equation (i.e., the first equation in system (3.1)): it 

is found that  
x 

u(t,x) = - a - .  (3.12) 
T 

On the other hand, the momentum conservation equation (i.e., the second equation in (3.1)) gives 

a ( a -  1 ) ~  2 = 1 - a / 3  X - 5 / 3  ! . (3.13) 

which entails 

as well as 

Solving (3.15) we finally obtain 

3 
a = 2 '  (3.14) 

(.o5/%) (x)= (3.15) 

1 1 1 

p(t,x) -- (3/4)3/2 ( t o - t ) 3 / 2  ( ( x /  (to - t)3/2) 2 + c) 3/2' (3.16) 

where the constant c = 16/3v/3M explicitly depends upon the total mass M = fRp ( t , x )dx ,  
which is left arbitrary. 

It is easy to check that ,  while both pu 2 and pl/3 behave like 1~Ix I as x --* ±c¢ and therefore, 
are not integrable, (1/2)pu ~ - (3/2)p 1/3 behaves like 1/Ixl 3 and therefore, is integrable. Thus, 

the self-similar solution defined by (3.12)-(3.16) concentrates in finite time but  has finite energy. 

3 .C.  C o n c e n t r a t i o n ,  Shocks ,  a n d  E n t r o p y  

If the granular gas is confined in a slab or if it is assumed that  its density does not vanish at 
infinity, one can prove the existence and uniqueness of smooth solutions to (3.1) on some short 
t ime interval (i.e., before such singularities as shocks, blowing-up or vanishing of the density 
occur). A natural problem is to investigate which type of the singularity occurs first. The 
following example shows that  this first singularity can be both a shock and a concentration that  
occur at the same time. 

Consider the following initial data  for system (3.1): 

ao for x < - a 0 ,  
to ' 

p(0, x) = tt u(0, x) = _ x for - a0 < x < a0, (3.17) 
tO ' tO ' - -  - -  

ao for x > ao, 
to ' 
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where a0, to, # are positive constants. With this initial data  the system exhibits a singularity in 
the density at time t = to, if w = ao/to - v/3(to/#) t/3 > O. 

The solutions can be constructed as follows. Let 0 < t < to; define 

a ( t ) = ( t o - t )  w + - ~ ( t o - t )  1/3 • (3.18) 

For -a( t )  < x < a(t), the pair p(t, x) = gl(to - t ) ,  u(t, x) = - x l ( t o  - t )  obviously solves the 
system (the force term being equal to zero). Notice that  (p( t , -a( t ) ) ,  u( t , -a( t ) ) )  is on the first 
rarefaction curve (see [9] for this notion) 

u = w + v / ~  1 p113" (3.19) 

We construct the solution for 0 < t < to, x < -a( t )  by transporting the values of (p,u) at 
(t, x) = ( t , - a ( t ) )  by the first characteristic field, the propagation speed of which is given by 

h i  (r) = u 
1 1 

p 1j3 
2 1 

= w + v ~  gl/3 (to - t) 1/3. (3.20) 

In other words, we have constructed a rarefaction wave matching the solution for -a ( t )  < x < a(t) 
with left constant state given by (p, u) = (g/to, -ao/to).  

Let 0 < t < t < to and 
x ( t , t )  = - a ( t )  + ( t - t ) A 1  (t) .  (3.21) 

It is easy to verify that  - a0  + tAt(0) < x(t , t )  < -a( t )  and that  oz ~-~ > 0. Then we can define its 
inverse function t(t, x). By construction, t solves 

and 

Ott+/~1 (t) 0zt = 0, (3.22) 

( ) (pCt, x) ,  uCt, x) )  = (to - z ( ~ , t ) ) '  w + ( g / ( t o  - ~ ( x , t ) ) ) g l / 3  (to - zCx, t ) ) l / 3  (3.23) 

is a rarefaction wave, which solves the system for - a0  +tA1 (0) < x < -a( t ) .  For x _< - a0  +tX1 (0) 
the solution is given by the left state (p, u) = (g/ to , -ao/ to) .  A similar construction gives the 
solution for x > a(t). 

The solution so constructed is a continuous solution with velocity field bounded for all time. 
As t -~ to, the density blows up, and develops a Dirac component at x = 0 with mass 

f ac t )  
lim p(t, x) dx = lim 2a(t) g = 2gw. (3.24) 

t - . t o  d-a(t) t-*to tO -- t 

More precisely, for Ixl ~ t~13/V~g 113, 

lim p(t, x) = 2gw~(x) + 
t - * t o  

# 

(v~gl/Zlxl) 3/4' 

lim u(t ,x)  = sgn(x) w + ~ 
t --~ t o 

(3.25) 

Let us finally consider the problem of shock wave solutions to the hydrodynamic model (3.1) 
or (2.18),(2.19). A first question is to select what are the physically relevant weak solutions. In 
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the usual isentropic gas dynamics case (p = kp ~, 3' > 1) the usual entropic solutions predicted by 
the global theory of 2 x 2 systems of conservation laws due to DiPerna and completed by Lions, 
Perthame and Souganidis (see [6] for a survey of these results) are not physically relevant. As it 
is well known (see for instance [10]) one must add the energy or temperature equation to the mass 
and momentum conservation, that is, the full compressible Euler system. As long as the solution 
remains smooth the two descriptions are equivalent for isentropic states (i.e., with temperature 
proportional to p~- 1). In the case of solutions involving only weak shocks (as in Glimm's theory; 
see [9]), the isentropic Euler system is a good approximation of the full compressible Euler, as was 
recently proved by Saint-Raymond [11]. In presence of shocks of arbitrary amplitude however, 
the state equation p = kp ~ is not valid anymore because the solution of the full compressible 
Euler system ceases to be isentropic. Entropic solutions of the full compressible Euler system are 
the natural hydrodynamic limit of the classical kinetic theory (see for instance [12]). 

The classical kinetic theory of gases suggests to add to (2.18),(2.19) the limiting entropy in- 
equality 

Ot / dv11(f~) + / dvv D~(f~) O~f~ = - l  f f~(OvD,(f~)) 2 <0, (3.26) 

verified by the solution of the kinetic model (2.6) before considering its hydrodynamic limit (2.18), 
(2.19). However, at variance with the classical result pertaining to the compressible Euler limit 
of the Boltzmann equation, the term f v D~l(f~) Oxf~ is not the derivative with respect to x of 
an entropy flux. This is in accordance to the fact that the free energy functional evaluated on 
the local equilibrium distribution is of the form (4/3)p log p + const p, which is not an entropy for 
system (2.18),(2.19). 

3.D. T h e  La rge  M a s s  L imi t  

We return to the kinetic model (1.15),(1.17) again with Fokker-Planck constant a/e (instead 
of simply 1/e as after the scalings (1.14)). Consider an initial data fin of the form 

= M g i n ( z , v ) ,  / / g i n ( x , v )  dxdv = 1. (3.27) s (z,v) 

Let f~t be the solution of (1.15),(1.16); we normalize it consistently with (3.1), by considering 
g~u = f~4 /M" Clearly, g~4 satisfies 

tgM+vOxgM g~M ] v ' - v l ( v '  v)g~M(V,)dv , =--a OggM.2 e (3.28) 

PROPOSITION 5. Assume a > O, gin >_ 0 a.e. with f f ginv2 dx dv < +oo. Then, any limit point g 
of g" M in w - L°°(R+; 3d(Rx x Rv)) when M -~ +c~, is of the form 

g(t, x, v) = p(t, x)6 (v - u(t, x)) . (3.29) 

If  moreover, f fg;nv4dxdv < +c¢, then the functions p and u in (3.3) satisfy the system of 
pressureless gasses 

+ O (pu) = o, 
Ot(pu) + Ox (pu 2) = 0. (3.30) 

PROOF. Multiplying (3.28) by (e/M)x(v) and integrating on [0, T] x R~ x 1~  (assuming enough 
decay for g ~  as (x, v) ~ + ~  for fixed e and M)  leads to 

-~ g~M(T,x,v)x(v)dxdv 

+ ~ Iv - v' I (v' - v)- (X' (v') - :g'(v)) g ~  (t, x, v)g~M (t, x, v') dt dx dv dr' (3.31) 

a T ~ f f  = -  [ f f  g'M(t,x,v)X"(v)dxdv+-  j j  gln(x,v)x(v)dzdv. 
M J o J J  
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Choose  first X(v) -= v2; equa t ion  (3.31) impl ies  t h a t  

r f f f  3 Iv - u gM(t,x,v)g~M ( t , x , v ' )  d t d x d v d v '  <_ 
Cs te  + 2 a T  

M 
(3.32) 

and  t h a t  
/ /  g~M(T,x,v) d x d  v < Cste  + 2 a T  

- e M  

Inequa l i t y  (3.32) obvious ly  es tabl ishes  (3.29). 

A p p l y i n g  again  (3.31) wi th  X(v) = v 4, and  using (3.33) 

(3.33) 

//g C M ( T , x , v ) x ( v ) d x d v  <_ 12aT  C s t e ÷ 2 a T  / / g i n ( x , v ) x ( v ) d x d v ,  
e2 q- 

(3.34) 

which  allows to  t ake  l imi ts  in the  sys tem (1.5),(1.7) wi th  ~ = 0 and  g ~  in t he  p lace  of  f ( th is  

s imp ly  a m o u n t s  to  d iv ide  (1.5) and  (1.7) by  M ) .  T h e  l imi t ing  sys t em obvious ly  reduces  to  (3.30) 

as announced .  
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