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It is the main purpose of  this paper to find conditions in an Archimedean 
semiprime f-algebra A which are equivalent to the statement that every order 
ideal in A is a ring ideal (i.e., an algebra ideal). 

1. PRELIMINARIES 

For  unexplained terminology and the basic results on vector lattices (Riesz 
spaces) and f-algebras we refer to [4] and [5]. Recall that a vector lattice A is 
called a lattice ordered algebra if there exists an associative multiplication in A 
with respect to which A is an algebra and with the additional property that 

x , y~A+ =xy~A + 

(A ÷ denotes the positive cone of A). A lattice ordered algebra A is called an 
f-algebra whenever 

xA y=O=(xz)A y=(zx)A y=O for all z e A  +. 

We shall assume throughout  this paper that A is an Archimedeanf-algebra (and 
hence A is commutative [5, 140.10]). 

A positive operator  T on A is called a positive orthomorphism if it follows 
f rom xAy=O in A that xATy=O. The difference of  two positive ortho- 
morphisms is called an orthomorphism. The collection Orth(A) of  all ortho- 
morphisms on A is an Archimedean f-algebra with unit element I, the identity 
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mapping on A ([5, 140.9]). The principal order ideal in Orth(A) generated by 

I is called the center o f  A and is denoted by Z(A).  
For every x e A ,  the operator  Tx: A ~ A ,  defined by Tx(Y) =xy  for all y e A ,  

satisfies TxeOrth(A) .  The mapping 0 : A ~ O r t h ( A )  which assigns Tx to x is a 
lattice homomorph i sm and a ring homomorphism.  Fur thermore,  0(A) is a ring 
ideal and a vector sublattice of  Orth(A). Moreover,  ~ is injective if and only 

if A is semiprime ([3, 12.1]). A norm on A is called a Riesz norm (or an 

absolutely monotone  norm) if Ix I < lyl implies Ilxl] < Ily[f- Such a norm is called 

an M-norm if Ilxvyll = m a x  (llxlI, Ilyl3, for all x, y e A  +. 
We can introduce in A - - ,  the order bidual of  A, a multiplication, the 

so-called Arens multiplication ([2, 4.1]) as follows: given a, b c A ,  f e  A -  and 
F, G e A - - ,  we define f .  a e A - ,  F . f e  A - ,  and F .  G e A - - by the equations 

(1) ( f .  a)(b) =f(ab)  

(2) ( F . f ) ( a ) = F ( f . a )  

(3) (F. G ) ( f )  = F(G . f )  

Then A - - is an Archimedean lattice ordered algebra with respect to the Arens 
multiplication. I f  A - separates the points of  A we can embed A in A - - .  The 
Arens multiplication in A - - extends the original multiplication in A. 

2. MAIN RESULTS 

In this paper  we consider the following question: What  conditions can be 

imposed on an Archimedean f -a lgebra  A to ensure that  every order ideal in A 
is a ring ideal? Partial solutions of  this problem were obtained in ([1, 1.10]), 

where it is shown that in an FF-Banach lattice algebra A every order ideal is 

a ring ideal if and only if A is an Banach f -a lgebra  and in ([3, 17.8]), where it 

is noticed that  in an Archimedean f -a lgebra  A with unit element e every order 
ideal is a ring ideal if and only if e is a strong order unit (equivalently, A has 
a strong order unit). 

Let us first show that  the problem in question only makes sense in the class 

of  f-algebras.  

PROPOSITION 1. Let  A be an Archimedean lattice ordered algebra. I f  every 
order ideal in A is a ring ideal, then A is an f-algebra. 

PROOF. Take x, y e A + such that xA y = 0 and z ~ A + arbitrary.  The principal 

order ideal I x generated by x is, by hypothesis, a ring ideal, so x.  z e I x. In 

other words, 0 < x .  z < ~lx for appropriate  real 2 > 0. It follows f rom ~.x/x y = 0 
that x ' z A y = O .  Similarly, Z . X A y = O  and we are done. 

REMARK 2. The converse of  proposit ion 1 does not hold in general. Indeed, 
A = C (IR) is an Archimedean f-algebra,  but the order ideal generated by i (with 
i(x) = x for all x e E) is not a ring ideal. 
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THEOREM 3. Let A be an Archimedean f-algebra. The following statements 

are equivalent: 
(i) every order ideal in A is a ring ideal of  A, 

(ii) every order ideal in A is a subalgebra of  A, 
(iii) ¢(.4) is a subset o f  Z(A). 

PROOF. (i)- '(ii) Obvious. 
( i i)~ (iii) For any x e A ÷, the order ideal Ix is a subalgebra of  A, so x2e  Ix. 

This implies that x2<_).x for some ,a~>0. Hence, ¢(x)E=¢(x2)<-;.O(x). But 

Orth(A) is semiprime, so O<_¢(x)<_RI, as by [3, 12.3] O<_uE<_uv implies u<_v. 

This shows that ¢(A)CZ(A).  
(iii)~(i) Evidently, it is sufficient to prove that, for any x ~ A  +, I x is a ring 

ideal. To  this end, take y e A  + and observe that ¢(y)=TyeZ(A)  +, i.e., 
0<_ Ty<_;.I for some X>0.  This yields 0_< Ty(x) =xy<_).x and thus x y e I  x. This 

holds for all y e A +, so I x is a ring ideal. 

The next corollary generalizes ([1, 1.10]). 

COROLLARY 4. For a Banach lattice algebra A the following conditions are 

equivalent: 
(i) A is an f-algebra, 

(ii) every order ideal in A is a ring ideal. 

PROOF. This follows immediately from proposition 1, theorem 3 and the fact 
that Z(A)= Orth(A) for any Banach lattice A ([5, 144.31). 

We are now in a position to prove the main theorem of  this paper. 

THEOREM 5. Let A be an Archimedean semiprime f-algebra. 
following statements are equivalent. 

(i) every order ideal in A is a ring ideal of  A, 
(ii) every order ideal in A is a subalgebra of A, 

(iii) A is lattice and algebra isomorphic to a sub-f-algebra of  Z(A), 
(iv) there exists an M-norm in A, 
(v) there exists a Riesz norm in A. 

Then the 

PROOF. The equivalence of  (i), (ii) and (iii) follows from theorem 3 and the 
fact that q~ is injective. We shall prove (iii)= (iv)= (v)= (i). 

(iii)--* (iv) The gauge j (T )  = inf { ;t > 0 : - 2I_< T_< ;tI } defines an M-norm on 
Z(A), the restriction of  which is an M-norm in A. 

(iv)-,(v) Trivial. 
(v)~(i)  The norm dual A* of A is a Banach lattice, which separates the 

points of  A. Moreover,  A*  is an order ideal in A -  (the order dual of  A) 
([5, 102.3]). Observe now that (A *)£- is an Archimedeanf-algebra with respect 
to the Arens multiplication in which A can be embedded as a sub-f-algebra (see 
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[2,4.4 and the remarks fol lowing corol lary 4.5]). But (A *)£- is a b a n d  in 

(A *) -  = A  ** (note tha t  A * is a Banach lattice [5, 102.3]) and  hence (A *)£- is 

closed. It follows that  (A *)7 is a Banach lattice on its own.  By corol lary  4, 
every order ideal in (A *)7 is a ring ideal. Now,  let I be an order  ideal in A and  

denote by J the order  ideal in (A *)~" generated by I. Then  J is a ring ideal in 

(A *)£- by the above. Hence  x ~ I  +, y e a  ÷ implies x y e J O A .  It  follows f r o m  

x y  ~ J that  0 < x y  < z for  some z e I +, so the fact  that  I is an  order  ideal in A 

together  with x y  c A  yields x y  ~ 1. Consequent ly ,  I is a ring ideal in A.  
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