Spin Hecke algebras of finite and affine types

Weiqiang Wang
Department of Mathematics, University of Virginia, Charlottesville, VA 22904, USA
Received 28 June 2006; accepted 28 November 2006
Available online 29 December 2006
Communicated by Michael J. Hopkins

Abstract

We introduce the spin Hecke algebra, which is a q-deformation of the spin symmetric group algebra, and its affine generalization. We establish an algebra isomorphism which relates our spin (affine) Hecke algebras to the (affine) Hecke-Clifford algebras of Olshanski and Jones-Nazarov. Relation between the spin (affine) Hecke algebra and a nonstandard presentation of the usual (affine) Hecke algebra is displayed, and the notion of covering (affine) Hecke algebra is introduced to provide a link between these algebras. Various algebraic structures for the spin (affine) Hecke algebra are established.

© 2006 Elsevier Inc. All rights reserved.
MSC: primary 20C08
Keywords: Hecke algebra; Spin symmetric group; Clifford algebra

1. Introduction

1.1. A basic question

The spin (or projective) representations of the symmetric group were first developed by I. Schur [8] in 1911. We refer to Józefiak [3] for an excellent modern exposition of Schur's work by a systematic use of superalgebras. The symmetric group S_{n} admits a double cover S_{n}^{\sim}, nontrivial for $n \geqslant 4$:

$$
\begin{equation*}
1 \rightarrow \mathbb{Z}_{2} \rightarrow S_{n}^{\sim} \rightarrow S_{n} \rightarrow 1 \tag{1.1}
\end{equation*}
$$

[^0]A spin representation of S_{n} is equivalent to a representation of the algebra $\mathbb{C} S_{n}^{-}:=\mathbb{C} S_{n}^{\sim} /\langle z+1\rangle$, the quotient of the group algebra $\mathbb{C} S_{n}^{\sim}$ by the ideal $\langle z+1\rangle$, where z denotes the central generator of order 2 coming from \mathbb{Z}_{2}. The algebra $\mathbb{C} S_{n}^{-}$has a presentation with generators $t_{i}(1 \leqslant i \leqslant n-1)$ subject to the relations:

$$
\begin{gather*}
t_{i}^{2}=1, \quad t_{i} t_{i+1} t_{i}=t_{i+1} t_{i} t_{i+1} \tag{1.2}\\
t_{i} t_{j}=-t_{j} t_{i} \quad(|i-j|>1) \tag{1.3}
\end{gather*}
$$

As is well known, Hecke algebras have played an important role in various aspects of representation theory (for some recent developments see the books of Ariki [1] and Kleshchev [5] and the references therein). We ask the following basic question: Is there a natural q-deformation (i.e. Hecke algebra) for $\mathbb{C} S_{n}^{-}$and $\mathbb{C} S_{n}^{\sim}$? It is conceivable that a canonical solution to this question, if it exists, might open the door to further new developments in representation theory.

However, there is no standard procedure to define Hecke algebras except for Coxeter groups and perhaps for complex reflection groups. The group S_{n}^{\sim} is neither a Coxeter group nor a complex reflection group.

1.2. An affirmative answer

In this paper we introduce the spin Hecke algebra \mathcal{H}_{n}^{-}and the covering Hecke algebra \mathcal{H}_{n}^{\sim} as q-deformations of $\mathbb{C} S_{n}^{-}$and $\mathbb{C} S_{n}^{\sim}$, respectively. We also introduce the spin and the covering affine Hecke algebras, denoted by $\widehat{\mathcal{H}}_{n}^{-}$and $\widehat{\mathcal{H}}_{n}^{\sim}$. The spin (affine) Hecke algebras arise from different setups and they enjoy various favorable properties.

Set

$$
\varepsilon=q-q^{-1} .
$$

The spin affine Hecke algebra $\widehat{\mathcal{H}}_{n}^{-}$is the $\mathbb{C}(q)$-algebra generated by $R_{i}, 1 \leqslant i \leqslant n-1$, and p_{i}, q_{i}, $1 \leqslant i \leqslant n$, subject to the following relations:

$$
\begin{gathered}
R_{i}^{2}=-\varepsilon^{2}-2, \\
R_{i} R_{j}=-R_{j} R_{i} \quad(|i-j|>1), \\
R_{i} R_{i+1} R_{i}-R_{i+1} R_{i} R_{i+1}=\varepsilon^{2}\left(R_{i+1}-R_{i}\right), \\
R_{i} p_{i}=p_{i+1} R_{i}+\varepsilon\left(q_{i}-q_{i+1}\right), \\
R_{i} q_{i}=-q_{i+1} R_{i}-\varepsilon\left(p_{i}+p_{i+1}\right), \\
R_{i} p_{j}=p_{j} R_{i}, \quad R_{i} q_{j}=-q_{j} R_{i} \quad(j \neq i, i+1), \\
p_{i} p_{j}=p_{j} p_{i}, \quad q_{i} q_{j}=-q_{j} q_{i} \quad(i \neq j), \\
p_{i}^{2}+q_{i}^{2}=1, \\
p_{i} q_{j}=q_{j} p_{i} \quad(\forall i, j) .
\end{gathered}
$$

The algebra $\widehat{\mathcal{H}}_{n}^{-}$can be viewed as a quantum version of the degenerate spin affine Hecke algebra introduced in [10] (see Section 6.4). The subalgebra generated by $R_{i}(1 \leqslant i \leqslant n-1)$ is
the spin Hecke algebra \mathcal{H}_{n}^{-}of finite type. Among the noteworthy features of \mathcal{H}_{n}^{-}and $\widehat{\mathcal{H}}_{n}^{-}$are the deformed braid relations and the two dependent sets of loop generators. Both $\widehat{\mathcal{H}}_{n}^{-}$and \mathcal{H}_{n}^{-}admit superalgebra structures with each p_{i} being even and q_{i}, R_{i} being odd.

1.3. Several related algebras

To formulate a certain Schur-Jimbo type duality, Olshanski [7] introduced a Hecke-Clifford algebra $\mathcal{H} c_{n}$, which is a q-deformation of the semidirect product $\mathcal{C}_{n} \rtimes \mathbb{C} S_{n}$ and is generated by the usual Hecke algebra \mathcal{H}_{n} for S_{n} and the Clifford algebra \mathcal{C}_{n} in n variables. The affine Hecke-Clifford algebra $\widehat{\mathcal{H}} c_{n}$ was introduced by Jones-Nazarov [4] to study the q-Young symmetrizer for $\mathcal{H} c_{n}$, and the modular representation theory of $\widehat{\mathcal{H}} c_{n}$ has been developed by BrundanKleshchev [2]. A degenerate version of $\widehat{\mathcal{H}} c_{n}$ was introduced earlier by Nazarov [6] (called affine Sergeev algebra) to study representations of $\mathbb{C} S_{n}^{-}$.

It is known from the works of Sergeev, Józefiak and Stembridge that the representation theory of $\mathbb{C} S_{n}^{-}$is essentially equivalent to that of $\mathcal{C}_{n} \rtimes \mathbb{C} S_{n}$. This phenomenon has subsequently been clarified by the construction of a superalgebra isomorphism between $\mathcal{C}_{n} \rtimes \mathbb{C} S_{n}$ and $\mathcal{C}_{n} \otimes \mathbb{C} S_{n}^{-}$, due to Sergeev [9] and Yamaguchi [11] independently. (We will say that $\mathcal{C}_{n} \rtimes \mathbb{C} S_{n}$ and $\mathbb{C} S_{n}^{-}$are Morita super-equivalent; for a justification of the terminology, cf. [2, Lemma 9.9] or [5, 13.2], or our Section 3.1). Such a super-equivalence has been extended by the author [10] to one between the degenerate spin Hecke algebra introduced in [10] and Nazarov's degenerate affine HeckeClifford algebra.

1.4. Properties of the spin (affine) Hecke algebra

We establish a Morita super-equivalence between $\mathcal{H} c_{n}$ and \mathcal{H}_{n}^{-}(respectively, between $\widehat{\mathcal{H}} c_{n}$ and $\widehat{\mathcal{H}}_{n}^{-}$) by constructing explicitly a q-deformed version of the above Morita super-equivalences [9-11] in both finite and affine setups:

$$
\Phi: \mathcal{H} c_{n} \xrightarrow{\simeq} \mathcal{C}_{n} \otimes \mathcal{H}_{n}^{-}, \quad \Phi: \widehat{\mathcal{H}} c_{n} \xrightarrow{\simeq} \mathcal{C}_{n} \otimes \widehat{\mathcal{H}}_{n}^{-}
$$

Our key observation on the existence of natural subalgebras of $\mathcal{H} c_{n}$ and $\widehat{\mathcal{H}} c_{n}$ which supercommute with \mathcal{C}_{n} paves the way for the presentations of \mathcal{H}_{n}^{-}and $\widehat{\mathcal{H}}_{n}^{-}$.

A fundamental construction in the classical theory of the spin symmetric group is an algebra homomorphism from $\mathbb{C} S_{n}^{-}$to \mathcal{C}_{n-1} which gives rise to the basic spin $\mathbb{C} S_{n}^{-}$-supermodule [3,8]. We obtain a natural q-deformation of this construction in which the spin Hecke algebra \mathcal{H}_{n}^{-}fits nicely.

We construct standard bases for \mathcal{H}_{n}^{-}and for $\widehat{\mathcal{H}}_{n}^{-}$, describe the center of $\widehat{\mathcal{H}}_{n}^{-}$, and further introduce the intertwiners for $\widehat{\mathcal{H}}_{n}^{-}$, which have their counterparts in [4]. We introduce the cyclotomic spin Hecke algebras and show that they are Morita super-equivalent to the cyclotomic HeckeClifford algebras introduced in [2]. We remark that all of the definitions and constructions in this paper can make sense over a field of characteristic different from 2 (which is occasionally assumed to contain $\sqrt{2}$), and often even over the ring $\mathbb{Z}\left[\frac{1}{2}\right]$. It is possible to develop the representation theory of \mathcal{H}_{n}^{-}and $\widehat{\mathcal{H}}_{n}^{-}$parallel to the principal results for $\mathcal{H} c_{n}$ and $\widehat{\mathcal{H}} c_{n}$ in [2,4]. The new perspective of spin (affine) Hecke algebras can in turn help to clarify the work on the (affine) Hecke-Clifford algebras.

1.5. Relation to the (affine) Hecke algebra

There is a different setup where the spin (affine) Hecke algebra appears to be relevant. One easily writes down a nonstandard presentation for the usual Hecke algebra \mathcal{H}_{n} with new generators $\mathcal{T}_{i}:=T_{i}+T_{i}^{-1}$ instead of the familiar ones T_{i}. The definition of \mathcal{H}_{n}^{-}and the nonstandard presentation of \mathcal{H}_{n} are surprisingly compatible and this leads to a notion of a covering Hecke algebra \mathcal{H}_{n}^{\sim} which is a q-deformation of $\mathbb{C} S_{n}^{\sim}$. The quotient of the algebra \mathcal{H}_{n}^{\sim} by the ideal $\langle z+1\rangle$ (respectively, $\langle z-1\rangle$) is isomorphic to \mathcal{H}_{n}^{-}(respectively, \mathcal{H}_{n}).

It is remarkable that such a compatibility extends to the spin affine Hecke algebra $\widehat{\mathcal{H}}_{n}^{-}$and the usual affine Hecke algebra $\widehat{\mathcal{H}}_{n}$ of type $G L$, where we have to adopt a nonstandard presentation of $\widehat{\mathcal{H}}_{n}$ via the generators \mathcal{T}_{i} and $\frac{1}{2}\left(X_{i} \pm X_{i}^{-1}\right)$ instead of the Bernstein-Lusztig presentation via the generators T_{i} and X_{i}. This leads to the definition of the covering affine Hecke algebra $\widehat{\mathcal{H}}_{n}^{\sim}$, whose quotient by the ideal $\langle z+1\rangle$ (respectively, $\langle z-1\rangle$) is isomorphic to $\widehat{\mathcal{H}}_{n}^{-}$(respectively, $\widehat{\mathcal{H}}_{n}^{n}$).

1.6. The organization

The paper is organized as follows. In Section 2, we recall the Hecke-Clifford algebra and introduce the spin and covering Hecke algebras of finite type. In Section 3, we establish the Morita super-equivalence between $\mathcal{H} c_{n}$ and \mathcal{H}_{n}^{-}. We provide standard bases for $\mathcal{H}_{n}^{-}, \mathcal{H}_{n}^{\sim}$ and their even subalgebras (which are q-deformations of a double cover of the alternating group and its spin quotient), and also construct the basic spin \mathcal{H}_{n}^{-}-supermodule. In Section 4, we present the affine Hecke algebra counterpart of Section 2. In Section 5, we establish the Morita superequivalence between $\widehat{\mathcal{H}} c_{n}$ and $\widehat{\mathcal{H}}_{n}^{-}$. We describe the intertwiners, a standard basis, and the center for $\widehat{\mathcal{H}}_{n}^{-}$. In Section 6, we introduce the cyclotomic spin Hecke algebras and the Jucys-Murphy elements for \mathcal{H}_{n}^{-}. We explain the degeneration of $\widehat{\mathcal{H}}_{n}^{-}$and its cyclotomic version. It is our view that a general notion of spin Hecke algebras exists naturally beyond the setup in this paper. We will return to this elsewhere.

2. Spin and covering Hecke algebras (of finite type)

2.1. The Hecke-Clifford algebra

Let q be a formal parameter.
Definition 2.1. [7] The Hecke-Clifford algebra $\mathcal{H} c_{n}$ is the $\mathbb{C}(q)$-algebra generated by $T_{i}(1 \leqslant$ $i \leqslant n-1)$ and $c_{i}(1 \leqslant i \leqslant n)$, subject to the following relations:

$$
\begin{gather*}
\left(T_{i}-q\right)\left(T_{i}+q^{-1}\right)=0, \tag{2.1}\\
T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}, \quad T_{i} T_{j}=T_{j} T_{i} \quad(|i-j|>1), \tag{2.2}\\
T_{i} c_{i}=c_{i+1} T_{i}, \quad T_{i} c_{j}=c_{j} T_{i} \quad(j \neq i, i+1), \tag{2.3}\\
c_{i}^{2}=1, \quad c_{i} c_{j}=-c_{j} c_{i} \quad(i \neq j) . \tag{2.4}
\end{gather*}
$$

The algebra $\mathcal{H} c_{n}$ was introduced by Olshanski [7]. It is naturally a super- (i.e. \mathbb{Z}_{2}-graded) algebra with $c_{i}(1 \leqslant i \leqslant n)$ being odd and $T_{i}(1 \leqslant i \leqslant n-1)$ being even. The subalgebra generated
by T_{i} subject to the relations (2.1)-(2.2) is the usual Hecke algebra \mathcal{H}_{n} associated to the symmetric group S_{n}. We define $T_{\sigma}:=T_{i_{1}} \cdots T_{i_{r}}$ as usual for any reduced expression $\sigma=s_{i_{1}} \cdots s_{i_{r}} \in S_{n}$. The \mathbb{C}-algebra generated by c_{1}, \ldots, c_{n} is a Clifford (super)algebra and will be denoted by \mathcal{C}_{n}. It is known that $T_{\sigma} c_{1}^{\epsilon_{1}} \cdots c_{n}^{\epsilon_{n}}$, where $\sigma \in S_{n}$ and $\epsilon_{1}, \ldots, \epsilon_{n} \in\{0,1\}$, is a basis for $\mathcal{H} c_{n}$. Here are some useful identities derived from (2.1)-(2.4):

$$
\begin{gather*}
T_{i} c_{i+1}=c_{i} T_{i}-\varepsilon\left(c_{i}-c_{i+1}\right), \tag{2.5}\\
T_{i}\left(c_{i}-c_{i+1}\right) T_{i}=c_{i+1}-c_{i}, \tag{2.6}\\
\left(c_{i}-c_{j}\right)\left(c_{j}-c_{k}\right)\left(c_{i}-c_{j}\right)=2\left(c_{k}-c_{i}\right) \quad \text { for distinct } i, j, k \tag{2.7}
\end{gather*}
$$

2.2. The spin Hecke algebra

Recall $\varepsilon=q-q^{-1}$. We now introduce the first new concept of the paper.
Definition 2.2. The spin Hecke algebra \mathcal{H}_{n}^{-}is a $\mathbb{C}(q)$-algebra generated by $R_{i}, 1 \leqslant i \leqslant n-1$, subject to the following relations:

$$
\begin{gather*}
R_{i}^{2}=-\varepsilon^{2}-2 \equiv-\left(q^{2}+q^{-2}\right), \tag{2.8}\\
R_{i} R_{j}=-R_{j} R_{i} \quad(|i-j|>1), \tag{2.9}\\
R_{i} R_{i+1} R_{i}-R_{i+1} R_{i} R_{i+1}=\varepsilon^{2}\left(R_{i+1}-R_{i}\right) . \tag{2.10}
\end{gather*}
$$

The algebra \mathcal{H}_{n}^{-}is naturally a superalgebra by requiring each R_{i} to be odd, since the defining relations for \mathcal{H}_{n}^{-}are \mathbb{Z}_{2}-homogeneous with respect to such a grading.

2.3. (Anti-)involutions of \mathcal{H}_{n}^{-}

There are several involutions (i.e. algebra automorphisms of order 2) of the algebra \mathcal{H}_{n}^{-}. Define

$$
\begin{aligned}
\sigma: & R_{i} \mapsto R_{n-i}, \quad q \mapsto q, \\
s: & R_{i} \mapsto-R_{i}, \quad q \mapsto q, \\
-: & R_{i} \mapsto R_{i}, \quad q \mapsto q^{-1},
\end{aligned}
$$

where $1 \leqslant i \leqslant n-1$. By inspection of the defining relations for $\mathcal{H}_{n}^{-}, \sigma, s$ and - can be extended to homomorphisms of \mathcal{H}_{n}^{-}and they are indeed involutions of \mathcal{H}_{n}^{-}(regarded as an algebra over \mathbb{C}), Furthermore, $\sigma, s,-$ commute with each other, and their products give rise to several more involutions.

We also define an anti-involution τ of \mathcal{H}_{n}^{-}by letting $\tau\left(R_{i}\right)=-R_{i}$ for each i. One obtains more anti-involutions by composing τ with the involutions above (which commute with τ).

2.4. A nonstandard presentation of Hecke algebra

Denote

$$
\mathcal{T}_{i}:=T_{i}+T_{i}^{-1} \equiv 2 T_{i}-\varepsilon
$$

Proposition 2.3. The algebra \mathcal{H}_{n} has a presentation with generators $\mathcal{T}_{i}(1 \leqslant i \leqslant n-1)$ subject to the following relations:

$$
\begin{gather*}
\mathcal{T}_{i}^{2}=q^{2}+q^{-2}+2, \tag{2.11}\\
\mathcal{T}_{i} \mathcal{T}_{j}=\mathcal{T}_{j} \mathcal{T}_{i} \quad(|i-j|>1) \tag{2.12}\\
\mathcal{T}_{i} \mathcal{I}_{i+1} \mathcal{T}_{i}-\mathcal{T}_{i+1} \mathcal{T}_{i} \mathcal{T}_{i+1}=\varepsilon^{2}\left(\mathcal{T}_{i+1}-\mathcal{T}_{i}\right) \tag{2.13}
\end{gather*}
$$

Proof. Follows by a direct computation.

2.5. The covering Hecke algebra

Definition 2.4. The covering Hecke algebra \mathcal{H}_{n}^{\sim} is a $\mathbb{C}(q)$-superalgebra generated by the even generator z and the odd generators $\widetilde{T}_{i}(1 \leqslant i \leqslant n-1)$, subject to the following relations:

$$
\begin{gather*}
z^{2}=1, \quad z \text { is central, } \\
\widetilde{T}_{i}^{2}=z\left(q^{2}+q^{-2}+1\right)+1, \tag{2.14}\\
\widetilde{T}_{i} \widetilde{T}_{j}=z \widetilde{T}_{j} \widetilde{T}_{i} \quad(|i-j|>1), \tag{2.15}\\
\widetilde{T}_{i} \widetilde{T}_{i+1} \widetilde{T}_{i}-\widetilde{T}_{i+1} \widetilde{T}_{i} \widetilde{T}_{i+1}=\varepsilon^{2}\left(\widetilde{T}_{i+1}-\widetilde{T}_{i}\right) . \tag{2.16}
\end{gather*}
$$

We shall denote by $\langle a, b, \ldots\rangle$ a two-sided ideal generated by a, b, \ldots. The quotient of the covering Hecke algebra \mathcal{H}_{n}^{\sim} by the ideal $\langle z-1\rangle$ is isomorphic to the usual Hecke algebra \mathcal{H}_{n} with nonstandard presentation (where the canonical image of \widetilde{T}_{i} matches \mathcal{T}_{i}) and the quotient by $\langle z+1\rangle$ is isomorphic to the spin Hecke algebra \mathcal{H}_{n}^{-}(where the canonical image of \widetilde{T}_{i} matches R_{i}).

3. Algebraic structures of the spin Hecke algebra

3.1. A Morita super-equivalence

Note that the multiplication in a tensor product $\mathcal{C} \otimes \mathcal{B}$ of two superalgebras \mathcal{C} and \mathcal{B} has a suitable sign convention:

$$
\left(c^{\prime} \otimes b^{\prime}\right)(c \otimes b)=(-1)^{\left|b^{\prime}\right||c|}\left(c^{\prime} c \otimes b^{\prime} b\right)
$$

We shall write a typical element in $\mathcal{C} \otimes \mathcal{B}$ as $c b$ rather than $c \otimes b$, and use short-hand notations $c=c \otimes 1, b=1 \otimes b$.

Theorem 3.1. There exists a superalgebra isomorphism

$$
\Phi: \mathcal{H} c_{n} \xrightarrow{\simeq} \mathcal{C}_{n} \otimes \mathcal{H}_{n}^{-}
$$

which extends the identity map on \mathcal{C}_{n} and sends

$$
\begin{equation*}
T_{i} \mapsto T_{i}^{\Phi}:=-\frac{1}{2} R_{i}\left(c_{i}-c_{i+1}\right)+\frac{\varepsilon}{2}\left(1-c_{i} c_{i+1}\right), \quad 1 \leqslant i \leqslant n-1 . \tag{3.1}
\end{equation*}
$$

Its inverse map Ψ extends the identity map on \mathcal{C}_{n} and sends

$$
\begin{equation*}
R_{i} \mapsto R_{i}^{\Psi}:=\left(c_{i}-c_{i+1}\right) T_{i}+\varepsilon c_{i+1}, \quad 1 \leqslant i \leqslant n-1 . \tag{3.2}
\end{equation*}
$$

Remark 3.2. The isomorphism in Theorem 3.1 in the $q \mapsto 1$ limit reduces to the superalgebra isomorphism $\mathcal{C}_{n} \rtimes \mathbb{C} S_{n} \cong \mathcal{C}_{n} \otimes \mathbb{C} S_{n}^{-}$found in [9,11].

By (2.1)-(2.4), we have the following equivalent expressions for R_{i}^{Ψ} :

$$
\begin{equation*}
R_{i}^{\Psi}=-T_{i}\left(c_{i}-c_{i+1}\right)+\varepsilon c_{i}=c_{i} T_{i}-c_{i+1} T_{i}^{-1}=T_{i} c_{i+1}-T_{i}^{-1} c_{i} . \tag{3.3}
\end{equation*}
$$

Thanks to the above isomorphisms Φ, Ψ, we can define exact functors

$$
\begin{gathered}
\mathfrak{F}: \mathcal{H}_{n}^{-} \text {-smod } \rightarrow \mathcal{H} c_{n} \text {-smod, } \quad \mathfrak{F}:=\Phi^{*}\left(U_{n} \otimes ?\right), \\
\mathfrak{G}: \mathcal{H} c_{n} \text {-smod } \rightarrow \mathcal{H}_{n}^{-} \text {-smod, } \quad \mathfrak{G}:=\operatorname{Hom}_{\mathcal{C}_{n}}\left(U_{n}, \Psi^{*}(?)\right),
\end{gathered}
$$

where U_{n} denotes the basic spin \mathcal{C}_{n}-supermodule and \mathcal{H}_{n}^{-}-smod (respectively, $\mathcal{H} c_{n}$-smod) denotes the category of finite-dimensional supermodules of \mathcal{H}_{n}^{-}(respectively, of $\mathcal{H} c_{n}$). For n even, \mathfrak{F} and \mathfrak{G} establish the equivalence of categories, and indeed \mathcal{H}_{n}^{-}and $\mathcal{H} c_{n}$ are Morita equivalent in the usual sense since \mathcal{C}_{n} is a simple algebra. For n odd, \mathcal{C}_{n} is a simple superalgebra of type Q, \mathfrak{F} and \mathfrak{G} establish an almost Morita equivalence of categories which involves some \mathbb{Z}_{2}-parity change functor (see [2, Lemma 9.9] or [5, Proposition 13.2.2] for a precise statement in a similar setup).

Let us call two superalgebras \mathcal{A} and \mathcal{B} Morita super-equivalent if there is a superalgebra isomorphism $\mathcal{A} \cong \mathcal{C}_{n} \otimes \mathcal{B}$ or $\mathcal{B} \cong \mathcal{C}_{n} \otimes \mathcal{A}$ for some Clifford algebra \mathcal{C}_{n}. In particular, $\mathcal{H} c_{n}$ and $\mathcal{C}_{n} \otimes \mathcal{H}_{n}^{-}$are Morita super-equivalent. (This restrictive definition of the Morita super-equivalence is all we need in this paper, though it is possible and potentially useful in other contexts to give a more general definition which incorporates the usual Morita equivalence.)

3.2. Proof of the isomorphism Theorem 3.1

We start with several lemmas.
Lemma 3.3. The R_{i}^{Ψ} super-commute with \mathcal{C}_{n} for every $1 \leqslant i \leqslant n-1$.
Proof. Clearly, $R_{i}^{\Psi} c_{j}=-c_{j} R_{i}^{\Psi}$ for $j \neq i, i+1$. By (3.2), (2.3) and (2.4),

$$
R_{i}^{\psi} c_{i}=\left(c_{i}-c_{i+1}\right) c_{i+1} T_{i}+\varepsilon c_{i+1} c_{i}=-c_{i}\left(c_{i}-c_{i+1}\right) T_{i}-\varepsilon c_{i} c_{i+1}=-c_{i} R_{i}^{\Psi} .
$$

We leave to the reader the similar verification that $R_{i}^{\Psi} c_{i+1}=-c_{i+1} R_{i}^{\Psi}$.
Lemma 3.4. The $R_{i}^{\psi}, 1 \leqslant i \leqslant n-1$, satisfy the relations (2.8) and (2.9).

Proof. Clearly, $R_{i}^{\psi} R_{j}^{\psi}=-R_{j}^{\psi} R_{i}^{\psi}$ for $|i-j|>1$. By (2.1)-(2.4) and (3.3), we calculate that

$$
\begin{aligned}
\left(R_{i}^{\Psi}\right)^{2} & =\left(c_{i} T_{i}-c_{i+1} T_{i}^{-1}\right)\left(T_{i} c_{i+1}-T_{i}^{-1} c_{i}\right) \\
& =c_{i}\left(\varepsilon T_{i}+1\right) c_{i+1}+c_{i+1}\left(1+\varepsilon^{2}-\varepsilon T_{i}\right) c_{i}-2 \\
& =c_{i}\left(\varepsilon T_{i}^{-1}+1+\varepsilon^{2}\right) c_{i+1}+c_{i+1}\left(1+\varepsilon^{2}-\varepsilon T_{i}\right) c_{i}-2 \\
& =c_{i} \varepsilon T_{i}^{-1} c_{i+1}-c_{i+1} \varepsilon T_{i} c_{i}-2=-\varepsilon^{2}-2
\end{aligned}
$$

This verifies (2.8) and (2.9) for R_{i}^{ψ}.
Lemma 3.5. The relation (2.10) holds for R_{i}^{Ψ}, that is, for every $1 \leqslant i \leqslant n-2$,

$$
\left(R_{i}^{\Psi} R_{i+1}^{\Psi}+\varepsilon^{2}\right) R_{i}^{\Psi}=R_{i+1}^{\Psi}\left(R_{i}^{\psi} R_{i+1}^{\Psi}+\varepsilon^{2}\right) .
$$

Proof. Formulas (2.1) through (2.7) are frequently used in this proof. We have

$$
\begin{aligned}
R_{i}^{\Psi} R_{i+1}^{\Psi}= & \left(\left(c_{i}-c_{i+1}\right) T_{i}^{-1}+\varepsilon c_{i}\right)\left(\left(c_{i+1}-c_{i+2}\right) T_{i+1}+\varepsilon c_{i+2}\right) \\
= & \left(c_{i}-c_{i+1}\right)\left(c_{i}-c_{i+2}\right)\left(T_{i}-\varepsilon\right) T_{i+1}+\varepsilon c_{i}\left(c_{i+1}-c_{i+2}\right) T_{i+1} \\
& +\varepsilon\left(c_{i}-c_{i+1}\right) c_{i+2}\left(T_{i}-\varepsilon\right)+\varepsilon^{2} c_{i} c_{i+2} \\
= & \left(c_{i}-c_{i+1}\right)\left(c_{i}-c_{i+2}\right) T_{i} T_{i+1}+\varepsilon c_{i+2}\left(c_{i+1}-c_{i+2}\right) T_{i+1} \\
& -\varepsilon c_{i+2}\left(c_{i}-c_{i+1}\right) T_{i}+\varepsilon^{2} c_{i+1} c_{i+2} .
\end{aligned}
$$

Recalling $R_{i}^{\Psi}=\left(c_{i}-c_{i+1}\right) T_{i}+\varepsilon c_{i+1}$ from (3.2), we have that

$$
\begin{aligned}
&\left(R_{i}^{\Psi}\right.\left.R_{i+1}^{\Psi}+\varepsilon^{2}\right) R_{i}^{\Psi} \\
&=\left(c_{i}-c_{i+1}\right)\left(c_{i}-c_{i+2}\right)\left(c_{i+1}-c_{i+2}\right) T_{i} T_{i+1} T_{i} \\
& \quad+\varepsilon c_{i+2}\left(c_{i+1}-c_{i+2}\right)\left(c_{i}-c_{i+2}\right) T_{i+1} T_{i} \\
& \quad-\varepsilon c_{i+2}\left(c_{i}-c_{i+1}\right)\left(c_{i+1}-c_{i}\right)+\varepsilon^{2}\left(c_{i}-c_{i+1}+c_{i+2}+c_{i} c_{i+1} c_{i+2}\right) T_{i} \\
& \quad+\varepsilon\left(c_{i}-c_{i+1}\right)\left(c_{i}-c_{i+2}\right) c_{i+2} T_{i} T_{i+1}+\varepsilon^{2} c_{i+2}\left(c_{i+1}-c_{i+2}\right) c_{i+2} T_{i+1} \\
& \quad-\varepsilon^{2} c_{i+2}\left(c_{i}-c_{i+1}\right) c_{i} T_{i}+\varepsilon^{3} c_{i+2}\left(c_{i}-c_{i+1}\right)\left(c_{i}-c_{i+1}\right)+\varepsilon^{3}\left(c_{i+1}-c_{i+2}\right) \\
&= 2\left(c_{i}-c_{i+2}\right) T_{i} T_{i+1} T_{i}+\varepsilon\left(c_{i+1}+c_{i+2}-c_{i}-c_{i} c_{i+1} c_{i+2}\right) T_{i+1} T_{i} \\
&+\varepsilon\left(c_{i+1}+c_{i+2}-c_{i}+c_{i} c_{i+1} c_{i+2}\right) T_{i} T_{i+1}-\varepsilon^{2}\left(c_{i+1}+c_{i+2}\right) T_{i+1} \\
&+\varepsilon^{2}\left(c_{i}-c_{i+1}\right) T_{i}+2 \varepsilon c_{i+2}+\varepsilon^{3}\left(c_{i+1}+c_{i+2}\right) .
\end{aligned}
$$

On the other hand, recalling $R_{i+1}^{\Psi}=T_{i+1}\left(c_{i+2}-c_{i+1}\right)+\varepsilon c_{i+1}$, we have

$$
\begin{aligned}
R_{i+1}^{\Psi} & \left(R_{i}^{\Psi} R_{i+1}^{\Psi}+\varepsilon^{2}\right) \\
= & 2\left(c_{i}-c_{i+2}\right) T_{i+1} T_{i} T_{i+1}+\varepsilon T_{i+1}\left(c_{i+2}-c_{i+1}\right) c_{i+2}\left(c_{i+1}-c_{i+2}\right) T_{i+1} \\
& -\varepsilon T_{i+1}\left(c_{i+2}-c_{i+1}\right) c_{i+2}\left(c_{i}-c_{i+1}\right) T_{i}-2 \varepsilon^{2} c_{i+2} T_{i+1} \\
& +\varepsilon c_{i+1}\left(c_{i}-c_{i+1}\right)\left(c_{i}-c_{i+2}\right) T_{i} T_{i+1}+\varepsilon^{2} c_{i+1} c_{i+2}\left(c_{i+1}-c_{i+2}\right) T_{i+1} \\
& -\varepsilon^{2} c_{i+1} c_{i+2}\left(c_{i}-c_{i+1}\right) T_{i}+\varepsilon^{3}\left(c_{i+1}+c_{i+2}\right) \\
= & 2\left(c_{i}-c_{i+2}\right) T_{i+1} T_{i} T_{i+1}+2 \varepsilon c_{i+2}\left(\varepsilon T_{i+1}+1\right) \\
& -\varepsilon\left(c_{i+1}-c_{i+2}\right) c_{i+1}\left(c_{i}-c_{i+2}\right) T_{i+1} T_{i}+\varepsilon^{2}\left(c_{i+1}-c_{i+2}\right) c_{i+1}\left(c_{i}-c_{i+1}\right) T_{i} \\
& -2 \varepsilon^{2} c_{i+2} T_{i+1}+\varepsilon c_{i+1}\left(c_{i}-c_{i+1}\right)\left(c_{i}-c_{i+2}\right) T_{i} T_{i+1}+\varepsilon^{2} c_{i+1} c_{i+2}\left(c_{i+1}-c_{i+2}\right) T_{i+1} \\
& -\varepsilon^{2} c_{i+1} c_{i+2}\left(c_{i}-c_{i+1}\right) T_{i}+\varepsilon^{3}\left(c_{i+1}+c_{i+2}\right)
\end{aligned}
$$

which can be shown by a simple rewriting to coincide with the right-hand side of the previous formula for $\left(R_{i}^{\Psi} R_{i+1}^{U}+\varepsilon^{2}\right) R_{i}^{\Psi}$.

Lemma 3.6. For every $1 \leqslant i \leqslant n-1$, we have $\Psi\left(T_{i}^{\Phi}\right)=T_{i}$, and $\Phi\left(R_{i}^{\Psi}\right)=R_{i}$.
Proof. By (3.3), we have

$$
\begin{aligned}
\Psi\left(T_{i}^{\Phi}\right) & =\Psi\left(\frac{1}{2} R_{i}\left(c_{i+1}-c_{i}\right)+\frac{\varepsilon}{2}\left(1-c_{i} c_{i+1}\right)\right) \\
& =\frac{1}{2}\left(-T_{i}\left(c_{i}-c_{i+1}\right)+\varepsilon c_{i}\right)\left(c_{i+1}-c_{i}\right)+\frac{1}{2} \varepsilon\left(1-c_{i} c_{i+1}\right)=T_{i} \\
\Phi\left(R_{i}^{\Psi}\right) & =\Phi\left(T_{i}\left(c_{i+1}-c_{i}\right)+\varepsilon c_{i}\right) \\
& =-\left(\frac{1}{2} R_{i}\left(c_{i+1}-c_{i}\right)+\frac{\varepsilon}{2}\left(1-c_{i} c_{i+1}\right)\right)\left(c_{i}-c_{i+1}\right)+\varepsilon c_{i}=R_{i}
\end{aligned}
$$

Proof of Theorem 3.1. By Lemmas 3.3-3.5, Ψ is a (super)algebra homomorphism. By Lemma 3.6 and $\Psi\left(c_{i}\right)=c_{i}, \Psi$ is surjective.

Denote by $\mathcal{H}_{n, \psi}^{-}$the subalgebra of $\mathcal{H} c_{n}$ generated by $R_{i}^{\Psi}, 1 \leqslant i \leqslant n-1$. By Lemma 3.3, we have $\mathcal{H} c_{n} \supseteq \mathcal{C}_{n} \otimes \mathcal{H}_{n, \Psi}^{-}$. By Lemma 3.6, we have

$$
T_{i}=\frac{1}{2}\left(c_{i}-c_{i+1}\right) R_{i}^{\Psi}+\frac{\varepsilon}{2}\left(1-c_{i} c_{i+1}\right) \in \mathcal{C}_{n} \otimes \mathcal{H}_{n, \Psi}^{-}
$$

and thus all generators T_{i}, c_{i} of $\mathcal{H} c_{n}$ lie in $\mathcal{C}_{n} \otimes \mathcal{H}_{n, \psi}^{-}$. Therefore, $\mathcal{H} c_{n}=\mathcal{C}_{n} \otimes \mathcal{H}_{n, \Psi}^{-}$and $\operatorname{dim} \mathcal{H}_{n, \Psi}^{-}=n!$. By Proposition 3.8 below (whose proof is elementary and in particular does not use this theorem), we have $\operatorname{dim} \mathcal{H}_{n}^{-} \leqslant n$!. Thus for dimension reason the surjective homomorphism $\left.\Psi\right|_{\mathcal{H}_{n}^{-}}: \mathcal{H}_{n}^{-} \rightarrow \mathcal{H}_{n, \Psi}^{-}$is indeed an isomorphism and $\operatorname{dim} \mathcal{H}_{n}^{-}=n!$. Since both $\mathcal{H} c_{n}$ and $\mathcal{C}_{n} \otimes \mathcal{H}_{n}^{-}$have dimensions equal to $2^{n} n$!, the surjective homomorphism Ψ is an algebra isomorphism.

By Lemma 3.6, Ψ and Φ are inverse isomorphisms.

Remark 3.7. A somewhat different argument for Theorem 3.1 goes as follows. We can verify directly that Φ is an algebra homomorphism in a way similar to Ψ, which involves a tedious verification of the braid relations for T_{i}^{Φ}. Then Lemma 3.6 implies that Φ and Ψ are inverse isomorphisms. This argument does not use Proposition 3.8 below.

3.3. Bases for \mathcal{H}_{n}^{-}and \mathcal{H}_{n}^{\sim}

Introduce the following monomials in \mathcal{H}_{n}^{-}:

$$
\begin{equation*}
R_{i, a}:=R_{i} R_{i-1} \cdots R_{i-a+1}, \quad 0 \leqslant a \leqslant i, 1 \leqslant i \leqslant n-1, \tag{3.4}
\end{equation*}
$$

where it is understood that $R_{i, 0} \equiv 1$ for all i. We refer to a product $R_{i_{1}} R_{i_{2}} \cdots R_{i_{s}}$ of generators in \mathcal{H}_{n}^{-}as a monomial in \mathcal{H}_{n}^{-}, and call a monomial standard if it is of the form $R_{1, a_{1}} R_{2, a_{2}} \cdots R_{n-1, a_{n-1}}$, where $0 \leqslant a_{i} \leqslant i$ for each $1 \leqslant i \leqslant n-1$.

Proposition 3.8. The standard monomials $R_{1, a_{1}} R_{2, a_{2}} \cdots R_{n-1, a_{n-1}}$, where $0 \leqslant a_{i} \leqslant i$ and $1 \leqslant$ $i \leqslant n-1$, linearly span \mathcal{H}_{n}^{-}. In particular, $\operatorname{dim} \mathcal{H}_{n}^{-} \leqslant n$!.

Proof. Since the number of standard monomials in \mathcal{H}_{n}^{-}is n !, it suffices to prove the first statement on linear span.

Claim 1. Any monomial of \mathcal{H}_{n}^{-}is spanned by the monomials in which R_{n-1} appears at most once.

We prove Claim 1 by induction on n. The claim trivially holds for $n=1$. For any monomial in which R_{n-1} appears more than twice, we can apply the argument below to a portion of the monomial which contains exactly two R_{n-1} 's to reduce the number of R_{n-1} 's. So, let us assume that a given monomial is of the form $R_{n-1} \cdot R_{i_{1}} R_{i_{2}} \cdots R_{i_{s}} \cdot R_{n-1}$, where $1 \leqslant i_{1}, \ldots, i_{s} \leqslant n-2$ (for some s). By applying (2.9) to move the R_{i} 's outbound the two R_{n-1} 's whenever possible, we are reduced to the case $s=0$ or $i_{1}=i_{s}=n-2$, where $s \geqslant 1$. The reduction of the number of R_{n-1} 's in the case $s=0$ is done by (2.8), while in the case $s=1$ is by (2.10) (note that here we got a linear combination of monomials because (2.10) is not the usual braid relation). In the case $s \geqslant 2$, we reduce to the previous cases by applying the claim for $n-1$, which is the induction step.

Claim 2. Any monomial of \mathcal{H}_{n}^{-}in which R_{n-1} appears exactly once can be written as a linear combination of monomials of the form $R_{i_{1}} R_{i_{2}} \cdots R_{i_{s}} \cdot R_{n-1, a_{n-1}}$, where $1 \leqslant a_{n-1} \leqslant n-1$ and $1 \leqslant i_{1}, \ldots, i_{s} \leqslant n-2$ for some s.

We again argue by induction on n. The claim is trivial for $n=1,2$. By permuting R_{n-1} via (2.9) to the right as much as possible, we rewrite the monomial (up to a sign) such that R_{n-1} appears at the very end or it is followed by R_{n-2}. We continue with the second possibility, otherwise we are done. Since the part of the monomial starting from R_{n-2} to the right lies in H_{n-1}^{-}, we may apply Claim 1 to reduce to the case when R_{n-2} appears to the right of R_{n-1} exactly once. Now the induction step for $n-1$ of Claim 2 is applicable to complete the proof of Claim 2.

We now proceed by induction on n. The proposition holds trivially for $n=1$. If a monomial in \mathcal{H}_{n}^{-}does not contain R_{n-1} and thus is a monomial in \mathcal{H}_{n-1}^{-}, then it is a linear combination of
the standard monomials as the induction step applies. Otherwise, the proposition follows by the induction step, Claims 1 and 2.

Theorem 3.9. The standard monomials $R_{1, a_{1}} R_{2, a_{2}} \cdots R_{n-1, a_{n-1}}$, where $0 \leqslant a_{i} \leqslant i$ and $1 \leqslant i \leqslant$ $n-1$, form a basis for \mathcal{H}_{n}^{-}. Also, $\operatorname{dim} \mathcal{H}_{n}^{-}=n!$.

Proof. The statement that $\operatorname{dim} \mathcal{H}_{n}^{-}=n$! is a consequence of (the proof of) Theorem 3.1. The number of standard monomials in \mathcal{H}_{n}^{-}is $n!$, and thus the theorem follows from Proposition 3.8.

We define the monomial $\widetilde{T}_{i, a} \in \mathcal{H}_{n}^{\sim}$ (respectively, $\mathcal{T}_{i, a} \in \mathcal{H}_{n}$), with \widetilde{T} (respectively, \mathcal{T}) replacing R in the definition (3.4) of $R_{i, a}$.

Proposition 3.10. The elements $\widetilde{T}_{1, a_{1}} \widetilde{T}_{2, a_{2}} \cdots \tilde{T}_{n-1, a_{n-1}}, z \widetilde{T}_{1, a_{1}} \widetilde{T}_{2, a_{2}} \cdots \widetilde{T}_{n-1, a_{n-1}}$, where $0 \leqslant$ $a_{i} \leqslant i$ and $1 \leqslant i \leqslant n-1$, form a basis for \mathcal{H}_{n}^{\sim}. Also, $\operatorname{dim} \mathcal{H}_{n}^{\sim}=2 n!$.

Proof. The same argument for Proposition 3.8 shows that the elements in the proposition form a spanning set for \mathcal{H}_{n}^{\sim}. It remains to prove the linear independence.

By definitions, $\mathcal{H}_{n}^{\sim} /\langle z-1\rangle \cong \mathcal{H}_{n}$ and $\mathcal{H}_{n}^{\sim} /\langle z+1\rangle \cong \mathcal{H}_{n}^{-}$. Denote the corresponding canonical maps by $p_{+}: \mathcal{H}_{n}^{\sim} \rightarrow \mathcal{H}_{n}$ and $p_{-}: \mathcal{H}_{n}^{\sim} \rightarrow \mathcal{H}_{n}^{-}$. Clearly, $p_{+}\left(\widetilde{T}_{i}\right)=\mathcal{T}_{i}, p_{-}\left(\widetilde{T}_{i}\right)=R_{i}$, and $p_{ \pm}(z)=$ ± 1. We shall use the short-hand notation $\widetilde{T}_{\mathbf{a}}=\widetilde{T}_{1, a_{1}} \widetilde{T}_{2, a_{2}} \cdots \widetilde{T}_{n-1, a_{n-1}}$. Assume there is a relation
($\star \sum_{\mathbf{a}}\left(\alpha_{\mathbf{a}} \widetilde{T}_{\mathbf{a}}+\beta_{\mathbf{a}} z \widetilde{T}_{\mathbf{a}}\right)=0 \quad$ for some constants $\alpha_{\mathbf{a}}, \beta_{\mathbf{a}}$.
By applying the canonical map p_{-}to (\star) and Theorem 3.9, we conclude that $\alpha_{\mathbf{a}}-\beta_{\mathbf{a}}=0$ for each \mathbf{a}. On the other hand, it is (a variant of) a classical fact that $\mathcal{T}_{1, a_{1}} \mathcal{T}_{2, a_{2}} \cdots \mathcal{T}_{n-1, a_{n-1}}$, where $0 \leqslant a_{i} \leqslant i$ and $1 \leqslant i \leqslant n-1$, form a linear basis for \mathcal{H}_{n}^{-}. By applying p_{+}to (\star), we conclude that $\alpha_{\mathbf{a}}+\beta_{\mathbf{a}}=0$ for each \mathbf{a}. So $\alpha_{\mathbf{a}}=\beta_{\mathbf{a}} \equiv 0$.

Remark 3.11. By (2.8)-(2.10) and Theorem 3.9, \mathcal{H}_{n}^{-}reduces to $\mathbb{C} S_{n}^{-}$as q goes to 1 . By a standard deformation argument, the algebra \mathcal{H}_{n}^{-}is semisimple. Similarly, \mathcal{H}_{n}^{\sim} is a flat deformation of $\mathbb{C} S_{n}^{\sim}$ by Proposition 3.10, which justifies the terminology of "covering Hecke algebra" for \mathcal{H}_{n}^{\sim}.

3.4. Spin Hecke algebra for the alternating group

Note that the number of generators R_{i} 's appearing in the monomial $R_{1, a_{1}} R_{2, a_{2}} \cdots R_{n-1, a_{n-1}}$ is $a_{1}+\cdots+a_{n-1}$ (called the length of the monomial). Denote by $\mathcal{H}_{n, \overline{0}}^{-}$(respectively, $H_{n, \overline{0}}^{\sim}$) the even subalgebra of the superalgebra \mathcal{H}_{n}^{-}(respectively, \mathcal{H}_{n}^{\sim}).

Proposition 3.12. Let $n \geqslant 2$.
(1) The standard monomials of even length, that is, $R_{1, a_{1}} R_{2, a_{2}} \cdots R_{n-1, a_{n-1}}$, where $0 \leqslant a_{i} \leqslant i$, $1 \leqslant i \leqslant n-1$ such that $a_{1}+\cdots+a_{n-1}$ is even, form a basis for the algebra $\mathcal{H}_{n, \overline{0}}^{-}$. In particular, $\operatorname{dim} \mathcal{H}_{n, \overline{0}}^{-}=\frac{1}{2} n!$.
(2) The elements $\widetilde{T}_{1, a_{1}} \widetilde{T}_{2, a_{2}} \ldots \tilde{T}_{n-1, a_{n-1}}, z \widetilde{T}_{1, a_{1}} \widetilde{T}_{2, a_{2}} \ldots \widetilde{T}_{n-1, a_{n-1}}$, where $0 \leqslant a_{i} \leqslant i, 1 \leqslant i \leqslant$ $n-1$ such that $a_{1}+\cdots+a_{n-1}$ is even, form a basis for the algebra $\mathcal{H}_{n, \overline{0}}^{\sim}$. In particular, $\operatorname{dim} \mathcal{H}_{n, \overline{0}}^{\sim}=n!$.

Proof. Follows from Theorem 3.9 and Proposition 3.10.
Recall that the alternating group A_{n} is a subgroup of S_{n} of index 2 . The short exact sequence (1.1) gives rise to a subgroup A_{n}^{\sim} of S_{n}^{\sim} of index 2 which is a double cover of A_{n}. It follows that $\mathcal{H}_{n, \overline{0}}^{\sim}$ is a q-deformation of the algebra $\mathbb{C} A_{n}^{\sim}$, while $\mathcal{H}_{n, \overline{0}}^{-}$is a q-deformation of the algebra $\mathbb{C} A_{n}^{\sim} /\langle z+1\rangle$.

Definition 3.13. The algebra $\mathcal{H}_{n, \overline{0}}^{-}$is called the spin Hecke algebra for the alternating group A_{n}. The algebra $\mathcal{H}_{n, \overline{0}}^{\sim}$ is called the covering Hecke algebra for the alternating group A_{n}.

We leave it to the reader to write down a presentation for the algebra $\mathcal{H}_{n, \overline{0}}^{-}$using the generators $R_{1} R_{i+1}(1 \leqslant i \leqslant n-2)$ and a similar presentation for $\mathcal{H}_{n, \overline{0}}^{\sim}$.

3.5. The basic spin supermodule

Theorem 3.14. There exists a homomorphism of superalgebras

$$
\pi_{q}: \mathcal{H}_{n}^{-} \rightarrow \mathcal{C}_{n} \otimes \mathbb{C}(q)
$$

which sends

$$
R_{i} \mapsto \sqrt{-1}\left(q c_{i}-q^{-1} c_{i+1}\right), \quad 1 \leqslant i \leqslant n-1 .
$$

The image is isomorphic to $\mathcal{C}_{n-1} \otimes \mathbb{C}(q)$.
Proof. We need to check the relations (2.8)-(2.10) with $\gamma_{i}:=\sqrt{-1}\left(q c_{i}-q^{-1} c_{i+1}\right)$ replacing R_{i} therein. Clearly we have

$$
\gamma_{i}^{2}=-2-\varepsilon^{2}, \quad \gamma_{i} \gamma_{j}=-\gamma_{j} \gamma_{i} \quad(|i-j|>1)
$$

By a straightforward computation, we have

$$
\begin{aligned}
\gamma_{i} \gamma_{i+1} \gamma_{i} & =\sqrt{-1}\left(2 q c_{i}-\left(q^{-1}-q^{3}\right) c_{i+1}-\left(q^{-3}+q\right) c_{i+2}\right) \\
& =2 \gamma_{i}+\left(q^{2}+q^{-2}\right) \gamma_{i+1}, \\
\gamma_{i+1} \gamma_{i} \gamma_{i+1} & =\sqrt{-1}\left(\left(q^{3}+q^{-1}\right) c_{i}-\left(q^{-3}-q\right) c_{i+1}-2 q^{-1} c_{i+2}\right) \\
& =\left(q^{2}+q^{-2}\right) \gamma_{i}+2 \gamma_{i+1} .
\end{aligned}
$$

Thus, $\gamma_{i} \gamma_{i+1} \gamma_{i}-\gamma_{i+1} \gamma_{i} \gamma_{i+1}=\varepsilon^{2}\left(\gamma_{i+1}-\gamma_{i}\right)$.
Since the image of the linear span of $R_{i}(1 \leqslant i \leqslant n-1)$ is by definition a subspace of dimension $n-1$ of the linear span of c_{i} 's, the image of \mathcal{H}_{n}^{-}under π is a Clifford algebra in $n-1$ generators.

It is well known that \mathcal{C}_{n-1} has a unique simple supermodule, which is of dimension $2^{[n / 2]}$. Here $[n / 2]$ denotes the largest integer no greater than $n / 2$. The pullback via π_{q} gives rise to a simple \mathcal{H}_{n}^{-}-supermodule of dimension $2^{[n / 2]}$, which we will refer to as the basic spin \mathcal{H}_{n}^{-}supermodule. Indeed, this module is a q-deformation of the basic spin $\mathbb{C} S_{n}^{-}$-supermodule and the homomorphism π_{q} is the q-deformation of a classical fundamental construction [3,8].

4. Spin and covering affine Hecke algebras

4.1. The affine Hecke-Clifford algebra

Definition 4.1. [4] The affine Hecke-Clifford algebra $\widehat{\mathcal{H}} c_{n}$ is the $\mathbb{C}(q)$-algebra generated by T_{i} $(1 \leqslant i \leqslant n-1)$ and $c_{i}, X_{i}^{ \pm 1}(1 \leqslant i \leqslant n)$, subject to the relations (2.1)-(2.4) of T_{i}, c_{i} in $\mathcal{H} c_{n}$ and the following additional relations:

$$
\begin{gather*}
\left(T_{i}+\varepsilon c_{i} c_{i+1}\right) X_{i} T_{i}=X_{i+1}, \tag{4.1}\\
T_{i} X_{j}=X_{j} T_{i} \quad(j \neq i, i+1), \tag{4.2}\\
X_{i} X_{j}=X_{j} X_{i} \tag{4.3}\\
X_{i} c_{i}=c_{i} X_{i}^{-1}, \quad X_{i} c_{j}=c_{j} X_{i} \quad(i \neq j) . \tag{4.4}
\end{gather*}
$$

The affine Hecke-Clifford algebra $\widehat{\mathcal{H}} c_{n}$ was introduced by Jones-Nazarov [4]. The algebra $\widehat{\mathcal{H}} c_{n}$ admits a canonical superalgebra structure with T_{i}, X_{i} being even and c_{i} being odd. It is known that $X_{1}^{\alpha_{1}} \cdots X_{n}^{\alpha_{n}} c_{1}^{\epsilon_{1}} \cdots c_{n}^{\epsilon_{n}} T_{\sigma}$, where $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{Z}, \epsilon_{1}, \ldots, \epsilon_{n} \in\{0,1\}$ and $\sigma \in S_{n}$, form a standard basis for $\widehat{\mathcal{H}} c_{n}$ [4] (also cf. [2]). By definition, $\widehat{\mathcal{H}} c_{n}$ contains $\mathcal{H} c_{n}$ as a subalgebra.

The convention that $c_{i}^{2}=-1$ was used in [4], and so our c_{i} matches with their $\sqrt{-1} c_{i}$. Our convention that $c_{i}^{2}=1$ is consistent with [2,5]. The different convention leads to a different sign whenever a quadratic term $c_{i} c_{j}$ appears. The following useful identities follow from the definition:

$$
\begin{gathered}
\left(T_{i}+\varepsilon c_{i} c_{i+1}\right)^{-1}=T_{i}+\varepsilon c_{i} c_{i+1}-\varepsilon \\
T_{i} X_{i}=X_{i+1} T_{i}-\varepsilon\left(X_{i+1}+c_{i} c_{i+1} X_{i}\right) \\
T_{i} X_{i+1}=X_{i} T_{i}+\varepsilon\left(1-c_{i} c_{i+1}\right) X_{i+1}
\end{gathered}
$$

4.2. The spin affine Hecke algebra

Now we introduce the main new concept of the paper.
Definition 4.2. The spin affine Hecke algebra, denoted by $\widehat{\mathcal{H}}_{n}^{-}$, is the $\mathbb{C}(q)$-algebra generated by $R_{i}(1 \leqslant i \leqslant n-1)$ and $p_{i}, q_{i}(1 \leqslant i \leqslant n)$, subject to the relations (2.8)-(2.10) for R_{i} 's in \mathcal{H}_{n}^{-} and the following additional relations:

$$
\begin{gather*}
p_{i} p_{j}=p_{j} p_{i}, \quad q_{i} q_{j}=-q_{j} q_{i} \quad(i \neq j), \tag{4.5}\\
p_{i}^{2}+q_{i}^{2}=1, \quad p_{i} q_{j}=q_{j} p_{i} \quad(\forall i, j), \tag{4.6}\\
R_{i} p_{j}=p_{j} R_{i}, \quad R_{i} q_{j}=-q_{j} R_{i} \quad(j \neq i, i+1), \tag{4.7}
\end{gather*}
$$

$$
\begin{gather*}
R_{i} p_{i}=p_{i+1} R_{i}+\varepsilon\left(q_{i}-q_{i+1}\right) \tag{4.8}\\
R_{i} q_{i}=-q_{i+1} R_{i}-\varepsilon\left(p_{i}+p_{i+1}\right) \tag{4.9}
\end{gather*}
$$

The algebra $\widehat{\mathcal{H}}_{n}^{-}$has a canonical superalgebra structure with each p_{i} being even and each q_{i}, R_{i} being odd.

Proposition 4.3. Assume only the relation (2.8). The three pairs of relations (4.8)-(4.9), (4.10)(4.11) and (4.12)-(4.13) are equivalent:

$$
\begin{gather*}
R_{i} p_{i+1}=p_{i} R_{i}-\varepsilon\left(q_{i}-q_{i+1}\right) \tag{4.10}\\
R_{i} q_{i+1}=-q_{i} R_{i}-\varepsilon\left(p_{i}+p_{i+1}\right) \tag{4.11}\\
p_{i+1}=-\frac{1}{2} R_{i} p_{i} R_{i}+\frac{\varepsilon}{2}\left(q_{i} R_{i}+R_{i} q_{i}\right)+\frac{\varepsilon^{2}}{2} p_{i} \tag{4.12}\\
q_{i+1}=\frac{1}{2} R_{i} q_{i} R_{i}+\frac{\varepsilon}{2}\left(p_{i} R_{i}+R_{i} p_{i}\right)-\frac{\varepsilon^{2}}{2} q_{i} . \tag{4.13}
\end{gather*}
$$

In particular, the algebra $\widehat{\mathcal{H}}_{n}^{-}$is generated by p_{1}, q_{1} and $R_{i}(1 \leqslant i \leqslant n-1)$.
Proof. The last statement follows readily from (4.12)-(4.13). Recall from (2.8) that $R_{i}^{2}=$ $-2-\varepsilon^{2}$.
(i) (4.8)-(4.9) \Rightarrow (4.12)- (4.13): The right multiplication of (4.8) by R_{i} gives us

$$
\begin{equation*}
R_{i} q_{i} R_{i}=\left(-2-\varepsilon^{2}\right) p_{i+1}+\varepsilon q_{i} R_{i}-\varepsilon q_{i+1} R_{i} \tag{4.14}
\end{equation*}
$$

Rewrite (4.9) as $-q_{i+1} R_{i}=R_{i} q_{i}+\varepsilon\left(p_{i}+p_{i+1}\right)$. Plugging this equation into (4.14) and reorganizing the terms, we obtain (4.12). The proof of (4.13) is almost identical.
(ii) (4.12)-(4.13) \Rightarrow (4.10)-(4.11): Multiplying (4.12) by R_{i} on the left gives us

$$
\begin{equation*}
R_{i} p_{i+1}=-\frac{1}{2}\left(-2-\varepsilon^{2}\right) p_{i} R_{i}+\frac{1}{2} \varepsilon R_{i} q_{i} R_{i}+\frac{1}{2} \varepsilon\left(-2-\varepsilon^{2}\right) q_{i}+\frac{1}{2} \varepsilon^{2} R_{i} p_{i} . \tag{4.15}
\end{equation*}
$$

Rewrite (4.13) as $R_{i} q_{i} R_{i}=2 q_{i+1}-\varepsilon\left(p_{i} R_{i}+R_{i} p_{i}\right)+\varepsilon^{2} q_{i}$. Plugging this into (4.15) and reorganizing the terms, we obtain (4.10). The proof of (4.11) is almost identical.

We will skip the analogous proofs for (4.10)-(4.11) \Rightarrow (4.12)-(4.13) as well as for (4.12)(4.13) \Rightarrow (4.8)-(4.9).

4.3. (Anti-)involutions of $\widehat{\mathcal{H}}_{n}^{-}$

There are several involutions of the algebra $\widehat{\mathcal{H}}_{n}^{-}$which are extensions of the involutions σ, s and - of \mathcal{H}_{n}^{-}in Section 2.3. We can extend σ in two ways to involutions $\sigma_{ \pm}: \widehat{\mathcal{H}}_{n}^{-} \rightarrow \widehat{\mathcal{H}}_{n}^{-}$(where q is fixed):

$$
\begin{array}{ll}
\sigma_{+}: & p_{i} \rightarrow p_{n+1-i}, \quad q_{i} \rightarrow q_{n+1-i}, \quad R_{i} \mapsto R_{n-i}, \\
\sigma_{-}: & p_{i} \rightarrow-p_{n+1-i}, \quad q_{i} \rightarrow-q_{n+1-i}, \quad R_{i} \mapsto R_{n-i},
\end{array}
$$

for all possible i. We extend s to two involutions s_{p}, s_{q} of $\widehat{\mathcal{H}}_{n}^{-}$(where q is fixed):

$$
\begin{array}{llll}
s_{p}: & p_{i} \rightarrow-p_{i}, \quad q_{i} \rightarrow q_{i}, & R_{i} \mapsto-R_{i}, \\
s_{q}: & p_{i} \rightarrow p_{i}, & q_{i} \rightarrow-q_{i}, & R_{i} \mapsto-R_{i},
\end{array}
$$

for all possible i. We also extend - to involutions $-{ }_{p},-_{q}$ of $\widehat{\mathcal{H}}_{n}^{-}$(fixing each R_{i}):

$$
\begin{array}{llll}
-{ }_{p}: & p_{i} \rightarrow-p_{i}, \quad q_{i} \rightarrow q_{i}, & R_{i} \mapsto R_{i}, & q \mapsto q^{-1} \\
-_{q}: & p_{i} \rightarrow p_{i}, & q_{i} \rightarrow-q_{i}, & R_{i} \mapsto R_{i},
\end{array} \quad q \mapsto q^{-1},
$$

for all possible i. By inspection, all these involutions commute with each other, and their products give rise to many more involutions of $\widehat{\mathcal{H}}_{n}^{-}$.

Extending the anti-involution τ on \mathcal{H}_{n}^{-}, we also have an anti-involution τ on $\widehat{\mathcal{H}}_{n}^{-}$by letting, for all possible i,

$$
\tau\left(p_{i}\right)=p_{i}, \quad \tau\left(q_{i}\right)=-q_{i}, \quad \tau\left(R_{i}\right)=-R_{i}
$$

One obtains more anti-involutions on $\widehat{\mathcal{H}}_{n}^{-}$by composing τ with the various involutions above (which commute with τ).

4.4. A nonstandard presentation of the affine Hecke algebra

The affine Hecke algebra $\widehat{\mathcal{H}}_{n}$ is generated by $T_{i}(1 \leqslant i \leqslant n-1), X_{j}(1 \leqslant j \leqslant n)$ subject to the relations (2.1)-(2.2) of T_{i} 's in \mathcal{H}_{n} and the following additional relations:

$$
\begin{gathered}
X_{i} X_{j}=X_{j} X_{i} \quad(\forall i, j), \\
T_{i} X_{i} T_{i}=X_{i+1}, \\
T_{i} X_{j}=X_{j} T_{i} \quad(j \neq i, i+1) .
\end{gathered}
$$

Recall $\mathcal{T}_{i}:=T_{i}+T_{i}^{-1} \equiv 2 T_{i}-\varepsilon$, and further introduce

$$
P_{i}:=\frac{1}{2}\left(X_{i}+X_{i}^{-1}\right), \quad Q_{i}:=\frac{1}{2}\left(X_{i}-X_{i}^{-1}\right)
$$

It follows that

$$
X_{i}=P_{i}+Q_{i}, \quad X_{i}^{-1}=P_{i}-Q_{i}
$$

Proposition 4.4. The algebra $\widehat{\mathcal{H}}_{n}$ is generated by $\mathcal{T}_{i}(1 \leqslant i \leqslant n-1), P_{j}$ and $Q_{j}(1 \leqslant j \leqslant n)$, subject to the relations (2.11)-(2.13) for \mathcal{T}_{i} 's and the following additional relations:

$$
\begin{gather*}
P_{i} P_{j}=P_{j} P_{i}, \quad Q_{i} Q_{j}=Q_{j} Q_{i} \quad(i \neq j), \tag{4.16}\\
P_{i}^{2}-Q_{i}^{2}=1, \quad P_{i} Q_{j}=Q_{j} P_{i} \quad(\forall i, j), \tag{4.17}\\
\mathcal{T}_{i} P_{i}=P_{i+1} \mathcal{T}_{i}-\varepsilon\left(Q_{i+1}+Q_{i}\right), \tag{4.18}\\
\mathcal{T}_{i} Q_{i}=Q_{i+1} \mathcal{T}_{i}-\varepsilon\left(P_{i}+P_{i+1}\right) . \tag{4.19}
\end{gather*}
$$

Proof. This follows by a direct computation. Let us illustrate by the derivation of (4.18). Indeed, recalling $T_{i}^{-1}=T_{i}-\varepsilon$, we have

$$
\begin{aligned}
\mathcal{T}_{i} P_{i}-P_{i+1} \mathcal{T}_{i}= & \frac{1}{2}\left(2 T_{i}-\varepsilon\right)\left(X_{i}+X_{i}^{-1}\right)-\frac{1}{2}\left(X_{i+1}+X_{i+1}^{-1}\right)\left(2 T_{i}-\varepsilon\right) \\
= & T_{i} X_{i}-\frac{1}{2} \varepsilon X_{i}+\left(T_{i}-\varepsilon\right) X_{i}^{-1}+\frac{1}{2} \varepsilon X_{i}^{-1} \\
& -X_{i+1}\left(T_{i}-\varepsilon\right)-\frac{1}{2} \varepsilon X_{i+1}-X_{i+1}^{-1} T_{i}+\frac{1}{2} \varepsilon X_{i+1}^{-1} \\
= & \left(T_{i} X_{i}-X_{i+1} T_{i}^{-1}\right)+\left(T_{i}^{-1} X_{i}^{-1}-X_{i+1}^{-1} T_{i}\right)-\varepsilon\left(Q_{i+1}+Q_{i}\right) \\
= & -\varepsilon\left(Q_{i+1}+Q_{i}\right) .
\end{aligned}
$$

In the last equation, we have used $T_{i} X_{i}=X_{i+1} T_{i}^{-1}$ and $T_{i}^{-1} X_{i}^{-1}=X_{i+1}^{-1} T_{i}$.
One further checks that in the presence of (2.11), the relations (4.18)-(4.19) are equivalent to the two equations below:

$$
\begin{aligned}
\mathcal{T}_{i} P_{i+1} & =P_{i} \mathcal{T}_{i}+\varepsilon\left(Q_{i+1}+Q_{i}\right) \\
\mathcal{T}_{i} Q_{i+1} & =Q_{i} \mathcal{T}_{i}+\varepsilon\left(P_{i}+P_{i+1}\right)
\end{aligned}
$$

4.5. The covering affine Hecke algebra

Definition 4.5. The covering affine Hecke algebra $\widehat{\mathcal{H}}_{n}^{\sim}$ is generated by $z, \widetilde{T}_{i}(1 \leqslant i \leqslant n-1), \tilde{P}_{j}$ and $\tilde{Q}_{j}(1 \leqslant j \leqslant n)$, subject to the relations (2.14)-(2.16) for \widetilde{T}_{i} 's and the following additional relations:

$$
\begin{gather*}
z^{2}=1, \quad z \text { is central } \\
\tilde{P}_{i} \tilde{P}_{j}=\tilde{P}_{j} \tilde{P}_{i}, \quad \tilde{Q}_{i} \tilde{Q}_{j}=z \tilde{Q}_{j} \tilde{Q}_{i} \quad(i \neq j), \\
\tilde{P}_{i}^{2}-z \tilde{Q}_{i}^{2}=1, \quad \tilde{P}_{i} \tilde{Q}_{j}=\tilde{Q}_{j} \tilde{P}_{i} \quad(\forall i, j), \\
\widetilde{T}_{i} \tilde{P}_{i}=\tilde{P}_{i+1} \widetilde{T}_{i}-\varepsilon\left(\tilde{Q}_{i+1}+z \tilde{Q}_{i}\right), \tag{4.20}\\
\widetilde{T}_{i} \tilde{Q}_{i}=z \tilde{Q}_{i+1} \widetilde{T}_{i}-\varepsilon\left(\tilde{P}_{i}+\tilde{P}_{i+1}\right) . \tag{4.21}
\end{gather*}
$$

Similar to Proposition 4.3, we can show, by assuming only (2.14), that the three pairs of relations (4.20)-(4.21), (4.22)-(4.23), and (4.24)-(4.25) below are equivalent to each other:

$$
\begin{gather*}
\widetilde{T}_{i} \tilde{P}_{i+1}=\tilde{P}_{i} \widetilde{T}_{i}+\varepsilon\left(\tilde{Q}_{i+1}+z \tilde{Q}_{i}\right) \tag{4.22}\\
\widetilde{T}_{i} \tilde{Q}_{i+1}=z \tilde{Q}_{i} \widetilde{T}_{i}+z \varepsilon\left(\tilde{P}_{i}+\tilde{P}_{i+1}\right) \tag{4.23}\\
\tilde{P}_{i+1}=\frac{1}{8}(3-z)\left(z \widetilde{T}_{i} \tilde{P}_{i} \widetilde{T}_{i}+\varepsilon \widetilde{T}_{i} \tilde{Q}_{i}+\varepsilon \tilde{Q}_{i} \widetilde{T}_{i}+\varepsilon^{2} \tilde{P}_{i}\right) \tag{4.24}\\
\tilde{Q}_{i+1}=\frac{1}{8}(3-z)\left(\widetilde{T}_{i} \tilde{Q}_{i} \widetilde{T}_{i}+\varepsilon \widetilde{T}_{i} \tilde{P}_{i}+\varepsilon \tilde{P}_{i} \widetilde{T}_{i}+\varepsilon^{2} z \tilde{Q}_{i}\right) \tag{4.25}
\end{gather*}
$$

By definition, the quotient of the covering affine Hecke algebra $\widehat{\mathcal{H}}_{n}^{\sim}$ by the ideal $\langle z-1\rangle$ is isomorphic to the usual affine Hecke algebra in the nonstandard presentation above, where the canonical images of $\tilde{P}_{i}, \tilde{Q}_{i}$ are identified with P_{i}, Q_{i}, respectively. Also, the quotient of $\widehat{\mathcal{H}}_{n}^{\sim}$ by the ideal $\langle z+1\rangle$ is isomorphic to the spin affine Hecke algebra $\widehat{\mathcal{H}}_{n}^{-}$, where the canonical images of $\tilde{P}_{i}, \tilde{Q}_{i}$ are identified with p_{i}, q_{i}, respectively.

5. Structures of the spin affine Hecke algebra

5.1. Morita super-equivalence for $\widehat{\mathcal{H}}_{n}^{-}$

Theorem 5.1. There exists an isomorphism of superalgebras

$$
\Phi: \widehat{\mathcal{H}} c_{n} \xrightarrow{\simeq} \mathcal{C}_{n} \otimes \widehat{\mathcal{H}}_{n}^{-}
$$

which extends the isomorphism $\Phi: \mathcal{H} c_{n} \rightarrow \mathcal{C}_{n} \otimes \mathcal{H}_{n}^{-}$and is such that

$$
\Phi\left(X_{i}\right)=p_{i}-c_{i} q_{i}, \quad \Phi\left(X_{i}^{-1}\right)=p_{i}+c_{i} q_{i}
$$

The inverse Ψ is an extension of $\Psi: \mathcal{C}_{n} \otimes \mathcal{H}_{n}^{-} \rightarrow \mathcal{H} c_{n}$ such that

$$
\Psi\left(p_{i}\right)=\frac{1}{2}\left(X_{i}+X_{i}^{-1}\right), \quad \Psi\left(q_{i}\right)=\frac{1}{2}\left(X_{i}-X_{i}^{-1}\right) c_{i} .
$$

5.2. Proof of the isomorphism Theorem 5.1

We will adopt the convention $\Psi(a)=a^{\Psi}, \Phi(b)=b^{\Phi}$. We start with several lemmas.
Lemma 5.2. In $\widehat{\mathcal{H}} c_{n}$, we have

$$
\begin{aligned}
R_{i}^{\Psi} p_{i}^{\Psi} & =p_{i+1}^{\Psi} R_{i}^{\Psi}+\varepsilon\left(q_{i}^{\Psi}-q_{i+1}^{\Psi}\right) \\
R_{i}^{\Psi} q_{i}^{\Psi} & =-q_{i+1}^{\Psi} R_{i}^{\Psi}-\varepsilon\left(p_{i}^{\Psi}+p_{i+1}^{\Psi}\right)
\end{aligned}
$$

Proof. By (3.3), we have

$$
\begin{aligned}
R_{i}^{\Psi} X_{i}= & \left(T_{i}\left(c_{i+1}-c_{i}\right)+\varepsilon c_{i}\right) X_{i} \\
= & T_{i} X_{i} c_{i+1}-T_{i} X_{i}^{-1} c_{i}+\varepsilon X_{i}^{-1} c_{i} \\
= & X_{i+1} T_{i} c_{i+1}-\varepsilon\left(X_{i+1}+c_{i} c_{i+1} X_{i}\right) c_{i+1} \\
& -X_{i+1}^{-1} T_{i} c_{i}-\varepsilon\left(X_{i}^{-1} c_{i}-X_{i+1}^{-1} c_{i+1}\right)+\varepsilon X_{i}^{-1} c_{i} \\
= & X_{i+1} T_{i} c_{i+1}-X_{i+1}^{-1} T_{i} c_{i}-\varepsilon\left(X_{i+1} c_{i+1}-X_{i+1}^{-1} c_{i+1}+X_{i}^{-1} c_{i}\right)
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
R_{i}^{\Psi} X_{i}^{-1}= & \left(T_{i}\left(c_{i+1}-c_{i}\right)+\varepsilon c_{i}\right) X_{i}^{-1} \\
= & T_{i} X_{i}^{-1} c_{i+1}-T_{i} X_{i} c_{i}+\varepsilon X_{i} c_{i} \\
= & X_{i+1}^{-1} T_{i} c_{i+1}+\varepsilon\left(X_{i}^{-1}+c_{i} c_{i+1} X_{i+1}\right) c_{i+1} \\
& -\left(X_{i+1} T_{i}-\varepsilon\left(X_{i+1}+c_{i} c_{i+1} X_{i}\right)\right) c_{i}+\varepsilon X_{i} c_{i} \\
= & X_{i+1}^{-1} T_{i} c_{i+1}-X_{i+1} T_{i} c_{i}+\varepsilon\left(X_{i+1} c_{i}+X_{i+1}^{-1} c_{i}+X_{i} c_{i}\right) .
\end{aligned}
$$

Now the lemma follows by adding and subtracting these two identities for $R_{i}^{\Psi} X_{i}$ and $R_{i}^{\Psi} X_{i}^{-1}$ (as well as multiplying with c_{i}).

Lemma 5.3. Let $1 \leqslant i \leqslant n$. In $\widehat{\mathcal{H}} c_{n}$, the element p_{i}^{ψ} commutes with \mathcal{C}_{n} while q_{i}^{ψ} super-commutes with \mathcal{C}_{n}.

Proof. Follows directly from (2.4) and (4.4).

Lemma 5.4. The $T_{i}^{\Phi}, X_{i}^{\Phi},\left(X_{i}^{-}\right)^{\Phi}, c_{i}$ satisfy the relations (4.1)-(4.4).
Proof. The relations (4.2)-(4.4) for $X_{i}^{\Phi},\left(X_{i}^{-}\right)^{\Phi}, c_{i}$ are easy to verify from the definitions. It remains to check (4.1). We shall use repeatedly (4.8) and (4.9) below. Recalling T_{i}^{Φ} from (3.1), we calculate that

$$
\begin{aligned}
2 X_{i}^{\Phi} T_{i}^{\Phi}= & \left(p_{i}-c_{i} q_{i}\right)\left(R_{i}\left(c_{i+1}-c_{i}\right)+\varepsilon\left(1-c_{i} c_{i+1}\right)\right) \\
= & \left(R_{i} p_{i+1}+\varepsilon\left(q_{i}-q_{i+1}\right)\right)\left(c_{i+1}-c_{i}\right)-\left(-R_{i} q_{i+1}-\varepsilon\left(p_{i}+p_{i+1}\right)\right) c_{i}\left(c_{i+1}-c_{i}\right) \\
& +\varepsilon p_{i}\left(1-c_{i} c_{i+1}\right)+\varepsilon q_{i} c_{i}\left(1-c_{i} c_{i+1}\right) \\
= & \left(R_{i} p_{i+1}-\varepsilon q_{i+1}\right)\left(c_{i+1}-c_{i}\right)-\left(R_{i} q_{i+1}+\varepsilon p_{i+1}\right)\left(1-c_{i} c_{i+1}\right) .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
4\left(T_{i}^{\Phi}+\varepsilon c_{i} c_{i+1}\right) X_{i}^{\Phi} T_{i}^{\Phi}= & {\left[R_{i}\left(c_{i+1}-c_{i}\right)+\varepsilon\left(1-c_{i} c_{i+1}\right)\right] } \\
& \times\left[\left(R_{i} p_{i+1}-\varepsilon q_{i+1}\right)\left(c_{i+1}-c_{i}\right)-\left(R_{i} q_{i+1}+\varepsilon p_{i+1}\right)\left(1-c_{i} c_{i+1}\right)\right] \\
= & -R_{i}\left(R_{i} p_{i+1}-\varepsilon q_{i+1}\right)\left(c_{i+1}-c_{i}\right)^{2} \\
& -R_{i}\left(R_{i} q_{i+1}+\varepsilon p_{i+1}\right)\left(c_{i+1}-c_{i}\right)\left(1-c_{i} c_{i+1}\right) \\
& +\varepsilon\left(R_{i} p_{i+1}-\varepsilon q_{i+1}\right)\left(1+c_{i} c_{i+1}\right)\left(c_{i+1}-c_{i}\right) \\
& -\varepsilon\left(R_{i} q_{i+1}+\varepsilon p_{i+1}\right)\left(1+c_{i} c_{i+1}\right)\left(1-c_{i} c_{i+1}\right) \\
= & 4\left(p_{i+1}-c_{i+1} q_{i+1}\right)=4 X_{i+1}^{\Phi} .
\end{aligned}
$$

This completes the proof of the lemma.

Proof of Theorem 5.1. It is straightforward to check that $p_{i}^{\Psi}, q_{i}^{\Psi}, R_{i}^{\Psi}$ satisfy (4.5)-(4.7). Together with Lemmas 3.3-3.5,5.2, 5.3, this implies that $\Psi: \mathcal{C}_{n} \otimes \widehat{\mathcal{H}}_{n}^{-} \rightarrow \widehat{\mathcal{H}} c_{n}$ is an algebra homomorphism.

Clearly $X_{i}^{\Phi} \cdot\left(X_{i}^{-1}\right)^{\Phi}=1$. Recalling that $\left.\Phi\right|_{\mathcal{H} c_{n}}: \mathcal{H} c_{n} \rightarrow \mathcal{C}_{n} \otimes \mathcal{H}_{n}^{-}$is an algebra isomorphism by Theorem 3.1, we have by Lemma 5.4 that $\Phi: \widehat{\mathcal{H}} c_{n} \rightarrow \mathcal{C}_{n} \otimes \widehat{\mathcal{H}}_{n}^{-}$is an algebra homomorphism.

By a direct computation, the homomorphisms Ψ and Φ are inverses on the generators, and thus they are inverse algebra isomorphisms.

5.3. A basis for $\widehat{\mathcal{H}}_{n}^{-}$

We recall the definition of $R_{i, a_{i}}$ from (3.4).
Theorem 5.5. The algebra $\widehat{\mathcal{H}}_{n}^{-}$has a basis

$$
p_{1}^{k_{1}} \cdots p_{n}^{k_{n}} q_{1}^{\epsilon_{1}} \cdots q_{n}^{\epsilon_{n}} \cdot R_{1, a_{1}} R_{2, a_{2}} \cdots R_{n-1, a_{n-1}}
$$

where $k_{1}, \ldots, k_{n} \in \mathbb{Z}_{+}, \epsilon_{1}, \ldots, \epsilon_{n} \in\{0,1\}, 0 \leqslant a_{i} \leqslant i$ and $1 \leqslant i \leqslant n-1$.
Proof. The subalgebra A_{i} generated by $c_{i}, p_{i}^{\psi}, q_{i}^{\Psi}$ (for a fixed i) is identical to the subalgebra generated by c_{i}, X_{i}, X_{i}^{-1}, and it has a linear basis given by $c_{i}^{\alpha} X_{i}^{a}(\alpha \in\{0,1\}, a \in \mathbb{Z})$. By the standard basis for $\widehat{\mathcal{H}} c_{n}$, Theorems 3.1 and 5.1, we have the following isomorphisms of vector spaces:

$$
\begin{equation*}
\widehat{\mathcal{H}} c_{n} \cong A_{1} \otimes \cdots \otimes A_{n} \otimes \mathcal{H}_{n}^{-} \cong \mathcal{C}_{n} \otimes \widehat{\mathcal{H}}_{n}^{-} \tag{5.1}
\end{equation*}
$$

Claim. The algebra A_{i} has another basis $\left\{c_{i}^{\alpha}\left(p_{i}^{\Psi}\right)^{k}\left(q_{i}^{\psi}\right)^{\beta} \mid \alpha, \beta \in\{0,1\}, k \in \mathbb{Z}_{+}\right\}$. Equivalently, the subalgebra B_{i} generated by $\left(X_{i}+X_{i}^{-1}\right)$ and $\left(X_{i}-X_{i}^{-1}\right)$ has a basis $\left\{\left(X_{i}+X_{i}^{-1}\right)^{k}\left(X_{i}-\right.\right.$ $\left.\left.X_{i}^{-1}\right)^{\beta} \mid \beta \in\{0,1\}, k \in \mathbb{Z}_{+}\right\}$.

We prove the second (equivalent) part of the claim. Since any even power of ($X_{i}-X_{i}^{-1}$) can be written as a polynomial in $\left(X_{i}+X_{i}^{-1}\right)$, the algebra B_{i} is spanned by the elements $\left(X_{i}+\right.$ $\left.X_{i}^{-1}\right)^{k}\left(X_{i}-X_{i}^{-1}\right)^{\beta}$, with the constraint $\beta \in\{0,1\}$. It remains to prove the linear independence of these elements. Assume otherwise

$$
f(X):=\sum_{k} a_{k}\left(X_{i}+X_{i}^{-1}\right)^{k}\left(X_{i}-X_{i}^{-1}\right)+\sum_{k} b_{k}\left(X_{i}+X_{i}^{-1}\right)^{k}=0,
$$

for some $a_{k}, b_{k} \in \mathbb{C}(q)$, all but finitely many being zero. Then $f\left(X^{-1}\right)=0$, and thus

$$
2 \sum_{k} b_{k}\left(X_{i}+X_{i}^{-1}\right)^{k}=f(X)+f\left(X^{-1}\right)=0
$$

By looking at the highest degree term in X_{i} of this equation, we see that all $b_{k}=0$, and similarly all $a_{k}=0$. This proves the claim.

The theorem now follows from (5.1) and the claim.

Accordingly, we obtain a similar basis for the covering affine Hecke algebra $\widehat{\mathcal{H}}_{n}^{\sim}$ (compare Proposition 3.10).

5.4. The center of $\widehat{\mathcal{H}}_{n}^{-}$

Theorem 5.6. The even center of the algebra $\widehat{\mathcal{H}}_{n}^{-}$is the algebra of symmetric polynomials $\mathbb{C}\left[p_{1}, p_{2}, \ldots, p_{n}\right]^{S_{n}}$.

Proof. The center of $\widehat{\mathcal{H}} c_{n}$ is equal to $\mathbb{C}\left[X_{1}+X_{1}^{-1}, \ldots, X_{n}+X_{n}^{-1}\right]^{S_{n}}$, the algebra of symmetric polynomials in $X_{k}+X_{k}^{-1}(1 \leqslant k \leqslant n)$, according to Jones-Nazarov [4] (cf. [2]). The map $\Phi: \widehat{\mathcal{H}} c_{n} \xrightarrow{\simeq} \mathcal{C}_{n} \otimes \widehat{\mathcal{H}}_{n}^{-}$sends $\mathbb{C}\left[X_{1}+X_{1}^{-1}, \ldots, X_{n}+X_{n}^{-1}\right]^{S_{n}}$ onto $\mathbb{C}\left[p_{1}, p_{2}, \ldots, p_{n}\right]^{S_{n}}$, and so $\mathbb{C}\left[p_{1}, p_{2}, \ldots, p_{n}\right]^{S_{n}}$ is the center of $\mathcal{C}_{n} \otimes \widehat{\mathcal{H}}_{n}^{-}$. It follows that $\mathbb{C}\left[p_{1}, p_{2}, \ldots, p_{n}\right]^{S_{n}}$ is contained in the (even) center of $\widehat{\mathcal{H}}_{n}^{-}$. On the other hand, any given even central element e of $\widehat{\mathcal{H}}_{n}^{-}$commutes with \mathcal{C}_{n} thanks to the evenness of e, and thus lies in the center of $\mathcal{C}_{n} \otimes \widehat{\mathcal{H}}_{n}^{-}$, which is $\mathbb{C}\left[p_{1}, p_{2}, \ldots, p_{n}\right]^{S_{n}}$.

Proposition 5.7. Let $n>0$ be odd. Then $\mathfrak{q}:=q_{1} q_{2} \cdots q_{n}$ is an odd central element of $\widehat{\mathcal{H}}_{n}^{-}$. However, \mathfrak{q}^{Ψ} does not lie in the center of $\widehat{\mathcal{H}} c_{n}$.

Proof. \mathfrak{q}^{Ψ} does not lie in the center of $\widehat{\mathcal{H}} c_{n}$, since $\mathfrak{q}^{\Psi} c_{i}=-c_{i} \mathfrak{q}^{\Psi}$.
By definition, \mathfrak{q} commutes with each p_{i}. Since n is odd, \mathfrak{q} commutes with each q_{i} by a direct computation. It remains to show that $R_{i} \mathfrak{q}=\mathfrak{q} R_{i}$ for each i. Indeed, by (4.9) and (4.11), we have

$$
\begin{aligned}
R_{i} q_{i} q_{i+1} & =\left(-q_{i+1} R_{i}-\varepsilon\left(p_{i}+p_{i+1}\right)\right) q_{i+1} \\
& =-q_{i+1}\left(-q_{i} R_{i}-\varepsilon\left(p_{i}+p_{i+1}\right)\right)-\varepsilon\left(p_{i}+p_{i+1}\right) q_{i+1}=-q_{i} q_{i+1} R_{i}
\end{aligned}
$$

This, together with (4.7) and the oddness of n, implies that $R_{i} \mathfrak{q}=\mathfrak{q} R_{i}$.

5.5. The intertwiners

By Theorem 5.6, $\delta:=\prod_{1 \leqslant i<j \leqslant n}\left(p_{i}-p_{j}\right)^{2}$ is an even central element in $\widehat{\mathcal{H}}_{n}^{-}$. Denote by $\left(\widehat{\mathcal{H}}_{n}^{-}\right)_{\delta}$ the localization of $\widehat{\mathcal{H}}_{n}^{-}$at δ. In particular, $\left(p_{i}-p_{i+1}\right)^{-1} \in\left(\widehat{\mathcal{H}}_{n}^{-}\right)_{\delta}$.

Define

$$
\beth_{i}=R_{i}-\varepsilon \frac{q_{i}-q_{i+1}}{p_{i}-p_{i+1}} \in\left(\widehat{\mathcal{H}}_{n}^{-}\right)_{\delta}
$$

It is understood here and below that $\frac{A}{B}=B^{-1} A$.
Proposition 5.8. The elements $\beth_{i}(1 \leqslant i \leqslant n-1)$ satisfy the following relations:

$$
\begin{gather*}
\beth_{i}^{2}=-2+2 \varepsilon^{2} \frac{p_{i} p_{i+1}-1}{\left(p_{i}-p_{i+1}\right)^{2}}, \tag{5.2}\\
\beth_{i} \beth_{i+1} \beth_{i}=\beth_{i+1} \beth_{i} \beth_{i+1}, \tag{5.3}\\
\beth_{i} \beth_{j}=-\beth_{j} \beth_{i} \quad(|i-j|>1),
\end{gather*}
$$

$$
\begin{gathered}
\beth_{i} p_{i}=p_{i+1} \beth_{i}, \quad \beth_{i} p_{i+1}=p_{i} \beth_{i}, \\
\beth_{i} p_{j}=p_{j} \beth_{i}, \quad \beth_{i} q_{j}=-q_{j} \beth_{i} \quad(j \neq i, i+1), \\
\beth_{i} q_{i}=-q_{i+1} \beth_{i}, \quad \beth_{i} q_{i+1}=-q_{i} \beth_{i} .
\end{gathered}
$$

Proof. All of these relations can be verified by direct computation. Below we describe an alternative way by making connections with the intertwiners ϕ_{i} for $\widehat{\mathcal{H}} c_{n}$ introduced in [4, (3.6)]. Recall that

$$
\phi_{i}:=T_{i}+\frac{\varepsilon}{X_{i} X_{i+1}^{-1}-1}-\frac{\varepsilon}{X_{i} X_{i+1}-1} \cdot c_{i} c_{i+1}
$$

in a suitable localization of $\widehat{\mathcal{H}} c_{n}$ isomorphic to $\mathcal{C}_{n} \otimes\left(\widehat{\mathcal{H}}_{n}^{-}\right)_{\delta}$. One can show that

$$
\phi_{i} c_{i}=c_{i+1} \phi_{i}, \quad \phi_{i} c_{i+1}=c_{i} \phi_{i}
$$

Claim. The isomorphism $\Phi: \widehat{\mathcal{H}} c_{n} \rightarrow \mathcal{C}_{n} \otimes \widehat{\mathcal{H}}_{n}^{-}$sends ϕ_{i} to $\frac{1}{2}\left(c_{i}-c_{i+1}\right) \otimes \beth_{i}$. Indeed, we have

$$
\begin{aligned}
\Phi\left(\phi_{i}\right)= & \frac{1}{2} R_{i}\left(c_{i+1}-c_{i}\right)+\frac{\varepsilon}{2}\left(1-c_{i} c_{i+1}\right) \\
& +\varepsilon \Phi\left(\frac{X_{i+1}-X_{i}^{-1}-\left(X_{i+1}^{-1}-X_{i}^{-1}\right) c_{i} c_{i+1}}{X_{i}+X_{i}^{-1}-\left(X_{i+1}+X_{i+1}^{-1}\right)}\right) \\
= & \frac{1}{2} R_{i}\left(c_{i+1}-c_{i}\right)+\frac{\varepsilon}{2} \cdot \frac{q_{i} c_{i}+q_{i+1} c_{i+1}-q_{i+1} c_{i}-q_{i} c_{i+1}}{p_{i}-p_{i+1}} \\
= & \frac{1}{2}\left(R_{i}-\varepsilon \frac{q_{i}-q_{i+1}}{p_{i}-p_{i+1}}\right)\left(c_{i+1}-c_{i}\right)=\frac{1}{2}\left(c_{i}-c_{i+1}\right) \otimes \beth_{i} .
\end{aligned}
$$

With the help of the claim, all of the identities in the proposition follow from the corresponding statements for ϕ_{i} in [4, (3.7)] and [4, Proposition 3.1]. Let us illustrate by proving (5.2) in detail below. Recall from [4, Proposition 3.1] that

$$
\phi_{i}^{2}=1-\varepsilon^{2}\left(\frac{X_{i} X_{i+1}^{-1}}{\left(X_{i} X_{i+1}^{-1}-1\right)^{2}}+\frac{X_{i}^{-1} X_{i+1}^{-1}}{\left(X_{i}^{-1} X_{i+1}^{-1}-1\right)^{2}}\right) .
$$

By the above claim, we have

$$
\begin{aligned}
I_{i}^{2} & =\left(\left(c_{i}-c_{i+1}\right) \Phi\left(\phi_{i}\right)\right)^{2}=-2 \Phi\left(\phi_{i}^{2}\right) \\
& =-2+2 \varepsilon^{2} \frac{X_{i}^{-1} X_{i+1}^{-1}-2+X_{i} X_{i+1}+X_{i} X_{i+1}^{-1}-2+X_{i}^{-1} X_{i+1}}{\left(X_{i+1}+X_{i+1}^{-1}-X_{i}-X_{i}^{-1}\right)^{2}} \\
& =-2+2 \varepsilon^{2} \frac{\left(X_{i+1}+X_{i+1}^{-1}\right)\left(X_{i}+X_{i}^{-1}\right)-4}{\left(X_{i+1}+X_{i+1}^{-1}-X_{i}-X_{i}^{-1}\right)^{2}} \\
& =-2+2 \varepsilon^{2} \frac{p_{i} p_{i+1}-1}{\left(p_{i}-p_{i+1}\right)^{2}} .
\end{aligned}
$$

For the braid relation (5.3), the following identity can be useful:

$$
\left(c_{i}-c_{i+1}\right)\left(c_{i+1}-c_{i+2}\right)\left(c_{i}-c_{i+1}\right)=\left(c_{i+1}-c_{i+2}\right)\left(c_{i}-c_{i+1}\right)\left(c_{i+1}-c_{i+2}\right)
$$

6. Cyclotomic spin Hecke algebras

6.1. The definition

Recall $p_{1} q_{1}=q_{1} p_{1}$. Consider the subalgebra

$$
\mathcal{A}_{1}:=\mathbb{C}\left[p_{1}, q_{1}\right] /\left\langle p_{1}^{2}+q_{1}^{2}-1\right\rangle
$$

of $\widehat{\mathcal{H}}_{n}^{-}$which is commutative and \mathbb{Z}_{2}-graded with p_{1} being even and q_{1} odd.
Proposition 6.1. A nonzero \mathbb{Z}_{2}-homogeneous ideal I_{1} of \mathcal{A}_{1} is one of the following:
(1) $\left\langle f\left(p_{1}\right)\right\rangle$, for some nonzero polynomial f in one variable;
(2) $\left\langle g\left(p_{1}\right) q_{1}\right\rangle$, for some nonzero polynomial g in one variable;
(3) $\left\langle\left(p_{1}+1\right) g\left(p_{1}\right), g\left(p_{1}\right) q_{1}\right\rangle$, for some nonzero polynomial g;
(4) $\left\langle\left(p_{1}-1\right) g\left(p_{1}\right), g\left(p_{1}\right) q_{1}\right\rangle$, for some nonzero polynomial g.

Proof. Let I_{1} be a nonzero \mathbb{Z}_{2}-homogeneous ideal of \mathcal{A}_{1}. Let f and g be the unique monic polynomials of minimal degree such that $f\left(p_{1}\right) \in I_{1}, g\left(p_{1}\right) q_{1} \in I_{1}$. By the \mathbb{Z}_{2}-homogeneity, $I_{1}=\left\langle f\left(p_{1}\right), g\left(p_{1}\right) q_{1}\right\rangle$.

Note that $f\left(p_{1}\right) q_{1} \in I_{1}$ and $\left(p_{1}^{2}-1\right) \cdot g\left(p_{1}\right)=-g\left(p_{1}\right) q_{1}^{2} \in I_{1}$. By assumption of minimal degrees on f, g, we have

$$
\begin{equation*}
f\left(p_{1}\right) \mid\left(p_{1}-1\right)\left(p_{1}+1\right) \cdot g\left(p_{1}\right), \tag{6.1}
\end{equation*}
$$

and thus $\operatorname{deg} f \leqslant \operatorname{deg} g+2$. Also $\operatorname{deg} g \leqslant \operatorname{deg} f$, and $g=f$ if $\operatorname{deg} g=\operatorname{deg} f$.
In the case when $\operatorname{deg} f=\operatorname{deg} g$ and thus $g=f$, the ideal I_{1} is of the form (1).
In the case when $\operatorname{deg} f=\operatorname{deg} g+2$, we have $f\left(p_{1}\right)=\left(p_{1}^{2}-1\right) \cdot g\left(p_{1}\right)$ by (6.1), and thus I_{1} is of the form (2).

Finally assume that $\operatorname{deg} f=\operatorname{deg} g+1$ and consider two subcases: (i) $g\left(p_{1}\right) \mid f\left(p_{1}\right)$; (ii) $g\left(p_{1}\right) \nmid f\left(p_{1}\right)$. Thanks to (6.1), in case (i), I_{1} is of the form (3) or (4). We now claim the subcase (ii) is empty. Indeed, by (6.1), (ii) and $\operatorname{deg} f=\operatorname{deg} g+1$, we have $f\left(p_{1}\right)=\left(p_{1}^{2}-1\right) h\left(p_{1}\right)=$ $-q_{1}^{2} h\left(p_{1}\right)$ and $g\left(p_{1}\right)=\left(p_{1}-a\right) h\left(p_{1}\right)$ for some constant $a \neq \pm 1$ and some polynomial h of degree equal to $(\operatorname{deg} g-1)$. Therefore,

$$
h\left(p_{1}\right) q_{1}=\frac{1}{1-a^{2}}\left(\left(p_{1}+a\right) \cdot g\left(p_{1}\right) q_{1}-q_{1} \cdot f\left(p_{1}\right)\right) \in I_{1} .
$$

This contradicts with the choice of $g(p)$ of minimal degree.
Definition 6.2. The cyclotomic spin Hecke algebra $\mathcal{H}_{n}^{I,-}$ is the quotient algebra of $\widehat{\mathcal{H}}_{n}^{-}$by the two-sided ideal $I=\left\langle I_{1}\right\rangle$ generated by a nonzero \mathbb{Z}_{2}-homogeneous ideal $I_{1} \subset \mathcal{A}_{1}$. (Note that $\mathcal{H}_{n}^{I,-}$ inherits a superalgebra structure from $\widehat{\mathcal{H}}_{n}^{-}$.)

Remark 6.3. As a byproduct of the above proof of Proposition 6.1, the ideal I in Definition 6.2 is generated by $f\left(p_{1}\right)$ and $g\left(p_{1}\right) q_{1}$, where f and g are the unique monic polynomials of minimal degree such that $f\left(p_{1}\right) \in I_{1}, g\left(p_{1}\right) q_{1} \in I_{1}$. We will sometimes write $f=f_{I}$ and $g=g_{I}$ to indicate its dependence on I. More specifically, I is generated by one or two elements given in Proposition 6.1.

6.2. Relation to cyclotomic Hecke-Clifford algebras

We refer to Ariki [1] for more on the classical cyclotomic Hecke algebras.
Let F be a polynomial of the form

$$
F\left(X_{1}\right)=a_{d} X_{1}^{d}+a_{d_{1}} X_{1}^{d-1}+\cdots+a_{1} X_{1}+a_{0}
$$

which satisfies the condition

$$
\begin{equation*}
a_{d}=1, \quad a_{i}=a_{0} a_{d-i} \quad(\forall 0 \leqslant i \leqslant d) . \tag{6.2}
\end{equation*}
$$

Associated to such an F, Brundan-Kleshchev [2] introduced the cyclotomic Hecke-Clifford algebra, which will be denoted by $\mathcal{H} c_{n}^{F}$ in this paper, as the quotient algebra $\widehat{\mathcal{H}} c_{n} /\left\langle F\left(X_{1}\right)\right\rangle$. The technical condition (6.2) was imposed so that the resulting cyclotomic algebra \mathcal{H}_{n}^{F} has an expected basis and dimension. The next proposition shows that the condition (6.2) is natural from the perspective of cyclotomic spin Hecke algebras.

Theorem 6.4. There is a bijection between the set of cyclotomic spin Hecke algebras and the set of cyclotomic Hecke-Clifford algebras. More explicitly, every cyclotomic Hecke-Clifford algebra $\mathcal{H} c_{n}^{F}$ is isomorphic to $\mathcal{C}_{n} \otimes \mathcal{H}_{n}^{I,-}$ for some cyclotomic spin Hecke algebra $\mathcal{H}_{n}^{I,-}$ via Φ. Conversely, for each $\mathcal{H}_{n}^{I,-}$, the algebra $\mathcal{C}_{n} \otimes \mathcal{H}_{n}^{I,-}$ is isomorphic to some cyclotomic HeckeClifford algebra via Ψ.

Proof. Note that $a_{0}= \pm 1$ by (6.2). Divide the degree d polynomials F which satisfy the condition (6.2) into the following four cases:
(1) $d=2 k$ is even and $a_{0}=1$;
(2) $d=2 k$ is even and $a_{0}=-1$;
(3) $d=2 k+1$ is odd and $a_{0}=1$;
(4) $d=2 k+1$ is odd and $a_{0}=-1$.

Then it follows by a case-by-case elementary verification that the isomorphism $\Phi: \widehat{\mathcal{H}} c_{n} \rightarrow$ $\mathcal{C}_{n} \otimes \widehat{\mathcal{H}}_{n}^{-}$sends $X_{1}^{-k} F\left(X_{1}\right)$ for F in each case bijectively onto the corresponding set below:
(1) $\left\{f\left(p_{1}\right) \mid f\right.$ is a polynomial of degree $\left.k\right\}$;
(2) $\left\{g\left(p_{1}\right) q_{1} \mid g\right.$ is a polynomial of degree $\left.(k-1)\right\}$;
(3) $\left\{\left(p_{1}+1-c_{1} q_{1}\right) \cdot g\left(p_{1}\right) \mid g\right.$ is a polynomial of degree $\left.k\right\}$;
(4) $\left\{\left(p_{1}-1-c_{1} q_{1}\right) \cdot g\left(p_{1}\right) \mid g\right.$ is a polynomial of degree $\left.k\right\}$.

Clearly, the ideal \mathfrak{I} in $\mathcal{C}_{n} \otimes \widehat{\mathcal{H}}_{n}^{-}$generated by an element in (1) or (2) above coincides with $\mathcal{C}_{n} \otimes\left\langle I_{1}\right\rangle$ where I_{1} is given by Proposition 6.1(1) or (2), respectively. Now the proposition follows by the following claim.

Claim. The ideal \mathfrak{I} in $\mathcal{C}_{n} \otimes \widehat{\mathcal{H}}_{n}^{-}$generated by the element $\left(p_{1} \pm 1-c_{1} q_{1}\right) \cdot g\left(p_{1}\right)$ in (3) or (4) coincides with $\mathcal{C}_{n} \otimes\left\langle I_{1}\right\rangle$, where $\left\langle I_{1}\right\rangle$ is the ideal in $\widehat{\mathcal{H}}_{n}^{-}$generated by I_{1} in Proposition 6.1 (3) or (4), respectively.

Let us prove the claim for (3) and skip a similar proof for (4). Indeed, it is clear that $\mathfrak{I} \subseteq$ $\mathcal{C}_{n} \otimes\left\langle I_{1}\right\rangle$. On the other hand, we have

$$
\left(p_{1}+1\right) g\left(p_{1}\right)=\frac{1}{2}\left(p_{1}+1-c_{1} q_{1}\right)\left(p_{1}+1+c_{1} q_{1}\right) g\left(p_{1}\right) \in \mathfrak{I},
$$

and thus also $g\left(p_{1}\right) q_{1}=c_{1}\left(p_{1}+1+c_{1} q_{1}\right) g\left(p_{1}\right)-c_{1}\left(p_{1}+1\right) g\left(p_{1}\right) \in \mathfrak{I}$. Therefore, $\mathfrak{I} \supseteq$ $\mathcal{C}_{n} \otimes\left\langle I_{1}\right\rangle$.

It is known [2] that $\operatorname{dim} \mathcal{H} c_{n}^{F}=(\operatorname{deg} F)^{n} 2^{n} n$!. From the explicit relations between (the generators of) the corresponding ideals in $\widehat{\mathcal{H}} c_{n}$ and $\widehat{\mathcal{H}}_{n}^{-}$presented in the above proof, we have the following.

Corollary 6.5. Let f_{I} and g_{I} be the unique monic polynomials of minimal degree such that $f_{I}\left(p_{1}\right)$ and $g_{I}\left(p_{1}\right) q_{1}$ generate the ideal I in $\widehat{\mathcal{H}}_{n}^{-}$. Then, $\operatorname{dim} \mathcal{H}_{n}^{I,-}=\left(\operatorname{deg} f_{I}+\operatorname{deg} g_{I}\right)^{n} n!$.

Conjecturally, a basis for $\mathcal{H}_{n}^{I,-}$ consists of $p_{1}^{\alpha_{1}} q_{1}^{\epsilon_{1}} \cdots p_{n}^{\alpha_{n}} q_{n}^{\epsilon_{n}} R$, where $\epsilon_{1}, \ldots, \epsilon_{n} \in\{0,1\}$, $0 \leqslant \alpha_{i}<\operatorname{deg} f_{I}$ if $\epsilon_{i}=0$ and $0 \leqslant \alpha_{i}<\operatorname{deg} g_{I}$ if $\epsilon_{i}=1$, and R runs over all standard monomials in \mathcal{H}_{n}^{-}.

6.3. Jucys-Murphy elements for \mathcal{H}_{n}^{-}

We observe that the spin Hecke algebra \mathcal{H}_{n}^{-}coincides with the (smallest) cyclotomic spin Hecke algebra $\mathcal{H}_{n}^{I,-}$, where $I=\left\langle p_{1}-1, q_{1}\right\rangle$. Similarly, the Hecke-Clifford algebra $\mathcal{H} c_{n}$ is a special case of the cyclotomic Hecke-Clifford algebras $\mathcal{H} c_{n}^{F}$ with $F\left(X_{1}\right)=X_{1}-1$.

Proposition 6.6. There exists a unique algebra homomorphism

$$
\mathcal{J M}: \widehat{\mathcal{H}}_{n}^{-} \rightarrow \mathcal{H}_{n}^{-}
$$

which extends the identity map on \mathcal{H}_{n}^{-}and is such that $\mathcal{J} \mathcal{M}\left(p_{1}\right)=1, \mathcal{J} \mathcal{M}\left(q_{1}\right)=0$.
Proof. There exists a unique algebra homomorphism JM: $\widehat{\mathcal{H}} c_{n} \rightarrow \mathcal{H} c_{n}$, which extends the identity map on $\mathcal{H} c_{n}$ and is such that $\mathrm{JM}\left(X_{1}\right)=1$, according to Jones-Nazarov [4, Proposition 3.5]. By (4.1), the images J_{i} of $X_{i}(1 \leqslant i \leqslant n)$ under JM, called the Jucys-Murphy elements for $\widehat{\mathcal{H}} c_{n}$, are given recursively by $J_{i+1}=\left(T_{i}+\varepsilon c_{i} c_{i+1}\right) J_{i} T_{i}$. By Theorems 3.1 and 5.1, there exists a homomorphism $\mathrm{JM}^{\prime}: \widehat{\mathcal{H}}_{n}^{-} \rightarrow \mathcal{H}_{n}^{-}$to make the following diagram commutative:

$$
\begin{array}{cc}
\widehat{\mathcal{H}} c_{n} \xrightarrow{\mathrm{JM}} \mathcal{H} c_{n} \\
\Phi \mid \cong & \Phi \mid \cong \\
\emptyset \downarrow & \widehat{\mathrm{J}}^{\prime} \\
\mathcal{C}_{n} \otimes \widehat{\mathcal{H}}_{n}^{-} \xrightarrow{\mathrm{JM}_{n}} \otimes \mathcal{H}_{n}^{-} .
\end{array}
$$

Since $\operatorname{JM}\left(X_{1}\right)=1$, it follows by definition of Φ that $\mathrm{JM}^{\prime}\left(p_{1}\right)=1, \mathrm{JM}^{\prime}\left(q_{1}\right)=0$. Moreover, since $\left.\mathrm{JM}^{\prime}\right|_{\mathcal{C}_{n} \otimes \mathcal{H}_{n}^{-}}$is the identity and the images of p_{i}, q_{i} are given recursively by Proposition 4.3, we conclude that JM^{\prime} is of the form $\mathrm{I} \otimes \mathcal{J} \mathcal{M}$ for a unique homomorphism $\mathcal{J M}: \widehat{\mathcal{H}}_{n}^{-} \rightarrow \mathcal{H}_{n}^{-}$ with given images of p_{1} and q_{1}. Note that $\mathcal{J} \mathcal{M}\left(p_{1}\right)=1$ and $\mathcal{J} \mathcal{M}\left(q_{1}\right)=0$.

We will call the images $\mathfrak{p}_{i}, \mathfrak{q}_{i} \in \mathcal{H}_{n}^{-}(1 \leqslant i \leqslant n)$ of the elements p_{i}, q_{i} 's under the homomorphism $\mathcal{J} \mathcal{M}$ the Jucys-Murphy elements for \mathcal{H}_{n}^{-}, following the convention for the symmetric group and the usual Hecke algebras. The relations (4.5)-(4.11), with \mathfrak{p}_{i} and \mathfrak{q}_{i} replacing p_{i} and q_{i}, are satisfied. Alternatively, it follows from the proof of Proposition 6.6 that

$$
\mathfrak{p}_{i}=\frac{1}{2} \Phi\left(J_{i}+J_{i}^{-1}\right), \quad \mathfrak{q}_{i}=\frac{1}{2} \Phi\left(\left(J_{i}-J_{i}^{-1}\right) c_{i}\right) .
$$

Note the nontrivial implication that $\Phi\left(J_{i}+J_{i}^{-1}\right)$ and $\frac{1}{2} \Phi\left(\left(J_{i}-J_{i}^{-1}\right) c_{i}\right)$ lie in \mathcal{H}_{n}^{-}. A direct computation using the recursive formula in Proposition 4.3 gives us the first few cases of the Jucys-Murphy elements:

$$
\begin{aligned}
& 1=\mathfrak{p}_{1}, \quad \mathfrak{q}_{1}=0, \\
& 1+\varepsilon^{2}=\mathfrak{p}_{2}, \quad \mathfrak{q}_{2}=\varepsilon R_{1}, \\
& \frac{\varepsilon^{2}}{2}\left(R_{1} R_{2}+R_{2} R_{1}\right)+\left(1+\varepsilon^{2}\right)^{2}=\mathfrak{p}_{3}, \quad \mathfrak{q}_{3}=\frac{\varepsilon}{2}\left(R_{1} R_{2} R_{1}+\left(2+\varepsilon^{2}\right) R_{2}\right) .
\end{aligned}
$$

These elements will play important roles in analyzing further the structures and the representation theory of \mathcal{H}_{n}^{-}as in the usual (non-spin) setup.

6.4. A degeneration of $\widehat{\mathcal{H}}_{n}^{-}$and $\mathcal{H}_{n}^{I,-}$

Recall that the spin symmetric group algebra $\mathbb{C} S_{n}^{-}$is generated by $t_{i}(1 \leqslant i \leqslant n-1)$ subject to the relations (1.2)-(1.3). The degenerate spin affine Hecke algebra $\widehat{\mathcal{B}}$, introduced in [10], is the superalgebra with odd generators $b_{i}(1 \leqslant i \leqslant n)$ and $t_{i}(1 \leqslant i \leqslant n-1)$, subject to the relations (1.2)-(1.3) for t_{i} 's and the following additional relations:

$$
\begin{gathered}
b_{i} b_{j}=-b_{j} b_{i} \quad(i \neq j), \\
t_{i} b_{i}=-b_{i+1} t_{i}+1 \\
t_{i} b_{j}=-b_{j} t_{i} \quad(j \neq i, i+1)
\end{gathered}
$$

Remark 6.7. The algebra $\widehat{\mathcal{B}}$ can be obtained from $\widehat{\mathcal{H}}_{n}^{-}$by a suitable degeneration. Set $q=e^{\hbar / 2}$. As q goes to 1 , keeping in mind $p_{i}^{2}+q_{i}^{2}=1$, we set

$$
p_{i} \approx 1+\hbar^{2} b_{i}^{2}+o\left(\hbar^{2}\right), \quad q_{i} \approx \hbar \sqrt{-2} \cdot b_{i}+o(\hbar), \quad R_{i} \approx \sqrt{-2} \cdot t_{i}+o(\hbar)
$$

Then, as q goes to 1 , the defining relations (2.8)-(2.10), (4.5)-(4.7), (4.9) for $\widehat{\mathcal{H}}_{n}^{-}$reduce to the defining relations for $\widehat{\mathcal{B}}$. The remaining relation (4.8) for $\widehat{\mathcal{H}}_{n}^{-}$reduces to $t_{i} b_{i}^{2}=b_{i+1}^{2} t_{i}+\left(b_{i}-\right.$ b_{i+1}), which follows from the defining relations for $\widehat{\mathcal{B}}$.

Remark 6.8. The isomorphism in Theorem 5.1 degenerates in the sense of Remark 6.7 to the superalgebra isomorphism between the degenerate affine Hecke-Clifford algebra and $\mathcal{C}_{n} \otimes \widehat{\mathcal{B}}$ established in [10].

We define the degenerate cyclotomic spin Hecke algebras as the quotient algebras $\mathcal{B}^{f}:=$ $\widehat{\mathcal{B}} /\left\langle f\left(b_{1}\right)\right\rangle$, where f is an even or an odd polynomial in one variable. The condition on f is precisely such that \mathcal{B}^{f} inherits a canonical superalgebra structure from $\widehat{\mathcal{B}}$. Using the Morita super-equivalence [10] between $\widehat{\mathcal{B}}$ and Nazarov's degenerate affine Hecke-Clifford algebra, it is straightforward to see that the degenerate cyclotomic spin Hecke algebras correspond bijectively to the degenerate cyclotomic Hecke-Clifford algebras [2,5] (also known as the cyclotomic Sergeev algebras) via a Morita super-equivalence (compare Theorem 6.4).

Acknowledgments

This research is partially supported by NSF and NSA grants. I gratefully acknowledge the UVa Sesquicentennial Associateship which allowed me to spend the Spring semester of 2006 at MSRI, Berkeley. I thank MSRI for its excellent working atmosphere, where this work was initiated.

References

[1] S. Ariki, Representations of Quantum Algebras and Combinatorics of Young Tableaux, Univ. Lecture Ser., vol. 26, Amer. Math. Soc., Providence, RI, 2002.
[2] J. Brundan, A. Kleshchev, Hecke-Clifford superalgebras, crystals of type $A_{2 l}^{(2)}$ and modular branching rules for \widehat{S}_{n}, Represent. Theory 5 (2001) 317-403 (electronic).
[3] T. Józefiak, Characters of projective representations of symmetric groups, Expo. Math. 7 (1989) 193-247.
[4] A. Jones, M. Nazarov, Affine Sergeev algebra and q-analogues of the Young symmetrizers for projective representations of the symmetric group, Proc. London Math. Soc. 78 (1999) 481-512.
[5] A. Kleshchev, Linear and Projective Representations of Symmetric Groups, Cambridge Tracts in Math., vol. 163, Cambridge Univ. Press, 2005.
[6] M. Nazarov, Young's symmetrizers for projective representations of the symmetric group, Adv. Math. 127 (1997) 190-257.
[7] G. Olshanski, Quantized universal enveloping superalgebra of type Q and a super-extension of the Hecke algebra, Lett. Math. Phys. 24 (1992) 93-102.
[8] I. Schur, Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 139 (1911) 155-250.
[9] A. Sergeev, The Howe duality and the projective representations of symmetric groups, Represent. Theory 3 (1999) 416-434.
[10] W. Wang, Double affine Hecke algebras for the spin symmetric group, preprint, math.RT/0608074, 2006.
[11] M. Yamaguchi, A duality of the twisted group algebra of the symmetric group and a Lie superalgebra, J. Algebra 222 (1999) 301-327.

[^0]: E-mail address: ww9c@ virginia.edu.
 0001-8708/\$ - see front matter © 2006 Elsevier Inc. All rights reserved.

