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a b s t r a c t

Let S be a p × p random matrix having a Wishart distribution Wp(n, n−1Σ). For testing
a general covariance structure Σ = Σ(ξ), we consider a class of test statistics Th =

nρh(S, Σ(ξ̂)), whereρh(Σ1, Σ2) =
∑p

i=1 h(λi) is a distancemeasure fromΣ1 toΣ2,λi’s are
the eigenvalues ofΣ1Σ

−1
2 , and h is a given functionwith certain properties.Wakaki, Eguchi

and Fujikoshi (1990) suggested this class and gave an asymptotic expansion of the null
distribution of Th. This paper gives an asymptotic expansion of the non-null distribution of
Th under a sequence of alternatives. By using results, we derive the power, and compare the
power asymptotically in the class. In particular, we investigate the power of the sphericity
tests.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let S be a p × p random matrix having a Wishart distribution Wp(n, n−1Σ). It is assumed that n ≥ p. We consider the
problem of testing

H0 : Σ = Σ(ξ) against H1 : Σ ≠ Σ(ξ),

where ξ ∈ Ξ. Here, Ξ is an open subset of Rq. We assume the following.

A1. All the elements of Σ(ξ) are known C4-class functions on Ξ, and the Jacobian matrix of Σ(ξ) is of full rank.

Σ(Ξ) is a smooth subsurface in Rp(p+1)/2 with coordinates ξ = (ξ 1, . . . , ξ q)′. The hypothesis H0 represents various
covariance structures as special cases.

We consider a class of test statistics via minimization of the following divergence measure from S to Σ(ξ). Let h be a
C4-function on (0, ∞) satisfying

A2. h(1) = 0, h1 = 0, and h2 = 1,
A3. h(λ) > 0 for any λ ≠ 1,
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where hr denotes the rth derivative of h at λ = 1. For arbitrary two matrices Σ1 and Σ2 we define a distance measure from
Σ1 to Σ2 by

ρh(Σ1, Σ2) =

p−
i=1

h(λi),

where λi’s are the eigenvalues of Σ1Σ
−1
2 . Note that ρh(Σ1, Σ2) ≥ 0 with equality if and only if Σ1 = Σ2 because of A3.

However, in general, ρh is not symmetric and does not satisfy the triangle law.
Wakaki et al. [17] suggested a class of test statistics

Th = n inf
ξ∈Ξ

ρh(S, Σ(ξ)) = nρh(S, Σ(ξ̂)), (1.1)

where ξ̂ is the minimizing point. For example, using h(λi) = − log λi + λi − 1, ρh is the Kullback divergence and the
corresponding statistic Th is just based on the log-likelihood ratio criterion. Another typical example is h(λi) = (λi − 1)2/2.

It may be noted that the asymptotic expansions of the null distributions of Th’s in some special cases have been obtained
by many authors (e.g., [1,7,11], etc.). Kollo and von Rosen [5], and Magnus and Neudecker [6] are also useful for deriving
asymptotic expansion formulas for random matrices. An emphasis in [17] is put on an asymptotic expansion of the null
distribution of Th in a general case. Many authors also gave the asymptotic expansions of the non-null distributions of
Th’s in some special cases (e.g., [3,8,12], etc.). This paper gives an asymptotic expansion of the non-null distribution of Th
in a general case under a sequence of alternatives converging to the null hypothesis with the rate of convergence n−1/2.
Sequences of local alternatives have often been considered in comparisons of tests. One simple question is about the rate
of the convergence. We choose n−1/2 because the powers of test statistics converge to a constant which is greater than
the significant level. An interesting result was given by Sugiura and Nagao [13] who compared a modified likelihood ratio
test with the asymptotically UMP invariant test for testing homogeneity of several variances. They investigated the limiting
distributions under sequences of alternatives with arbitrary rate of convergence. In Section 2 we give stochastic expansions
of ξ̂ aswell as Th. In Section 3weobtain an asymptotic expansion of the non-null distribution of Th under the local alternatives
up to the order n−1/2. In Section 4 we derive the power, and compare the power asymptotically in the class. Especially we
consider the power of the sphericity tests.

2. Stochastic expansion of Th

We consider a sequence of alternative hypotheses

Hn : Σ = Σ(ξ0) +
1

√
n
Σ(ξ0)

1/2∆Σ(ξ0)
1/2

for Σ ∉ Σ(Ξ), where ∆ is a symmetric matrix and ξ0 ∈ Ξ. For simplicity, let us denote as Σ0 = Σ(ξ0) and Σ̂ = Σ(ξ̂). We
shall expand Th in terms of

V =
√
nΣ−1/2(S − Σ)Σ−1/2 (2.1)

which is Op(1).
First we summarize the notations used in this paper. Let

∂a =
∂

∂ξ a
, Jab··· = Σ

1/2
0


∂a∂b · · · Σ(ξ)−1

ξ=ξ0
Σ

1/2
0 ,

Jab··· = Σ
1/2
0


∂a∂b · · · Σ(ξ)−1

ξ=ξ Σ
1/2
0 ,

V =
√
nΣ−1/2(S − Σ)Σ−1/2,

sa = −
1
2
tr(JaV ), (a = 1, . . . , q),

and

G = (gab), gab = E[sasb] =
1
2
tr(JaJb), (a, b = 1, . . . , q).

It follows from A1 that G is nonsingular. Let gab be the (a, b) element of G−1. As another version of Jab, let

J[ab] = Jab −
1
2
Jcgcdtr(JdJab),

with Einstein’s summation convention.When an index variable appears twice in a single term, once in an upper (superscript)
and once in a lower (subscript) position, it implies that we are summing over all of its possible values. For example, Jcgcd
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means
∑q

c=1 Jcg
cd since ‘c ’ appears twice as a superscript and a subscript. The summation convention is used throughout

this paper.
Considering the Taylor expansion of h around λi = 1, we have

ρh(S, Σ) = tr


1
2
(SΣ−1

− Ip)2 +
1
3!

h3(SΣ−1
− Ip)3 +

1
4!

h4(SΣ−1
− Ip)4


+ o


tr


(SΣ−1

− Ip)4


(2.2)

when S → Σ. Let

Λ =
√
nΣ−1/2

0 (SΣ−1
− Ip)Σ

1/2
0 . (2.3)

Then we obtain an expansion of Th,

Th = tr
[
1
2
Λ2

+
1

3!
√
n
h3Λ

3
+

1
4!n

h4Λ
4
]

+ op(n−1). (2.4)

In order to obtain an explicit expansion of Th, it is necessary to obtain an expansion of Λ. It is shown similarly as in [14] that

ξ̄ a
=

√
n(ξ̂ a

− ξ a
0 )

is asymptotically normal and hence Op(1). The Taylor expansion of Σ−1 around ξ0 is given by

√
nΣ1/2

0 (Σ̂
−1

− Σ−1
0 )Σ

1/2
0 = Jbξ̄ b

+
1

2
√
n
Jbc ξ̄ bξ̄ c

+ Op(n−1). (2.5)

Using (2.1),

S = Σ
1/2
0


Ip +

1
√
n
(V + ∆) +

1
n
(V∆ + ∆V )


Σ

1/2
0 + Op(n−3/2). (2.6)

Then using (2.5) and (2.6), (2.3) is expanded as

Λ = V + ∆ + Jbξ̄ b +
1

√
n


1
2
Jbc ξ̄ bξ̄ c + (V + ∆)Jbξ̄ b +

1
2
(V∆ + ∆V )


+ Op(n−1). (2.7)

In order to obtain an explicit expansion of Λ, it is necessary to obtain an expansion of ξ̄ a. The estimates ξ̂ a, (a = 1, . . . , q),
satisfy the system of equations

[∂aρ(S, Σ)]
ξ=ξ̂

= 0, (a = 1, . . . , q).

Using (2.2) it can be seen that ξ̂ a’s satisfy

tr
[
S[∂aΣ−1

]ξ=ξ

SΣ̂

−1
− Ip +

1
2
h3(SΣ̂

−1
− Ip)2

]
= Op(n−3/2),

or equivalently

tr
[

Ip +
1

√
n
(V + ∆)


Ĵa(Λ +

1
2
√
n
h3Λ

2)

]
= Op(n−1). (2.8)

Substituting (2.7) and

Ĵa = Ja +
1

√
n
Jabξ̄ b

+ Op(n−1)

into (2.8), it is seen that ξ̄ a’s satisfy

tr

Ja(V + ∆ + Jbξ̄ b)


+

1
√
n
tr

h3Ja(V + ∆ + Jbξ̄ b)2 + Ja


1
2
Jbc − JbJc


ξ̄ bξ̄ c

+ Jab(V + ∆ + Jc ξ̄ c)ξ̄ b
+ JaV∆


= Op(n−1), (a = 1, . . . , q), (2.9)

whereh3 = 1 +
1
2h3. The solution of ξ̄ a in (2.9) can be found in an expanded form

ξ̄ a
= κa

+
1

√
n
εa

+ Op(n−1). (2.10)
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In fact, substituting (2.10) into (2.9), we obtain

κa
= ea + δa, εa

= −
1
2
gabtr


JbM + Jbc W (ec + δc)


, (2.11)

where

ea = gabsb, δa
= −

1
2
gabtr(Jb∆), W = W + Wδ, W = V + Jbeb,

Wδ = ∆ + Jbδb, M =h3 W 2
+


1
2
Jbc − JbJc)(eb + δb)(ec + δc


+ V∆.

Hence, from (2.4), (2.7) and (2.11), we obtain an expansion of Th given by

Th =
1
2
tr(W 2) +

1
√
n
T1(V ) + Op(n−1), (2.12)

where

T1(V ) = −
1
2
gabtr


JaM + Jab W (eb + δb)


tr(Jb W ) + tr


1
2
Jbc − JbJc

 W
× (eb + δb)(ec + δc) + tr(Jb W 2)(eb + δb) + tr(V∆W ) +

1
6
h3tr(W 3). (2.13)

3. Asymptotic expansion of the non-null distribution of Th under the local alternative

We can write the characteristic function of Th as

φ(t) = E[exp(itTh)] = E
[

etr

1
2
θ W 2


T (V )

]
+ O(n−1), (3.1)

where

θ = it, T (V ) = 1 +
1

√
n
θT1(V ), (3.2)

with the expression T1(V ) in (2.13). The probability density function (pdf) of V is expressed as (see e.g., [11, p. 160])

f (V ) = f0(V )Q (V ) + O(n−3/2), (3.3)

where

f0(V ) = apetr


−
1
4
V 2


, ap = π−p(p+1)/42−p(p+1)/4,

Q (V ) = 1 +
1

√
n
Q1(V ) +

1
n
Q2(V ),

Q1(V ) = −
1
2
(p + 1)tr(V ) +

1
6
tr(V 3),

Q2(V ) =
1
2

{Q1(V )}2 −
1
24

p(2p2 + 3p − 1) +
1
4
(p + 1)tr(V 2) −

1
8
tr(V 4).

(3.4)

Therefore, we have

φ(t) =

∫
ap


etr


−

1
4
V 2

+
1
2
θ W 2


Q (V )T (V )dV + O(n−1), (3.5)

where dV = dv11dv12 · · · dvp−1,pdp,p.
We prepare some lemmas useful for reductions of (3.5). Note that G−1

= (gab) exists. Let

ea = −
1
2
gabtr(JbV ), U = −Jaea, and W = V − U , (3.6)

and similarly

δa
= −

1
2
gabtr(Jb∆), Uδ = −Jaδa, and Wδ = ∆ − Uδ. (3.7)
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Further, let

M = (vec∗(J1), . . . , vec∗(Jq)),

where for any p × p symmetric matrix A = (aij),

vec∗(A) =


a11
√
2
, . . . ,

app
√
2
, a12, . . . , ap−1,p

′

.

Note that {vec∗(A)}′ vec∗(B) =
1
2 tr(AB). We obtain the following lemmas.

Lemma 3.1. Let PM = M(M ′M)−1M ′. Then,

e = (e1, . . . , eq)′ = −(M ′M)−1Mvec∗(V ),

δ = (δ1, . . . , δq)′ = −(M ′M)−1M ′vec∗(∆),

vec∗(U) = PMvec∗(V ),

vec∗(Uδ) = PMvec∗(∆),

vec∗(W ) = (Ip(p+1)/2 − PM )vec∗(V ),

vec∗(Wδ) = (Ip(p+1)/2 − PM )vec∗(∆).

Lemma 3.2. Let θ be any complex number whose real part is smaller than −
1
2 . Let g(V ,U ,W ) be a function of V ,U , and W .

Then, ∫
etr


−

1
4
V 2

+
1
2
θ(W + Wδ)

2


× g(V ,U ,W )dV

= (1 − 2θ)−r/2
× exp

[
θ(1 − 2θ)−1


1
2
tr(W 2

δ )

]
×

∫ 
−

1
4
V 2


g(V̇ ,U , Ẇ )dV , (3.8)

where r = p(p + 1)/2 − q, V̇ = U + (1 − 2θ)−1/2W + 2θ(1 − 2θ)−1Wδ ,

Ẇ = (1 − 2θ)−1/2W + 2θ(1 − 2θ)−1Wδ.

Proof. We shall show that (3.8) is obtained by considering the transformation V → V̆ , where

V̆ = U + (1 − 2θ)1/2W − 2θ(1 − 2θ)−1/2Wδ. (3.9)

Using Lemma 3.1, we have

vec∗(V̆ ) =

PM + (1 − 2θ)1/2(Ip(p+1)/2 − PM )

 
vec∗(V ) − 2θ(1 − 2θ)−1vec∗(Wδ)


.

This implies that the inverse transformation is

vec∗(V ) =

PM + (1 − 2θ)−1/2(Ip(p+1)/2 − PM )


vec∗(V̆ ) + 2θ(1 − 2θ)−1vec∗(Wδ).

It is equivalent to

V = Ŭ + (1 − 2θ)−1/2W̆ + 2θ(1 − 2θ)−1Wδ,

where Ŭ =
1
2 Jag

abtr(JbV̆ ), and W̆ = V̆ − Ŭ . Therefore, the Jacobian of the transformation (3.9) is

J(V → V̆ ) = |PM + (1 − 2θ)−1/2(Ip(p+1)/2 − PM )| = (1 − 2θ)−r/2,

since the characteristic roots of PM are one or zero and rank(PM ) = q. Further, it holds that U = Ŭ , and W =

(1− 2θ)−1/2W̆ + 2θ(1− 2θ)−1Wδ , since vec∗(Ŭ) = PMvec∗(V̆ ) = vec∗(U), and W̆ = (1− 2θ)1/2W − 2θ(1− 2θ)−1/2Wδ .
These complete the proof. �

Lemma 3.3. Let V be a p×p symmetric randommatrix with pdf f0(V ) in (3.3). Let ea,U , andW be the random variables defined
by (3.5). Then

(1) e = (e1, . . . , eq)′ and W are independent,
(2) e is distributed as Nq(0,G−1),
(3) vec∗(U) and vec∗(W ) are independently distributed as Np(p+1)/2(0, PM ) and Np(p+1)/2(0, Ip(p+1)/2 − PM ), respectively.
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Proof. The results are easily obtained by using Lemma 3.1 and the fact that vec∗(V ) is distributed as Np(p+1)/2
(0, Ip(p+1)/2). �

Using Lemmas 3.2 and 3.3, we can write the characteristic function (3.5) as

φ(t) = (1 − 2θ)−r/2 exp
[
θ(1 − 2θ)−1


1
2
tr(W 2

δ )

]
× E


Q (V̇ )T (V̇ )


+ O(n−1), (3.10)

where V̇ is given by Lemma 3.2.
Here the expectation in (3.10) is taken with respect to the distribution of U (or e) and W given in Lemma 3.3. After

calculation of these expectations, we obtain

φ(t) = (1 − 2θ)−r/2 exp
[
θ(1 − 2θ)−1


1
2
tr(W 2

δ )

]
×


1 +

1
√
n

3−
j=0

cj(1 − 2θ)−j


+ O(n−1), (3.11)

where the coefficients cj’s are given by

c0 =
1
2
(gab

+ δaδb)Kabδ −
1
4
(gab

+ δaδb)K(ab)δ −
1
2
Kaδ2δ

a
+

1
3
Kδ3 ,

c1 =
1
4
(gab

+ δaδb)K(ab)δ +


1
4
h3gab

−
1
2
δaδb


Kabδ −

1
2
h3(p + 1)Kδ +

1
2
Kaδ2δ

a
−

1
2
Kδ3 ,

c2 =
1
2

h3

(p + 1)Kδ − gabKabδ


−

1
12

h3Kδ3 , c3 =
1
6

h3Kδ3 .

(3.12)

Here we use the following notations:

Kabδ = tr(JaJbWδ), K(ab)δ = tr(J(ab)Wδ), Kδk = tr(W k
δ ),

and so on. The formulas needed for calculating expectations are given in Appendix A. By inverting the characteristic function
term by term, we obtain an expansion of the non-null distribution of Th under the local alternative as in the following
theorem.

Theorem 3.1. Let Th be the test statistic given by (1.1) with a function h satisfying A2 and A3. Suppose that a given covariance
structure Σ = Σ(ξ) satisfies A1. Then under the local alternative hypothesis Hn, the distribution of Th can be expanded for large
n as

P(Th ≤ x) = Gr(x; τ) +
1

√
n

3−
j=0

cjGr+2j(x; τ) + O(n−1), (3.13)

where r = p(p+ 1)/2− q, τ = tr(W 2
δ )/2, Gk(·; τ) is the noncentral χ2 distribution function with k degrees of freedom and the

noncentrality parameter τ , and the coefficients cj’s are given by (3.12).

4. Applications

4.1. Power comparisons

Wakaki et al. [17] gave an asymptotic expansion of the null distribution of Th in a general case as

P(Th ≤ x|H0) = Gr(x) +
1
n

3−
j=0

ajGr+2j(x) + O(n−3/2), (4.1)

where Gk(·) is the χ2 distribution function with k degrees of freedom, the coefficients aj’s are given by

a0 =
1
72


−3p(p2 + 3p − 1) − 9gabcdKabcd + gabcdefKabc,def


+

1
16

gabgcd 
4K[ab]cd − K[ab][cd] + 2K[ab][cd]


,

a1 = −a0 + h3
2
C − (h4 − 6)B + h3D,

a2 = −h3
2
(A + C) + (h4 − 6)B − h3D,

a3 = h3
2
A,

(4.2)
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and the coefficients A, . . . ,D are given by

A =
1
72


6p(4p2 + 9p + 7) − 36q(3p + 4) − 9(p2 + 2p + 3)gabKa,b

+ 6(p + 1)gabcdKabc,d + 18gabcdKabcd − gabcdefKabc,def


,

B =
1
48


p(p2 + 5p + 5) − 4q(2p + 3) − 2gabKa,b + gabcdKabcd


,

C =
1
12


p(4p2 + 9p + 7) − 12q(p + 1) − 3gabgcdKabcd − 2gabgcdgefKace,bdf


,

D = −
1
6
p(p2 + 3p + 4) + q(2p + 3) +

1
2
gabKa,b −

1
4
(p + 1)gabgcdKabc,d

−
1
2
gabcdKabcd +

1
36

gabcdefKabc,def −
1
4
(p + 1)gabK[ab] +

1
4
gabgcdK[ab]cd.

(4.3)

Here we use the following notations:

gabcd
=

−
[3]

gabgcd, gabcdef
=

−
[5]

gabgcdef , Kabc··· = tr(JaJbJc · · ·),

K[ab]cd = tr(J[ab]Jc Jd), Kabc,def = KabcKdef ,

and so on.
Let tα be the upper 100α percent point of the null distribution of Th and χ2

α be the upper 100α percent point of the χ2

distribution with r degrees of freedom. By the Cornish–Fisher expansion, we obtain

tα = χ2
α −

1
n


1

gr(χ2
α)

3−
j=0

ajGr+2j(χ
2
α)


+ O(n−3/2) = χ2

α + O(n−1). (4.4)

Using (3.13), (4.1) and (4.4), we can calculate the power βh,

βh = P(Th > tα|H1) = 1 − Gr(χ
2
α; τ) −

1
√
n

3−
j=0

cjGr+2j(χ
2
α; τ) + O(n−1). (4.5)

We use useful formulas for reductions of (4.5). Noncentral χ2 distribution function and χ2 distribution can be expanded
as (see e.g., [7])

Gr(x; τ) =

∞−
k=1

PkGr+2k(x), where Pk =
e−τ/2

 1
2τ

k
k!

, (4.6)

Gr+2(x) = −2gr+2(x) + Gr(x), (4.7)

respectively, where gk(·) is the pdf of the χ2 distribution with k degrees of freedom. Using (4.6) and (4.7), we can obtain

3−
j=0

cjGr+2j(χ
2
α; τ) = (c1 + c2 + c3 + c4)

∞−
k=0

PkGr+2k(χ
2
α) − 2(c1 + c2 + c3)

×

∞−
k=0

Pkgr+2k+2(χ
2
α) − 2(c2 + c3)

∞−
k=0

Pkgr+2k+4(χ
2
α) − 2c3

∞−
k=0

Pkgr+2k+6(χ
2
α), (4.8)

where coefficients cj’s are given by (3.12). After calculating (4.8), we can rewrite (4.5) as

βh =
1

√
n

h3

[
(p + 1)Kδ − gabKabδ


gr+4(χ

2
α; τ) +

1
3
Kδ3gr+6(χ

2
α; τ)

]
+ βLR + O(n−1), (4.9)

where gk(·; τ) is the pdf of the noncentral χ2 distribution with k degrees of freedom and the noncentrality parameter τ and
βLR is the power of the likelihood ratio statistic. The formula (4.9) gives us some information about the superiority of tests
in our class of tests. If we have some prior information about the covariance matrix, we may be able to choose a test by
calculating (4.9).
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4.2. Linear structures

We consider the structure: Σ is a linear combination of matrices,

Σ(ξ) = ξ 1G1 + ξ 2G2 + · · · + ξ qGq,

where Ga’s are given p × p symmetric matrices which are linearly independent, satisfying that

G2
j = Gj, GiGj = O (i ≠ j),

and ξ a’s are unknown such thatΣ(ξ) is positive definite.We note that this structure includes sphericity structure, intraclass
correlation structure, and so on.

We can easily calculate Ja and Kδ,Kabδ in this case as

Ja = −Ga, Kδ = 0, Kabδ = 0. (4.10)

Hence we can write the power (4.9) as

βh =
1

3
√
n

h3Kδ3gr+6(χ
2
α; τ) + βLR + O(n−1).

It is equivalent to

√
n(βh − βLR) →

1
3

h3Kδ3gr+6(χ
2
α; τ) (n → ∞). (4.11)

This shows that LR statistic has greater power than statistics with negative values of h3 if Kδ3 > 0.
In a special case that q = 1, this structure is the sphericity structure. Since we can choose an arbitrary parameterization,

we use Σ(ξ) =

exp(ξ 1)


Ip, then,

J1 = −Ip, Kδ3 =

p−
i=1

(νi − ν)3, (4.12)

where νi’s are the eigenvalues of ∆ and ν =
1
p

∑p
i=1 νi. From (4.11) and (4.12), when Kδ3 ≠ 0, power comparisons of

sphericity test in the class depend on a kind of skewness of ∆’s eigenvalues. When Kδ3 = 0, we cannot compare the power
asymptotically in the class on order n−1/2. So we consider an asymptotic expansion of the non-null distribution of Th under
the local alternatives up to the order n−1 taking focus on h3 and h4, we have

P(Th ≤ x) = Gr(x; τ) +
1

√
n

1−
j=0

c̃jGr+2j(x; τ) +
1
n


5−

j=1

djGr+2j(x; τ)

+

4−
j=1

fjGr+2j(x; τ) + bGr(x; τ)


+ O(n−3/2), (4.13)

where b does not depend on h3 and h4, the coefficients c̃j’s, dj’s, fj’s and the formulas needed for calculating expectations are
given in Appendix A.

Using (3.13), (4.13), (4.6) and (4.7) with noting (4.4), we can also calculate the power βh as

βh =
1
n


5−

j=2

ejgr+2j(χ
2
α; τ) +


(h2

3 + 4h3)E + h3D
 (χ2

α)2

r(r + 2)
gr(χ2

α; τ)



+
1
n


4−

j=2

gjgr+2j(χ
2
α; τ) − 2h4B

(χ2
α)2

r(r + 2)
gr(χ2

α; τ)


+ c + O(n−3/2), (4.14)

where c which does not depend on h3 and h4, and E are given by

c = 1 − Gr(χ
2
α; τ) −

1
n


bGr(χ

2
α; τ)


, E =

1
2


C −

χ2
α

r + 4
A


,

and the coefficients ej’s, gj’s are given in Appendix B, the coefficients A, . . . ,D are given by (4.3). The difference of local
powers among the class is complex. We can examine the difference numerically for specified values of p, α and ∆.
Hayakawa [4], Pillai and Jayachandran [10] also gave the numerical examples about the power of Th in some special cases.



1088 H. Shimizu, H. Wakaki / Journal of Multivariate Analysis 102 (2011) 1080–1089

5. Concluding remarks

We have shown that the difference of the asymptotic power in our class of the test for linear structures which depend
on only Kδ3 . Other important covariance structures arise when we treat covariance structure analysis (system of equation
model) (see e.g., [18]). In this case, we have to consider nonlinear covariance structures. Sometimes the domain Ξ of Σ(Ξ)
is not an open set. If the minimizing point lies on the boundary, the asymptotic expansion formulas derived in this paper
are not applied. The problems of deriving asymptotic expansion formulas in such cases are left for the future.

Yuan and Bentler [18] introduced several models considered in structural equation modeling. One of general models
is Np(µ(ξ), Σ(ξ)). In this model both the mean vector and the covariance matrix have a structure with the coordinate
parameter ξ. The asymptotic distribution of the maximum likelihood estimator of ξ can be found in [6, Sec. 10]. Recently
Ogasawara [9] derived an asymptotic expansion of the distribution of the parameter estimator which is given by

ξ̂ = argmin
ξ

F∗

NT,

F∗

NT = {x̄ − µ(ξ)}′Σ(ξ)−1
{x̄ − µ(ξ)} − log |SΣ(ξ)−1

| + tr{SΣ(ξ)−1
− Ip}.

Our class of test statistics can be generalized as follows.

Tk,h = n inf
ξ∈Ξ

ρk,h[(x̄, S), (µ(ξ), Σ(ξ))],

ρk,h[(µ1, Σ1), (µ2, Σ2)] =

p−
i=1

{k(di) + h(λi)},

where (µ1 − µ2)
′Σ

−1/2
2 = (d1, . . . , dp) and λi’s are the eigenvalues of Σ1Σ

−1
2 with smooth functions k and hwhich satisfy

some appropriate conditions.
Other related problems are deriving asymptotic expansions of the distributions of test statistics under non-normality,

and under high-dimensional setup.
By using an asymptotic expansion of the joint distribution of sample mean vector and sample covariance matrix from an

elliptical population given by Wakaki [15] instead of (3.3), we can derive asymptotic expansions for our test statistics.
Recently asymptotic expansions of distributions of several statistics were derived under a high-dimensional setup:

p/n → c ∈ (0, 1). However results on asymptotic expansions under alternative hypotheses are very few (e.g. [16]) as
far as the authors know. It will be very difficult to derive asymptotic expansion formulas for our test statistics under high-
dimensional setup. Recent developments on high-dimensional approximations can be found in [2].
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Appendix A. Formulas of expectations

Let V be a p × p symmetric random matrix normal with pdf f0(V ) in (3.3). Let e = (e1, . . . , eq)′ and W be the random
vector and matrix defined by (3.6). Then, it holds that any p × p matrices A and B,

E[eaeb] = gab, E[eaebeced] = gabcd, E[eaebecedeeef ] = gabcdef ,

E[tr(AW )tr(BW )] = 2tr(AB) − gabtr(AJa)tr(BJb),
E[tr(AWBW )] = trAtrB′

+ tr(AB′) − gabtr(AJaBJb),
E[tr(AW 2)tr(BW 2)] = 4tr(AB̄) + (p2 + 2p + 1)trAtrB − (p + 1)gab

{trAtr(BJaJb)
+ trBtr(AJaJb)} − 8gabtr(AJaB̄Jb) + gabcdtr(AJaJb)tr(BJc Jd),

E[tr(AW )trW 3
] = 6(p + 1)trA − 6gabtr(ĀJaJb) − 3(p + 1)gabtr(AJa)Kb + gabcdtr(AJaKbcd),

E[W 4
] = p(2p2 + 5p + 5) − 4q(2p + 3) − 2gabKa,b + gabcdKabcd,

E[(W 3)2] = 6p(4p2 + 9p + 7) − 24q(2p + 3) − 12gab(2p + 3)Kab − 3gab(3p2 + 6p + 7)Ka,b

+ 6(p + 1)gabcdKa,bcd + 18gabcdKabcd − gabcdefKabc,def ,

where Ā =
1
2 (A + A′). The expectations are obtained by using Lemma 3.3 and the fact that vec∗(V ) is distributed as

Np(p+1)/2(0, Ip(p+1)/2). The calculations can be simplified by using the properties such as

E[trW 2trW 2
] = E[tr(W 2Ẅ 2) + 2tr(WẄ )tr(WẄ )],

where Ẅ is a symmetric randommatrix having the same distributionW and being independent ofW .
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Appendix B. Coefficients

The coefficients b and c̃j’s, dj’s, fj’s are given by

c̃0 =
1
2
νKδ2 , c̃1 = −c̃0,

f1 = −
1
2
g2, f2 =

1
2
(g2 − g3), f3 =

1
2
(g3 − g4), f4 =

1
2
g4,

d1 = −
1
2
e2, d2 =

1
2
(e2 − e3), d3 =

1
2
(e3 − e4), d4 =

1
2
(e4 − e5), d5 =

1
2
e5,

b = E
[
Q2(V1) + θQ1(V1)tr(W1K ) +

1
2
θ2

{tr(W1M1)}
2
+

1
2
tr(M2

1 )

]
,

where Q1(·) and Q2(·) are given by (3.4), and the coefficients ej’s, gj’s, V1,W1,M1 are given by

e2 = −
1
24

h2
3(4p

3
+ 9p2 − 13p − 12 + 4p−1) + h3pKδ2 ,

e3 = −
1
4
h2
3(p + 2 − 2p−1)Kδ2 +

1
2
h3p−1Kδ2Kδ2 −

1
2
h3Kδ4 +

1
144

(h2
3 + 4h3)(6p3 + 18p2 − 24p − 72 + 96p−1),

e4 =
1
4
(h2

3 + 4h3)Kδ2 −
1
8
h2
3Kδ4 ,

e5 =
1
8
(h2

3 + 4h3)(Kδ4 − p−1Kδ2Kδ2),

g2 =
1
24

h4(2p3 + 5p2 − 7p − 12 + 12p−1),

g3 =
1
12

h4(2p + 3 − 6p−1)Kδ2 , g4 =
1
24

h4Kδ4

V1 = U + (1 − 2θ)−
1
2 W + 2θ(1 − 2θ)−1Wδ,

W1 = (1 − 2θ)−
1
2 W + (1 − 2θ)−1Wδ,

M1 = −p−1 
tr(W 2

1 )

Ip − p−1

{tr(V1∆)} (e1 + δ1)Ip

− p−1
{tr(W1)} (e1 + δ1)Ip + (e1 + δ1)2Ip − (e1 + δ1)(V1 + ∆) +

1
2
(V1∆ + ∆V1).
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