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Nrf3-deficient mice are not protected against acute lung and adipose tissue
damages induced by butylated hydroxytoluene
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a b s t r a c t

We found that both wild type and Nrf3 (NF-E2-related factor 3) deficient mice are sensitive to BHT
single administration exhibiting respiratory distress and considerably lose body weight following
treatment. At time of sacrifice, the BHT-treated Nrf3�/� mice had lost significantly more body weight
than their WT counterparts. In the lung, transcript levels of the transcription factors Nrf1, Nrf2 and
Nrf3 were differentially regulated by BHT treatment. In addition, genes implicated in adipogenesis
were repressed following BHT exposure in the white adipose tissue. Together, our data provide
the first evidence that BHT exposure not only affects lung function but also leads to impaired adi-
pogenesis in adipocytes.
� 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Acute lung injury is associated with a high mortality rate and
characterized by diffuse alveolar damage, inflammation, fibrosis
and hypoxemia [1]. Butylated hydroxytoluene (BHT), a phenolic
antioxidant used as food additive and preservative, has been
shown to mimic acute lung injury after a single administration in
a mouse model [2]. The family of the forkhead box transcription
factors has been shown to play an important role under acute lung
injury conditions [3,4]. Targeted gene disruption of the transcrip-
tion factor Nrf2 showed that this protein is required to protect
mice against BHT-induced hyperoxic lung injury [5]. Nrf2 is a
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member of the ‘‘cap ‘n’ collar” (CNC) basic leucine zipper family
which also includes Nrf1 and Nrf3. CNC transcription factors hete-
rodimerize with small Maf (musculoaponeurotic fibrosarcoma)
proteins and the resulting complexes recognize MARE (Maf recog-
nition element) or ARE (antioxidant response element) type DNA
binding sites [6]. We and others have previously identified Nrf3
as a dimerization partner of the small Mafs [7,8] and as a novel
endoplasmic reticulum-associated protein that is Asn-glycosylated
[9,10]. We have also generated mice lacking the Nrf3 gene and
showed that these mice do not show any obvious abnormalities
under non-challenging conditions [11]. Nrf2, a close homolog of
Nrf3, has been shown to protect mice against acute lung injury in-
duced by BHT [5]. Thus, we investigated the in vivo role of Nrf3 in
this pulmonary injury model by using mice deficient for this tran-
scription factor.
2. Materials and methods

2.1. Animals and treatments

Generation of the Nrf3�/� mice has been reported elsewhere
[11]. Female WT and Nrf3 deficient mice (129S6/SvEvTac back-
ground, 10 weeks old) were treated once by gavage (100 ll) with
lsevier B.V. All rights reserved.
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Fig. 1. Body weight change percentage in wt and Nrf3�/� mice following treatment
with BHT. WT (n = 12) and Nrf3�/� mice (n = 8) were treated with a single dose of
400 mg/kg BHT.
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BHT (Sigma–Aldrich) at a dose of 400 mg per kg body weight dis-
persed into corn oil as vehicle. Mice were weighed daily, monitored
for any signs of distress (rapid breathing rate, ruffled fur, hunched
postures, impaired ambulation) and sacrificed 4 days after BHT
administration. Upon necropsy, tissues were excised, weighed
immediately and properly stored for further analysis. Procedures
involving animals and their care were conducted according to
McGill University guidelines, which are set by the Canadian Coun-
cil on Animal Care. Mice were kept at 22 �C with equal periods of
darkness. Water and food were available ad libitum.

2.2. Histology

Hematoxylin–eosin (H&E) staining of the lung slides was per-
formed according to standard procedures. The slides were exam-
ined by a board certified veterinary pathologist (MP).

2.3. RNA isolation, reverse-transcription, and real-time quantitative
PCR

All procedures concerning isolation of total RNA, reverse-tran-
scription and real-time quantitative PCR were carried out accord-
ing to the manufacturer’s instructions. Primer sets are listed in
Table 1 (Supplementary data).

2.4. Preparation of lung homogenates for catalase activity assay

Catalase activity was determined as previously described [12]
with minor modifications. Catalase activity was calculated from
the decrease in absorbance at 240 nm using a molar extinction
coefficient of 39.4 M�1 � cm�1 for H2O2 [12].

2.5. Statistical analysis

Data are expressed as the means ± standard error of the mean
(S.E.M.). Statistical analysis was performed using Graph Pad Prism
(Graph Pad software) and Student’s t test. A P value of <0.05 was
considered statistically different (*P < 0.05, **P < 0.01, ***P < 0.001).
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Fig. 2. (A) Periepididymal white adipose tissue weight in wt (n = 12) and Nrf3�/�

(n = 8) mice following treatment with BHT. (B) Lung weight in wt and Nrf3�/� mice
following treatment with BHT.
3. Results and discussion

3.1. Severe physiopathological changes following BHT exposure

Female wild type (WT) and Nrf3-deficient mice (10 weeks old)
were treated with a single dose of BHT (400 mg/kg). By the third
day post-BHT treatment, we observed that all treated mice dis-
played signs of respiratory distress, morbidity and moribundity.
These observations were accompanied by a dramatic loss of body
weight for all BHT-treated mice starting from day 3 post-adminis-
tration (Fig. 1). Interestingly, Nrf3-deficient mice treated with BHT
lost significantly more body weight than their WT counterparts
indicating that mice lacking the Nrf3 gene are more susceptible
to BHT-induced body weight loss. In accordance with the body
weight loss, we observed upon necropsy a reduction of periepi-
didymal white adipose tissue content in both WT and Nrf3-defi-
cient mice treated with BHT (Fig. 2A). Exposure to BHT also
resulted in a 2.6-fold increase of lung-to-body weight ratio com-
pared to control mice in both genotypes (Fig. 2B). Hematoxylin–eo-
sin stained lung sections revealed that BHT led in WT and Nrf3�/�

mice to severe alveolar damage with interstitial pneumonia and
alveolar hemorrhages multifocally (Fig. 3). The lung lesions were
characterized by damages to the alveolar epithelial cells, protein
exudation in the alveolar space with type II pneumocyte hyperpla-
sia, foamy alveolar macrophages, alveolar hemorrhages and peri-
vascular infiltration of inflammatory cells. Similar morphological
changes were observed when a single dose of 600 mg/kg of BHT
was used (data not shown).

3.2. BHT modulates pulmonary expression of specific genes including
CNC transcription factors

Catalase is a peroxisomal enzyme which metabolizes the reduc-
tion of hydrogen peroxide and protects the tissues from highly
reactive hydroxyl radicals [13]. A significant reduction of 48% of
catalase activity was observed in lung of WT mice treated with
BHT. In Nrf3�/� mice, the reduction of the catalase activity was sig-
nificantly less pronounced (35%) (Fig. 4). We further noticed that
basal catalase activity was diminished by 11% in mice deficient
in Nrf3 compared to WT mice hinting at a possible role of Nrf3 in
the basal expression of catalase.

We next performed an extensive analysis of gene transcript lev-
els by real-time PCR of lung tissue from mice exposed to BHT (Fig. 5
and Fig. S1). As previously shown [4], we observed a significant
reduction of Foxf1 mRNA levels in the lung of WT mice treated with
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Fig. 3. Photomicrographs of lungs of wild type (A and B) and Nrf3-deficient mice (C and D) treated with 400 mg/kg BHT (B and D). Paraffin-embedded left lung tissue sections
were processed for histological analyses and hematoxylin and eosin staining was performed. Presented photomicrographs are representative of all mice from a same group
(bars = 50 lm).

Catalase activity

0.00

5.00

10.00

15.00

20.00

25.00

Wild type Nrf3-/-

C
at

al
as

e 
ac

tiv
ity

 
(n

m
ol

/m
in

/m
g 

of
 p

ro
te

in
) 

control

BHT

***
***

***

Fig. 4. Catalase activity was measured as described in the Section 2. Protein
extracts were prepared from lung of wt (n = 10) and Nrf3�/� (n = 9) mice treated
with a single dose of BHT (400 mg/kg).
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BHT (Fig. 5A). Analysis of Nrf2 mRNA levels indicated a 1.6-fold in-
crease following BHT exposure in lung of wild type mice (Fig. 5B).
Interestingly, Nrf2 expression remained unchanged in the lung of
BHT-treated Nrf3-deficient mice suggesting that Nrf3 may regulate
BHT-induced expression of the Nrf2 gene. In agreement with this
hypothesis, a functional ARE-like sequence in the proximal region
of the Nrf2 promoter has been previously identified [14]. Nrf3 may
thus regulate Nrf2 gene expression through binding to this ARE-
like sequence. Furthermore, we showed that typical target genes
of Nrf2 including Gclc and Gclm are not regulated by BHT in the
lung of mice (Fig. S1A and S1B) suggesting that the phase II detox-
ification pathway is not regulated upon BHT exposure.

Contrary to the induction of Nrf2 transcripts levels, BHT treat-
ment led to a 3.3-fold decrease in Nrf3 transcripts in the lung of
WT mice (Fig. 5C). These data provide the first evidence of regula-
tion of Nrf3 expression in vivo. Analysis of Nrf1, a third member of
the CNC family, revealed a decrease of its transcript levels upon
BHT exposure in both WT and Nrf3�/� mice (Fig. 5D). The fact that
Nrf1 and Nrf3 are both downregulated by BHT suggests that they
may control complementary pathways. This is supported by previ-
ous biochemical data showing that Nrf1 and Nrf3 are closely re-
lated factors that are both glycosylated proteins and they both
have forms located in the endoplasmic reticulum [7,9,10,15]. How-
ever, the significance of the downregulation of Nrf1 and Nrf3 gene
expression by BHT remains unknown, but we hypothesize that
Nrf1 and Nrf3 exhibit distinct functions to Nrf2 in response to BHT.

Considering that mice treated with BHT display extensive alve-
olar damages and hemorrhages characterized by perivascular infil-
tration of inflammatory cells (Fig. 3), we next analyzed expression
of genes involved in inflammatory response such as prostaglandin-
endoperoxide synthase 1 and 2 (Ptgs1 and Ptgs2). In response to
BHT, Ptgs1 and Ptgs2 mRNA levels were induced in the lung of
WT mice 2.0 and 1.8-fold, respectively (Fig. 5E and F). In addition,
we showed that expression of Ptgs1 gene was also induced 2.4-fold
by BHT further supporting the recent notion that Ptgs1 is not
invariably expressed as a housekeeping gene but might be regu-
lated under certain pathological conditions [16]. In contrast, no
induction of Ptgs2 expression with BHT was observed in the lung
of Nrf3�/� mice suggesting that BHT may regulate Ptgs2 gene
expression through binding of Nrf3 to its promoter. In accordance
with this hypothesis, an ARE-like motif has been identified in the
proximal region of Ptgs2 promoter [17]. Thus, although an inflam-
matory response occurs following BHT treatment in both WT and
Nrf3�/� mice, distinct regulatory mechanisms might be involved
in the two genotypes. Transcript levels of the stress protein heme
oxygenase 1 (Hmox1) were increased 2.3-fold following BHT treat-
ment in the lung of WT mice (Fig. 5G). This induction appears to be
independent of Nrf3 gene expression. In conclusion, our current
study as well as previous data [5] suggest that BHT toxicity in lung
is caused by both an inflammatory response and an inability to cor-
rectly metabolize BHT and/or its metabolites as evidenced by the
absence of regulation of the phase II detoxifying enzymes.

3.3. BHT treatment leads in adipose tissue to inhibition of the
adipogenesis

Many studies focused on the effects of BHT in lungs of mice and
rats [2,5,18]. In contrast, limited information is available on the im-
pact of BHT in the adipose tissue of mice even though BHT is
known to accumulate in adipose tissue both in humans and ro-
dents [19]. Thus, we investigated the regulation of a series of genes
in adipose tissue (Fig. 6 and Fig. S2). We first analysed the genes
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Fig. 5. Relative expression of mouse Foxf1, Nrf2, Nrf3, Nrf1, Ptgs1, Ptgs2, Hmox1 and Pparg2 in the lung of mice treated with BHT as determined by quantitative real-time PCR.
Data are presented as means ± S.E.M. from at least three mice per group performed in duplicate.
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Fig. 6. Relative expression of mouse Fas, Srebp1, Pparg2 and Cebpb in periepididymal white adipose tissue of mice treated with BHT as determined by quantitative real-time
PCR. Data are presented as means ± S.E.M. from at least three mice per group performed in duplicate.
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which we identified as regulated by BHT in the lung (Fig. 5). In con-
trast to lung, BHT does not or minimally affects Nrf3, Nrf2, Nrf1,
Foxf1, Ptgs1 nor Ptgs2 mRNA levels in adipose tissue of both WT
and Nrf3-deficient mice (Fig. S2).

We also examined the regulation of several critical factors in-
volved in lipogenesis. Fatty acid synthase (Fas) gene encodes an en-
zyme involved in the de novo synthesis of fatty acids. Upon BHT
treatment, we observed a drastic decrease of Fas gene expression
both in adipose tissue of WT and Nrf3-deficient mice (11.5 and
8-fold decrease, respectively) (Fig. 6A). The Fas gene is known to
be transcriptionally regulated by the sterol regulatory element
binding protein 1c (srebp1c) [20]. Concomitantly, we found a sig-
nificant reduction of Srebp1c gene expression by BHT in adipose
tissue of WT (2.2-fold) and Nrf3�/�mice (2.0-fold) (Fig. 6B). Protein
levels of Pparg (peroxisome proliferator-activated receptor gam-
ma), a master regulator of adipocyte differentiation [21] have been
shown to be downregulated in the adipose tissue of mice following
endotoxin-induced acute lung injury [22]. Consistent with these
findings, we observed a decrease of Pparg2 transcript levels in
WAT of wild type and Nrf3�/� mice exposed to BHT (Fig. 6C). In
addition, we found that basal expression of Pparg2 in adipose tis-
sue was increased in mice deficient in Nrf3 suggesting a role for
Nrf3 in the transcriptional regulation of Pparg2. Interestingly, se-
quence inspection of the promoter region of Pparg2 gene revealed
the presence of a putative binding site for Nrf3 (data not shown)
supporting the notion that Nrf3 may physically bind to the Pparg2
promoter. Pparg is also expressed in the lung of rodents [23] and is
involved in acute lung injury, most likely due to its anti-inflamma-
tory properties [24]. In our mouse model, Pparg2 mRNA levels were
increased 2.0-fold following BHT treatment in the lung of WT mice,
whereas no effect is observed in Nrf3�/� mice (Fig. 5H). In conclu-
sion, regulation of Pparg gene expression by BHT both in the lung
and the adipose tissue of mice is an important finding since Pparg
agonists may provide a possible tool to treat lung inflammatory
diseases [25].

Analysis of the expression of the adipocyte differentiation-
inducing transcription factor CCAAT enhancer binding protein
beta (Cebpb) indicated that BHT does not affect its expression
in WAT of WT mice but a significant 1.4-fold decrease is ob-
served in WAT of Nrf3�/� mice (Fig. 6D). Together, our data dem-
onstrate that BHT treatment leads to a decrease of the transcript
levels of the key factors Srebp1c, Pparg2 and Fas involved in adi-
pogenesis further supporting the notion that lipogenesis is im-
paired in the adipose tissue of BHT-treated mice. However, one
could not exclude that the effects observed in white adipose tis-
sue is an indirect effect due to a loss of appetite in mice exposed
to BHT (data not shown). In this case, the mice would need to be
considered in a caloric restriction state and lipogenesis in adipose
tissue would thus be reduced allowing the use of fat as a source
of energy.

In summary, our studies provide new insights into the regula-
tion of BHT-induced acute lung injury. We showed that in lung
BHT induces a subset of specific genes mainly involved in inflam-
mation. Moreover, we showed that BHT treatment differently
modulates the expression levels of the CNC transcription factors
Nrf1, Nrf2 and Nrf3 in the lung of mice. In adipocytes, BHT prevents
lipogenesis by repressing critical regulators including Srebp1, Pparg
and their target gene Fas. The molecular mechanisms linking Nrf3-
mediated transcription, inflammatory response and lipid metabo-
lism are currently being investigated.
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