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SUMMARY

The generation of induced pluripotent stem cells
(iPSCs) provides a novel method to facilitate investi-
gations into the mechanisms that control stem cell
pluripotency and self-renewal. Myc has previously
been shown to be critical for murine embryonic
stem cell (mESC) maintenance, while also enhancing
directed reprogramming of fibroblasts by effecting
widespread changes in gene expression. Despite
several studies identifying in vivo target genes, the
precise mechanism by which Myc regulates pluripo-
tency remains unknown. Here we report that codele-
tion of c- and N-MYC in iPSCs and ESCs results in
their spontaneous differentiation to primitive endo-
derm. We show that Myc sustains pluripotency
through repression of the primitive endodermmaster
regulator GATA6, while also contributing to cell cycle
control by regulation of themir-17-92miRNA cluster.
Our findings demonstrate the indispensable require-
ment for c- or N-myc in pluripotency beyond prolifer-
ative and metabolic control.

INTRODUCTION

Myc is widely regarded as being important for stem cell prolifer-

ation, but its role in the regulation of pluripotency remains

unclear. To determine the role of Myc in mESCs, a multitude of

genome-wide chromatin immunoprecipitation analyses (ChIP-

Chip, ChIP-Seq) have been performed (Chen et al., 2008; Kidder

et al., 2008; Kim et al., 2008; Sridharan et al., 2009). Despite the

identification of cell cycle control and metabolic genes as direct

targets, lineage-specific regulators have not been functionally

defined. These data therefore leave open the question of how

Myc maintains the self-renewing, pluripotent state.

The establishment of pluripotency has been widely analyzed

by reprogramming somatic cells via the introduction of four

exogenous factors, Oct4, Sox2, Klf4, and c-myc (Takahashi

and Yamanaka, 2006). Although the exogenous introduction of

c-myc is not absolutely required for reprogramming, it signifi-

cantly enhances the efficiency of iPSC generation by causing

sweeping changes to gene expression (Nakagawa et al., 2008;

Sridharan et al., 2009). These data indicate that c-myc is impor-

tant in initializing reprogramming but do not address its role in
Cell
maintenance of the pluripotent state. Dramatic changes in the

mode of cell cycle regulation accompany somatic cell reprog-

ramming, a facet of pluripotent cell biology that is widely thought

to be under the control of Myc (Singh and Dalton, 2009). How-

ever, mechanisms by which Myc controls the cell cycle in plurip-

otent cells remain undefined.

We previously demonstrated that c-myc promotes self-

renewal of mESCs in the absence of leukemia inhibitor factor

(LIF), while overexpression of a dominant-negative c-myc pro-

motes differentiation (Cartwright et al., 2005). More recently,

enforced expression of Myc has been shown to promote ameta-

stable pluripotent state in mESCs that are otherwise unstable

(Hanna et al., 2009). Interpretation of these data, however, is

confounded by observations that c-myc and N-myc knockout

mice develop well past the blastocyst stage of development

and that mESCs derived from these mice self-renew in a manner

comparable to wild-type cells (Baudino et al., 2002; Charron

et al., 1990). This can be attributed to the functional redundancy

between Myc family members and their overlapping expression

during early development (Malynn et al., 2000).

In this report, we address this issue by analyzing the effects

of simultaneous c- and N-MYC inactivation in pluripotent stem

cells. Myc is shown to impact on self-renewal through regulation

of the cell cycle regulatory network and to maintain pluripotency

by imposing a primitive endoderm differentiation blockade

involving the master regulator GATA6.

RESULTS

Myc Is Essential for the Maintenance of Pluripotency
and Inhibits Primitive Endoderm Formation
To examine the requirement for Myc in pluripotent stem cells, we

generated iPSCs from mouse embryonic fibroblasts containing

c-MYC and N-MYC floxed alleles via Oct4, Sox2, and Klf4 retro-

viruses. Flox miPSCs (c-MYCfl/fl;N-MYCfl/fl) have a mESC-like

domed-shaped colony morphology, express markers of pluripo-

tency, are capable of multilineage differentiation in vitro, and

form teratomas in vivo (Figure S1 available online). After trans-

fection of CreGFP, c-MYCfl/fl;N-MYCfl/fl miPSCs were subjected

to FACS and genotyped to confirm deletion of c- and N-MYC

(Figures 1A and 1B). Upon plating of cells into mESC medium,

GFP+ double knockout (dKO; c-mycD/D;N-mycD/D) cells under-

went spontaneous differentiation, as determined by loss of

alkaline phosphatase staining and by loss of a tightly packed

colony morphology (Figures 1C and 1D). c-MYCfl/fl;N-MYCfl/fl

mESCs were used in parallel experiments and generated similar

results (Figures S2A and S2B). Simultaneous loss of c- and
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Figure 1. Deletion of c- and N-myc in iPSCs Results in Loss of Self-Renewal

(A) Derivation of double knockout c-myc; N-myc miPSCs by transfection of CreGFP and isolation by FACS.

(B) Locus map of targeted alleles and genotype analysis. Genotype analysis was performed on genomic DNA isolated from parental c-MYCfl/fl;N-MYCfl/fl,

CreGFP� (Flox) miPSCs, and CreGFP+ (dKO) miPSCs. Amplicon lengths and corresponding primer sets corresponding to their position at the c-MYC and

N-MYC loci are indicated.

(C) c-MYCfl/fl;N-MYCfl/fl miPSCs transfected with CreGFPwere FACS isolated to separate dKO and Flox cells. GFP� (Flox) and GFP+ (dKO) cells were then plated

in mESC medium for 3 days. Left: phase contrast images of dKO and Flox cells on gelatin. Middle and right: images of dKO and Flox cells after alkaline

phosphatase staining on gelatin and mouse embryo fibroblast feeders, respectively. Scale bar represents 100 mm.

(D) Quantitative analysis of alkaline phosphatase staining for wild-type miPSCs, Flox, and dKO cells. n > 150, for each condition.

(E) Left: cell cycle profiles of propidium iodide-stained Flox and dKO cells obtained by flow cytometric analyses. Right: percent of Flox and dKO cells in G1-,

S-, and G2/M-phases of the cell cycle as determined by flow cytometry analysis.

(F) Immunostaining demonstrates dKO cells remain proliferative, compared to Flox cells, by BrdU incorporation after labeling for 24 hr. Scale bar represents

100 mm.

See also Figure S1.
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N-myc is therefore not compatible with maintenance of pluripo-

tent cells.

Because Myc is widely regarded as a critical regulator of the

cell cycle and cellular proliferation (Meyer and Penn, 2008), we

examined the cell cycle profile and proliferative capacity of

dKO cells. Not surprisingly, dKO cells showed a lengthening of

G1 and G2/M and a decrease in the percentage of S-phase cells

(Figure 1E). Such cell cycle remodeling is typical as mESCs

undergo differentiation (Stead et al., 2002; White et al., 2005).

dKO cells also had reduced uptake of BrdU relative to Flox cells

after a 2 hr pulse (data not shown), but were >90% labeled after

a 24 hr BrdU pulse, indicating that they remain proliferative (Fig-

ure 1F). This is consistent with the cell cycle changes seen as
344 Cell Stem Cell 7, 343–354, September 3, 2010 ª2010 Elsevier In
pluripotent cells differentiate toward endoderm and mesoderm

lineages after LIF withdrawal (Stead et al., 2002). c- and N-MYC

deletion led to only small changes in apoptosis as determined by

Tunel staining (data not shown).

We next set out to determine whether there was lineage-

specific differentiation upon c- and N-MYC deletion. Quantita-

tive reverse-transcriptase PCR (qRT-PCR) and immunostaining

were performed on Flox and dKO cells cultured in mESC

medium (Figures 2A and 2B). Significant increases in transcript

levels for primitive endoderm markers were observed (Gata6

and FoxA2) but not for the early mesoderm marker Brachyury

and the primitive ectoderm marker Fgf5. Similarly, mESC-

derived dKO cells also displayed increases in endoderm marker
c.



Figure 2. Deletion of c- and N-myc in iPSCs Results in Differentiation to Primitive Endoderm

(A) qRT-PCR of c-myc, N-myc, endoderm (Gata6 and Foxa2), mesoderm (Brachyury), and primitive ectoderm (Fgf5) markers indicate endoderm differentiation in

dKO cells compared to Flox cells. Cells were cultured in the presence of LIF and experimentswere performed in triplicate, normalized toGAPDH, and represented

as mean ± SD.

(B) Immunostaining for c-myc, N-myc, pluripotency markers, Nanog, and SSEA-1 and endoderm markers FoxA2 and Gata4 reveals the spontaneous differen-

tiation to endoderm after loss of Myc in miPSCs cultured in LIF. Scale bar represents 100 mm.

(C) qRT-PCR examining Nanog, Gata6, Foxa2, Sox17, Brachyury, and Fgf5 transcripts in miPSCs cultured in LIF (iPS), and during embryoid body differentiation

(Flox, dKO) indicates that the loss of Myc predisposes miPSCs to primitive endoderm differentiation. Experiments were performed in triplicate, normalized to

GAPDH, and represented as mean ± SD.

(D) qRT-PCR analysis of endodermmarkers,Gata6, Foxa2, andSox17; mesendodermmarker,Brachyury; primitive ectodermmarker, Fgf5; and ectodermmarker

Otx2, 4 days after LIF removal with and without retinoic acid. iPSC represents control miPSCs cultured in the presence of LIF. Triplicate experiments were

performed, normalized to GAPDH, and represented as mean ± SD.

(E) Flox and dKO miPSCs and mESCs expressing b-galactosidase were injected into blastocyst-stage C57BL/6 embryos, transferred into recipient females,

and allowed to develop until E14.5. LacZ staining was then performed on fixed, whole embryos. The number of blastocysts injected, the number of chimeras

generated, and the percent of chimeras generated are indicated.

See also Figure S2.
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transcripts (Figure S2C). Immunostaining revealed that the

majority of dKO cells were positive for Gata4 and FoxA2 with

a decrease in expression in pluripotent stem cell markers Nanog

and SSEA1. These results indicate that when cultured under

normal maintenance conditions, dKO cells undergo differentia-

tion to primitive endoderm.

To further explore the differentiation potential of dKO cells,

in vitro differentiation was performed in suspension culture after

FACS in the absence of LIF (Figure 2C). Additionally, differentia-

tion was carried out in adherent culture in the absence of LIF and

in the presence or absence of retinoic acid (Figure 2D). In both

cases, marker transcript levels were compared to miPSCs

cultured in mESC medium. Regardless of whether dKO cells

were cultured in the absence of LIF only or in the presence of ret-

inoic acid, they consistently upregulated the primitive endoderm

markersGata6, FoxA2, and Sox17 (Figures 2C and 2D). No upre-

gulation of the mesoderm marker Brachyury, primitive ectoderm

marker Fgf5, or neuroectoderm marker Otx2 was observed

under these conditions (Figures 2C and 2D). Flox cells, however,

did upregulate these other lineage markers under these condi-

tions, indicating that dKO cells have a more restricted differenti-

ation potential relative to Flox cells. Injection of GFP� (Flox)

miPSCs and mESCs into blastocysts resulted in incorporation

and broad contribution to embryos, whereas GFP+ (dKO) cells

failed to generate chimeras (Figure 2E). dKO cells therefore fail

to retain pluripotency and are predisposed to become primitive

endoderm.

Either c- or N-myc Is Sufficient to Maintain Pluripotency
Previously, c-MYC null mESCs were found to retain the potential

for self-renewal with slight changes in differentiation capacity

(Baudino et al., 2002). Because N-myc can functionally compen-

sate for loss of c-myc in early embryonic development (Malynn

et al., 2000), this suggested a potential overlapping role with

c-myc in pluripotency. To evaluate the ability of different Myc

family members to promote pluripotency, c-, N-, or L-mycER

were introduced into dKO cells and assayed for their ability to

generate alkaline phosphatase-positive colonies in the presence

or absence of 4-hydroxytamoxifen (4OHT; Figure 3A). c-mycER

and N-mycER, but not L-mycER, maintained the pluripotent

state as determined by alkaline phosphatase staining (Fig-

ure 3B; Figure S3). Both c- and N-mycER were able to maintain

dKO cells in an undifferentiated state in the presence of 4OHT

for multiple passages (data not shown).

To further confirm that Myc blocks primitive endoderm differ-

entiation, CreGFP-transfected dKO cells (GFP+) were plated for

3 days in mESC media ± 4OHT. qRT-PCR analysis showed

that activation of N-mycER strongly suppressed the upregula-

tion of endoderm markers FoxA2 and Sox17 (Figure 3C). These

data demonstrate that either c- or N-myc, but not L-myc, is suffi-

cient to maintain pluripotency and explain how single knockout

c- or N-myc mESCs are able to self-renew in a comparable

manner to wild-type cells (see Baudino et al., 2002; Charron

et al., 1990).

Myc Targets the mir-17-92 Cluster that Impacts
on the Pluripotent Cell Cycle
Our data show that after deletion of c- and N-MYC, pluripotent

cells remodel their cell cycle and differentiate into primitive endo-
346 Cell Stem Cell 7, 343–354, September 3, 2010 ª2010 Elsevier In
derm. To understand mechanisms of Myc-mediated cell cycle

regulation and endoderm repression, we set out to identify

in vivo targets for c-myc by ChIP-Chip analysis. Previous studies

(Kidder et al., 2008; Kim et al., 2008) identified in vivoMyc targets

in mESCs but these did not provide any insight into our observa-

tions relating to loss of pluripotency in dKO cells. Because the

potential existed that critical in vivo targets may have been

missed by previous studies, we generated new tools that could

expose new Myc target genes. Our approach was to generate

c-mycD/D mESC lines expressing epitope-tagged versions of

c-myc (c-mycD/6x9e10 or c-mycD/3xHA). Myc tagged with multiple

epitopes, combined with use of monoclonal antibodies, would

then allow for the identification of targets in ChIP assays. Cell

lines were selected that expressed levels of epitope-tagged

Myc that were at, or below, wild-type levels (Figure S4A). Many

previously identified Myc target genes such as SET, EZH2, and

Mybbp1a were identified by this approach (Table S1 and

Figure S4B).

Similar to the situation in cancer cells (O’Donnell et al., 2005),

the mir-17-92 cluster was also bound by c-myc in mESCs

(Figure 4A; Table S1). Themir-17-92 cluster was next confirmed

as a target by ChIP followed by qPCR (Figure 4B). Because the

six miRNAs within this cluster (mir-17,mir-18a,mir-19a,mir-20a,

mir-19b-1, andmir-92a-1) are coregulated through the activity of

a common promoter (O’Donnell et al., 2005), responses of the

mir-17-92 cluster to changes in Myc activity were evaluated by

assaying one of the transcripts, mir-20a. Deletion of c- and

N-MYC inmiPSCs resulted in a >5-fold decrease inmir-20a tran-

script levels (Figure 4C). Furthermore, when c-mycER was

activated by addition of 4OHT in mESCs, there was a significant

increase inmir-20a transcripts above existing levels (Figure 4D).

These data confirm that the mir-17-92 cluster is directly regu-

lated by c-myc in pluripotent cells.

The mir-17-92 miRNA cluster has previously been shown to

control the cell cycle and facilitate cancer cell proliferation

(Mendell, 2008; Yu et al., 2008) by directly blocking the expres-

sion of various cell cycle control genes such as E2F1 (O’Donnell

et al., 2005), cyclin D1 (Yu et al., 2008), p21 (Fontana et al., 2008),

and Rb2/p130 (Wang et al., 2008). These mir-17-92 targets are

not expressed in pluripotent cells but are upregulated during

differentiation, coinciding with changes in cell cycle regulation

(White et al., 2005). As anticipated, we found that upon deletion

of c- and N-MYC in miPSCs, there was a significant increase in

the expression of Rb2/p130 (Figure 4E). Next, the ability of mir-

17-92 cluster members to regulate the 30 untranslated region

of Rb2 was tested with a luciferase reporter assay. Transfection

of miRNA precursors for either mir-17 or mir-20a significantly

reduced Rb2-luciferase reporter activity (Figure 4F). The magni-

tude of Rb2 luciferase activity suppression is comparable to that

reported previously (Wang et al., 2008; see Discussion). miRNAs

in the mir-17-92 cluster therefore regulate cell cycle regulators

such as Rb2 in pluripotent cells.

To obtain further evidence that Myc-regulated miRNAs in the

mir-17-92 cluster have functional relevance to the cell cycle in

pluripotent cells, miPSCs were transfected with a specific

oligonucleotide inhibitor targeting mir-17, another member

of the cluster. Inhibition of miR-17 in miPSCs decreased the

percentage of S-phase cells (41% to 23%) and increased the

percentage of G1 cells (16% to 24%) and G2/M (44% to 55%;
c.



Figure 3. Conditional Activation of c- or N-myc, but Not L-myc, Is Sufficient to Maintain Pluripotency in dKO Cells

(A) Flox and dKO cell morphology after transfection with c-mycER, N-mycER, or L-mycER in the presence or absence of 4OHT for 3 days. Scale bar represents

100 mm.

(B) Quantitation of alkaline phosphatase staining (Figure S3) showing the percent positive colonies versus the percent negative colonies. n > 300 for each condi-

tion. Error bars represent mean ± SD from triplicate experiments.

(C) Activation of 4OHT-inducible N-mycER inhibits the activation of FoxA2 and Sox17 transcript as determined by qRT-PCR. Experiments were performed in

triplicate, normalized to GAPDH, and represented as mean ± SD. The data are representative of multiple experiments where either c- or N-mycER-expressing

cell lines were used.

See also Figure S3.
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Figure 4G). Only small changes in cell cycle distribution were

observed after transfection with a nontargeting siRNA control.

Similar results were obtained in parallel experiments withmESCs

(data not shown). Incorporation of BrdU in miPSCs was also

reduced after a 24 hr pulse with introduction of antisense oligo-

nucleotide inhibitors (Figure 4H), indicative of a cell cycle arrest

or a reduction in the rate of cell division. These effects are consis-

tent with the known ability of Myc to regulate the miR-17-92

cluster in tumor cells (Aguda et al., 2008).
Cell
Taken together, these data indicate that Myc expression in

pluripotent cells promotes the expression of the mir-17-92

cluster, which serves to block the expression of cell cycle regu-

lators, such as Rb2/p130. Inhibiting the activity of miRNAs within

this cluster has a significant effect on cell cycle structure, most

notably a dramatic reduction in the percent of S-phase cells.

We therefore establish a functional link between Myc, the miR-

17-92 cluster, and cell cycle control in pluripotent cells (see

Discussion).
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Figure 4. c-myc Regulates the miR-17-92 Cluster to Control the Cell Cycle

(A) c-myc6x9e10 binds to the upstream regulatory region of the miR-17-92 cluster in ChIP-Chip assays; *p < 0.001.

(B) Independent validation of ChIP-Chip analysis with ChIP-qPCR with the AB2.1 c-mycD/6x9e10 cell line. In control samples, ChIP-qPCR was carried out with

chromatin immunoprecipitated by the 9e10 antibody with the c-mycD/D cell line and control IgG with the c-mycD/6x9e10 cell line.

(C) miR-20a transcript is downregulated upon deletion of c- and N-MYC in miPSCs.

(D) Activation of c-mycER with 4OHT in mESCs increasesmiR-20a transcript over basal levels. Experiments were performed in triplicate, normalized toGAPDH,

and represented as mean ± SD.

(E) Increased expression of the mir-17-92 target Rb2/p130 upon deletion of Myc in dKO cells. Flox and dKO cells were immunostained with an antibody for

Rb2/p130. DNA, DAPI staining. Scale bar represents 100 mm.

(F) Myc targets miR-17 and miR-20a regulate Rb2. miPSCs were transfected with a firefly luciferase reporter containing a Rb2-UTR under a CMV promoter and

either a scrambled control, miR-17 precursor, or a miR-20a precursor. Luciferase assays were performed in triplicate and normalized to a Renilla luciferase

control. Data are representative of multiple experiments, *p < 0.05; **p < 0.01.

(G) Cell cycle profiles (flow cytometry) comparing untransfected wild-type miPSCs (black bars), cells transfected with a nontargeting control (blue bars) or cells

transfected with an antisense oligonucleotide againstmiR-17 (red bars). Percent of cells in G1-, S-, and G2/M-phases are shown 48 hr after transfection. Similar

results were obtained in mESCs (data not shown).
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Myc Inhibits Primitive Endoderm Specification
by Repressing GATA6 Expression
Upon further examination of Myc-bound targets identified by

ChIP-Chip in mESCs, GATA6 was also identified as a potential

target (Figure 5A). As described above, Gata6 transcript was

significantly upregulated in dKO cells (Figure 2A), consistent

with the possibility that Myc regulates GATA6 at the transcrip-

tional level. Previous studies have in fact shown that GATA6

overexpression is sufficient to drive primitive endoderm differ-

entiation of mESCs (Fujikura et al., 2002). Together, these

observations suggest that Myc can inhibit primitive endoderm

differentiation through regulation of GATA6. To confirm GATA6

as a Myc target, we performed scanning ChIP-qPCR analysis

over the region of GATA6 corresponding to that performed in

the ChIP-Chip analysis (Figure 5B). Scanning ChIP analysis

confirmed that Myc binds to the GATA6 gene at several sites,

including those in the 50 upstream region and within intron 1

(corresponding to peaks 2, 5, 7, and 8).

To further evaluate the relationship between GATA6 and

c-myc during differentiation of pluripotent stem cells to primitive

endoderm, we utilized mESCs that express GFP under the

control of the alpha-fetoprotein (AFP) promoter (Hamazaki

et al., 2004). Upon aggregation of these cells in mESC medium

(+LIF), primitive endoderm forms as the outer layer whereas

the inner cells retain pluripotent properties. After aggregation

for 3 days, cells were subjected to FACS followed by qRT-PCR

to evaluate marker transcripts (Figure 5C). As expected, Gata6

and FoxA2 mRNAs were elevated in the GFP+ endoderm

population, whereasNanog and c-myc transcripts were elevated

in the GFP� population. These data confirm that c-myc is

downregulated as mESCs transition to primitive endoderm. To

directly confirm that GATA6 transcription is upregulated as

dKO cells differentiate into primitive endoderm, nuclear run-on

assays were performed. qRT-PCR analysis of RNA isolated

from labeled nuclei showed that rates of GATA6 transcription

increase �11-fold in dKO cells, relative to Flox cells (Figure 5D).

Levels of FoxA2 and Sox17 nascent transcripts also increased in

dKO cells, consistent with the activation of an endoderm tran-

scriptional program after the activation of GATA6. These results

indicate that Myc represses endoderm formation by blocking

GATA6 transcription.

Previous studies have shown that sodium orthovanadate acti-

vates Grb2/Mek and induces Nanog downregulation and GATA6

upregulation, leading to primitive endoderm differentiation

(Hamazaki et al., 2006). To determine whether c-myc can block

the upregulation of GATA6 induced by sodium orthovanadate,

c-mycER mESCs or control mESCs (vector alone) were aggre-

gated in suspension (+LIF), in the presence or absence of sodium

orthovanadate, with or without 4OHT for 24 hr (Figure 5E). qRT-

PCR analysis shows that activation of c-mycER was able to

block Gata6 upregulation induced by sodium orthovanadate.

Nanog mRNA was still downregulated when c-mycER was acti-

vated in the presence of sodium orthovanadate. These data

indicate that c-myc is able to inhibit GATA6 expression indepen-

dently of Nanog.
(H) Immunostainingmonitoring the incorporation of BrdU after labeling for 24 hr de

oligonucleotide inhibitors against miR-17. Assay was performed in triplicate and

See also Figure S4.

Cell
To investigate the effects ofMyc expression on primitive endo-

derm formation, we activated c-mycER during embryoid body

differentiation (+LIF, 3d) and examined expression of the Gata6

target, GATA4 in the primitive endoderm outer layer, which

accounts for �3%–5% of cells in the embryoid body (Figure 5F;

Hamazaki et al., 2004). Immunostaining followed by confocal

microscopy revealed that activated c-myc (+4OHT) almost

completely eliminated the expression of Gata4 in cells on the sur-

face of embryoid bodies. We then evaluated the effects of Myc

on endoderm formation in a Sox17-GFP reporter mESC line

(Borowiak et al., 2009). Sox17-GFP cells were transfected with

a c-myc expression construct or vector alone, aggregated for

48 hr in the presence of LIF, and then analyzed by flow cytometry

(Figure 5G). Under these conditions, overexpression of c-myc

reduced the number of GFP+ endoderm cells by more than

50%. Altogether, these data demonstrate that c-myc inhibits

differentiation to primitive endoderm.

To establish whether Myc prevents primitive endoderm

formation by repressing GATA6, we knocked down Gata6 tran-

script with shRNA (Izumi et al., 2007) in dKO miPSCs. qRT-

PCR analysis indicates that knockdown of Gata6 mRNA blocks

the upregulation of the endoderm markers Gata4, Sox17, and

Sox7 (Figure 5H). FoxA2 was not affected and so may not be

directly under the control of GATA6. These data show that

c-myc blocks primitive endoderm formation by repressing the

expression of GATA6.

Even though knockdown of Gata6 in dKO cells blocks normal

activation of endoderm genes, pluripotency markers such as

alkaline phosphatase, Nanog, and SSEA1 are not maintained,

suggesting that differentiation into other lineages may occur

under these conditions (Figure S5). However, marker analysis

for mesendoderm/early mesoderm, definitive endoderm, ecto-

derm, and trophoblast lineages after LIF withdrawal does not

support this possibility (Figure 5I; Figure S5; and data not

shown). Although dKO-Gata6 knockdown cells are no longer

pluripotent, they fail to differentiate into any definable lineage

and appear to have lost developmental potential.

DISCUSSION

We have characterized two mechanisms by which Myc contrib-

utes to self-renewal and maintenance of the pluripotent state.

The first function involves maintenance of a characteristic

mode of cell cycle control whereby Myc regulates the mir-

17-92 miRNA cluster. The second and perhaps most important

function defined by these studies involves repression of the

master endoderm regulator gene GATA6 (Morrisey et al., 1998;

Koutsourakis et al., 1999).

The cell cycle profiles of pluripotent stem cells have a charac-

teristic short G1, with a large percentage of cells in S-phase

(Stead et al., 2002; Savatier et al., 1996). These cell cycle profiles

are attributed to hyperphosphorylation of Rb and a lack of regu-

lated E2F-dependent transcription. Upon differentiation, E2F

and Rb family members serve to impose the restriction point

near the G1/S transition leading to the remodeling of the cell
monstrates reduced cellular proliferation of cells upon transfection of antisense

is represented as mean ± SD, *p < 0.05.
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Figure 5. c-myc Binds and Represses the Primitive EndodermMaster Regulator GATA6 and Suppresses Primitive Endoderm Differentiation

(A) GATA6 is a Myc-bound target identified from ChIP-Chip assays; *p < 0.001.

(B) Independent validation of GATA6 as a Myc-bound target by ChIP-qPCR with eight primer sets to scan the GATA6 region corresponding to the ChIP-Chip

analysis shown in (A). Primer set 2 corresponds to the statistically significant region identified by DNA Analytics software (Agilent) in the GATA6 promoter shown

in (A) to bind c-myc. Primer sets 5, 7, and 8 also represent regions of significant enrichment and primer sets 1, 3, 4, and 6 correspond to regions not bound by

c-myc.

(C) c-myc transcript is downregulated in primitive endoderm. AFP-GFP mESCs were aggregated in the presence of LIF then cultured for 3 days. GFP-positive

and -negative cells were isolated by FACS and analyzed by qRT-PCR.
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cycle (Savatier et al., 1996; Stead et al., 2002; White et al., 2005).

The change in cell cycle structure observed upon loss of Myc—

lengthening of G1 and a reduction in the percentage of S-phase

cells—indicate the establishment of a checkpoint in late G1. How

this dramatic switch in cell cycle regulation occurs has not been

previously defined at the molecular level. However, it has been

recognized for some time that changes in Myc activity could

potentially orchestrate many of the cell cycle changes seen

during early mESC differentiation (Cartwright et al., 2005).

The downregulation of mir-17-92 and upregulation of cell

cycle regulators, such as Rb2/p130, upon deletion of c- and

N-MYC establishes one way by which Myc impacts on the cell

cycle in pluripotent cells. Based on previous work, it is likely

that the mir-17-92 cluster targets other key cell cycle regulatory

molecules such as E2F1, p21, and cyclin D1 (seeO’Donnell et al.,

2005; Cloonan et al., 2008). These are all thought to play key

roles in remodeling the cell cycle as pluripotent cells transition

toward differentiating lineages (Stead et al., 2002). Although

mir-17-92 has not been implicated in cell cycle control of ESCs

or iPSCs previously, other miRNAs are thought to influence

self-renewal, and connections between miRNAs and Myc have

been established in the context of reprogramming (see Judson

et al., 2009). Even though ESCs proliferate rapidly with an

unusual cell cycle structure, the significance of this in relation

to pluripotency remains unclear. For example, inhibition of

cyclin-dependent kinases slows down the cell cycle but does

not impact on pluripotency (Stead et al., 2002). Although Myc

seems to be critical for maintaining rapid rates of division and

the unusual cell cycle structure of pluripotent cells, it remains

to be determined whether this is directly linked to the mainte-

nance of pluripotency or to other aspects of early embryonic

development, such as embryonic growth control.

Many cell cycle control genes have been previously identified

as being Myc targets in pluripotent cells but our work provides

a mechanistic characterization of how Myc intersects with the

cell cycle machinery. Other genes identified as being Myc

targets (see Kidder et al., 2008; Kim et al., 2008) are likely to

be part of an orchestrated transcriptional program that estab-

lishes and maintains the pluripotent cell cycle in conjunction

with the mir-17-92 cluster. Although Myc has been proposed

to regulate miRNAs in the context of cell reprogramming and
(D) Transcription of GATA6, SOX17, and FOXA2 increases in dKO cells. Flox (G

nuclear run-on assays were performed by labeling nascent nuclear transcripts w

beads, qRT-PCR analysis was performed in triplicate. Gata6, Sox17, and FoxA2

(E) Induction of Gata6 transcript by sodium orthovanadate is blocked by activatio

24 hr, in the presence or absence of 4OHT. qRT-PCR analysis was performed in tr

are representative of multiple experiments.

(F) mESCs carrying a c-mycER transgene or vector alone, were aggregated for

bodies were probed with antibodies for Nanog or the endoderm marker Gata4 an

and DIC optics.

(G) Sox17-GFP mESCs were transfected with vector alone or with a c-myc expr

Flow cytometry was used to determine the effect of endoderm differentiation by

(H) GATA6 is required for endoderm formation after loss of c- and N-Myc. c-M

scrambled (scr) shRNA construct. GFP-positive and -negative cells were FACS

performed in triplicate, normalized to GAPDH, and represented as mean ± SD.

(I) Myc-deleted and Gata6 knockdown cells have restricted differentiation pote

shRNA or scrambled (scr) shRNA construct. Control miPSCs (iPS) were cultured

aggregated in the absence of LIF to induce differentiation, and analyzed after 4

GAPDH, and represented as mean ± SD.

See also Figure S5.

Cell
pluripotency (Judson et al., 2009),mir-17-92 has not been previ-

ously implicated in this process. This underpins the need to

understand in greater detail the relationship between Myc,

miRNAs, and the establishment/maintenance of pluripotency.

During reprogramming, Myc operates during the first few days

to repress fibroblast-specific genes (Sridharan et al., 2009). We

speculate that during the early reprogramming stage, Myc may

also serve to initiate remodeling of the cell cycle to one that is

more reminiscent of a pluripotent cell. This is supported by

observations that partially reprogrammed cells exhibit a cell

cycle profile that is intermediate between fibroblasts and plurip-

otent cells (Singh and Dalton, 2009) and that cell cycle control is

rate limiting for reprogramming (Edel et al., 2010). This suggests

that remodeling of the cell cycle is an early event prior to, and

perhaps required for, the establishment of pluripotency. The

exact relationship between cell cycle regulation and establish-

ment/maintenance of the pluripotent state still needs to be

resolved. Myc is implicated in both processes, so this is an

area that requires further study.

Myc Is Critical for Repression of Primitive Endoderm
In conjunction with cell cycle control, we show that Myc is

required for maintenance of pluripotency by directly repressing

the expression of GATA6, a master regulator of primitive

endoderm formation (Morrisey et al., 1998; Koutsourakis et al.,

1999). Other factors that have been implicated in Gata6 regula-

tion, such as Nanog and Polycomb repressive complexes (Boyer

et al., 2006; Singh et al., 2007), may cooperate with Myc to

repress GATA6. Transcriptional control seems to be a key

element of this regulation although the possibility that Myc

regulates GATA6 expression at additional levels cannot be ruled

out. For example, Myc-regulated miRNAs could potentially

impact onGata6 translation andmRNAstability.Weareunaware,

however, of any Myc-regulated miRNAs that could potentially

target Gata6.

After loss of c- and N-myc, iPSCs preferentially differentiate

toward primitive endoderm, even under conditions that would

normally favor specification of other lineages such as after

retinoic acid treatment or LIF withdrawal. Therefore, besides

not being able to maintain dKO cells in a pluripotent state, they

also lose the potential for differentiation into nonendoderm
FP�) or dKO (GFP+) cells were isolated by FACS and cultured for 3 days, and

ith biotin-16-UTP. After the isolation of biotinylated transcripts on streptavidin

values were normalized to GAPDH and represented as mean ± SD.

n of c-mycER. mESCs were aggregated in the presence of orthovanadate for

iplicate and values normalized toGAPDH and represented as mean ± SD. Data

3 days in the presence of LIF, in the presence or absence of 4OHT. Embryoid

d stained with DAPI. Embryoid bodies were analyzed by confocal microscopy

ession construct. Cells were then aggregated in the presence of LIF for 48 hr.

evaluating the percent of GFP+ cells.

YCfl/fl;N-MYCfl/fl miPSCs were transfected with CreGFP and Gata6 shRNA or

sorted, plated, and analyzed after 3 days by qRT-PCR. Experiments were

ntial. c-MYCfl/fl;N-MYCfl/fl miPSCs were transfected with CreGFP and Gata6

in LIF, and GFP-positive (dKO) and -negative cells (Flox) were FACS sorted,

days by qRT-PCR. Experiments were performed in triplicate, normalized to
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lineages. The most likely explanation for this can be accounted

for by derepression of GATA6.

dKO cells also lose pluripotency after knockdown of Gata6,

but fail to correctly activate the endoderm transcriptional

program. These cells, however, show no signs of differentiation

toward other lineages under these conditions and so appear

to lack full developmental potential. This suggests that c- and

N- Myc are required for differentiation of the embryonic germ

layers and/or that L-myc is sufficient for endoderm differentia-

tion. Surprisingly, Gata6 knockdown also diminished Brachyury

expression. Because Gata6 is expressed in mesodermal line-

ages such as cardiac cells, it may play a role in regulating such

mesoderm markers as Brachyury. Moreover, primitive endo-

derm has been implicated in patterning of embryonic germ layer

derivatives, and loss of Gata6 and hence primitive endoderm cell

types may impact mesoderm formation.

The identification of GATA6 as a Myc target gene was some-

what of a surprise because several other ChIP-Chip studies

(Kidder et al., 2008; Kim et al., 2008) failed to detect this connec-

tion. The predisposition of dKO cells to differentiate toward

primitive endoderm suggests, however, that key elements of

the endoderm transcriptional program are targeted by Myc in

pluripotent cells. Hence, we focused on GATA6 because of its

well-known function as a primitive endoderm master regulator.

It is unclear why previous studies may have overlooked the

Myc-GATA6 connection but it is clear that ChIP-Chip studies

are not exhaustive in their target identification, as demonstrated

by differences in target genes identified by these studies (see

Kidder et al., 2008; Kim et al., 2008). From a technical standpoint,

Myc may weakly or transiently bind GATA6 in comparison to

other loci and therefore be easily overlooked. Technically, our

studies varied from other studies and used epitope-tagged

Myc and corresponding monoclonal antibodies that may have

allowed for the identification of target genes, such as GATA6,

that would otherwise have been undetected. In addition to

GATA6, our ChIP-Chip screen identified HES1 as another target

of Myc in pluripotent cells. HES1, like GATA6, plays an important

role in primitive endoderm development (Thomas and Bedding-

ton, 1996) and its repression by Myc may also sustain pluripo-

tency. Further work is required to establish whether Myc also

plays a role in establishing differentiation blockades on path-

ways other than primitive endoderm.
EXPERIMENTAL PROCEDURES

Cell Culture and Blastocyst Injections

Mouse embryonic fibroblasts isolated from c-MYCfl/fl;N-MYCfl/fl embryos were

used in the generation of iPSCs as described elsewhere (de Alboran et al.,

2001; Knoepfler et al., 2002; Takahashi and Yamanaka, 2006). Mouse ESCs

(wild-type AB2.1, AB2.1c-mycD/D; Baudino et al., 2002), AFP-GFP (Hamazaki

et al., 2004), Sox17-GFP (Borowiak et al., 2009), and miPSCs were cultured in

LIF on gelatin-coated dishes. Differentiation was performed in adherent or

suspension culture in medium without LIF. Differentiation to endoderm was

performed by aggregation of cells in mESC medium, in the presence or

absence of sodium orthovanadate (50 mM) and/or 4OHT (100 nM). The miRNA

inhibitors, anti-miR-17 and anti-miR-20a (Ambion), miRNA precursors, pre-

miR-17 and pre-miR-20a (Ambion), and nontargeting control were transfected

into c-MYCfl/fl;N-MYCfl/fl miPSCs and mESCs with Lipofectamine 2000

reagent (Invitrogen). Gata6 shRNA constructs were cotransfected with

pCAGCreGFPiNeo via Lipofectamine2000 reagent (Invitrogen) into c-MYCfl/fl;

N-MYCfl/fl miPSCs. LacZ+ miPSCs were generated by transfection with
352 Cell Stem Cell 7, 343–354, September 3, 2010 ª2010 Elsevier In
a plasmid expressing the LacZ gene from the constitutive CAGi promoter, fol-

lowed by selection with puromycin. Blastocyst injections and embryo analysis

were performed as described previously (Cartwright et al., 2005). Mouse work

was done in compliance with the University of Georgia animal use and ethics

guidelines (AUP #A2008-10015).

Quantitative RT-PCR, Luciferase Assays, and Nuclear Run-on

Assays

RNA was isolated with the RNeasy Mini Kit (QIAGEN), and miRNAs were iso-

lated with the MirVana miRNA isolation kit (Ambion). qRT-PCR for mRNA and

miRNA transcripts was performed by Taqman Assays (Applied Biosystems).

Luciferase assays were performed with the Dual Luciferase Reporter Kit

(Promega) according to instructions and analyzed on a Synergy 2 plate reader

(BioTek). Nuclear run-on assayswere performed by labeling RNA from isolated

nuclei with biotin-16-UTP, essentially as described by Zhang et al. (2005).

Biotinylated RNA was purified with streptavidin magnetic beads then reversed

transcribed into cDNA. qRT-PCR transcript analysis was performed as

described above.

Alkaline Phosphatase Staining, Cell Cycle Analysis,

and Immunostaining

Alkaline phosphatase staining was carried out with a Leukocyte Alkaline

Phosphatase staining kit (Sigma). Cell cycle analysis was performed by flow

cytometry after fixing the cells in 70% ethanol and staining with propidium

iodide (50 mg/ml), RNase A (200 mg/ml), and BSA (100 mg/ml) in PBS for

30 min at 37�C. Immunostaining was performed by fixing cells in 4% parafor-

maldehyde, blocking in 10% Donkey Serum/PBS, and incubating with the

following antibodies in blocking solution: Nanog (CosmoBio); SSEA1 (Devel-

opmental Studies Hybridoma Bank); FoxA2 (Upstate); Gata4, Oct4, p130/

Rb2, c-myc (Santa Cruz Biotechnology); N-myc (Chemicon); or BrdU (Abcam)

overnight.

Chromatin Immunoprecipitation with Microarray Assays

AB2.1c-mycD/D (c-myc null) cell lines with stable expression of 3xHA or

6x9e10-epitope-tagged c-myc were used for ChIP-Chip assays (see Boyer

et al., 2005). Cell lines were selected that expressed c-myc3xHA/6x9e10 at levels

equivalent to, or below, that of endogenous c-myc in the parental cell

line AB2.1 to eliminate overexpression effects (Figure S4A). The negative

control cell line (AB2.1c-mycD/D) was generated by transfection with empty

pCAGiPuro vector. Immunoprecipitations were carried out with AB2.

1c-mycD/3xHA, AB2.1c-mycD/6x9e10, and AB2.1c-mycD/D cell lines via affinity-

purified anti-HA, anti-9e10 monoclonal antibodies (Sigma), or control IgG.

Hybridization was carried out with a Mouse Expanded Promoter ChIP-on-

Chip Set (Whitehead Institute, Agilent Technologies), and validated with

qPCR with SYBR Green (Bio-Rad). Targets were identified with DNA Analytics

software (Agilent). Probes used to identify genomic targets were determined

in a replicate whether the p value was below a predetermined cut-off (at least

p < 0.05). ChIP-Chip data are expressed as an enrichment ratio of immunopre-

cipitated target and input DNA, calculated with DNA Analytics. Targets

obtained with the AB2.1c-mycD/D cell line were subtracted from those

detected with the AB2.1D/6x9e10 or AB2.1D/3xHA cell lines and used to formulate

a consensus Myc target list (Table S1). Experiments were performed in tripli-

cate for each cell line. ChIP-qPCR data are represented as enrichment of

the immunoprecipitated target relative to input DNA (Aparicio et al., 2004).

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures and one table and can be found

with this article online at doi:10.1016/j.stem.2010.06.023.
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Note Added in Proof

Further information about c- and N-Myc floxed mESCs can be found in

a recently published paper (Varlakhanova, N.V., Cotterman, R.F., deVries,

W.N., Morgan, J., Donhue, L.R., Murray, S., Knowles, B.B., and Knoepfler,

P.S. (2010). mycmaintains embryonic stem cell pluripotency and self-renewal.
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