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Abstract

In this paper we discuss Sobolev bounds on functions that vanish at scattered points on the n-sphere S” in
R"t1. The Sobolev spaces involved may have fractional as well as integer order. We then apply these results
to obtain estimates for continuous and discrete least-squares surface fits via radial basis functions (RBFs).
We also address a stabilization or regularization technique known as spline smoothing.
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1. Introduction

Scattered data surface fitting on the sphere has become increasingly important by virtue of
its many applications in the geosciences. A very popular method of surface fitting is to use
interpolation and approximation by (conditionally) positive definite and radial or zonal functions,
see for example [3-5,17,22]. It is this method that we discuss here.

Several authors have provided error estimates for such reconstruction processes (see for example
[7,9-11]); these error estimates were based upon using either spherical harmonics or charts. When
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the corresponding results in Euclidean space R" are known, the chart approach is the easier of
the two. However, until now, deriving the correct orders for the errors involved a very technical
argument (see [8,9]), especially when L ,-norms other than L, were considered. Moreover,
only limited information on simultaneous approximation, i.e. error estimates that involve also
derivatives has been known [12-14].

In this paper, we will derive general simultaneous error estimates for interpolation by RBFs.
These results are based on recent results in R” for Sobolev bounds on functions having many
scattered zeros [15] or with many points where the function is sufficiently small [21].

We will begin by establishing Sobolev bounds for functions that are defined on S" and that
are small at sufficiently many points. Using the results we get, we will derive error estimates for
radial basis function interpolation and both continuous and discrete least-squares approximation.

Let us now describe the interpolation and approximation problems we want to discuss. We will
restrict ourselves exclusively to the sphere, although it is clear that much of our analysis carries
over to more general compact Riemannian manifolds. In particular, if the data sites are situated
inside a chart then the analysis applies immediately and the results hold true.

Assume that we are given a set X = {x, ..., xy} of data sites located on the n-sphere §" =
{x € R"™! : ||x||» = 1} and data values fis ..., fn € R which stem from a continuous function
f € H =H(S"), where H(S") C C(S") is a certain function space consisting of continuous
functions on the sphere. This space will later be the Sobolev space W5 (S") with T > n/2. We are
interested in finding the solution of

min {||s||3; : s € H with s|X = f|X}, (1

which we will denote by sp, or, if necessary, by so, x.
This is just the usual minimal norm interpolant for the problem. However, if the data values
are noisy, then it is advisable to look at the smoothing spline solution s, of

N
min § Y " [s(xj) — )PP+ Allslg s eHyp )
j=1

where 1 > 0 is a certain smoothing parameter, which has to be chosen carefully, to balance
between interpolation and approximation. The determination of 4 has intensively been studied in
the literature, see for example [19].

To discuss the solutions to both problems we have to make two more assumptions on the
function space. The first assumption is a natural one. Since we want to work with point evaluation
functionals, it is reasonable to assume that point evaluation functionals are continuous on 7, i.e.
that for every x € S” there exists a constant Cy > 0 with

IfFEOISCillfll  forall feH.

Our second assumption is not that natural, but it will greatly simplify the theory and it will provide
no severe restrictions in applications. We will assume that our function space H is a Hilbert space.

A Hilbert space H of functions f : S" — R with continuous point evaluation functionals is
known to be a reproducing kernel Hilbert space (RKHS) (see e.g. [1]), i.e. it possesses a unique
kernel @ : S" x S" — R such that

1. @(-,x) € Hforall x € S",
2. f(x) = (f, ®(,x))y forallx € S" and all f € H.
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In a RKHS the reproducing kernel @ is always symmetric and positive semi-definite; it is even
positive definite if the point evaluation functionals are linearly independent, which is what we
actually assume. This means that for arbitrary distinct point sets X = {x,...,xy} € S", the
matrices

A=Agpx = (P(xi,x}))ij

are positive definite. It is well known, that in this situation the solutions of (1) and (2) have a
representation of the form

N
53 (x) =Y 0 ®(, x)),
j=1

where the coefficient vector « € R" is uniquely determined by the linear system
(A+ Do = f|X.

Besides these two reconstruction methods we will also address error estimates for least-squares
fitting in both the continuous and discrete sense. To this end we introduce the space

Vx = span{®(-, x;) : x; € X}

and another discrete data set Y = {yy, ..., yp}, which is supposed to be “finer” than X.
Then, we are interested in the behavior of the solution of the continuous least-squares problem

min {|[f = sllz,sm) 5 € Vx} 3)

as well as in the solution of the discrete least-squares problem

M
min { > [f () — s s € Vx . )
j=1

It is our goal to state error estimates for all these approximation methods in the case of H =
WZT (S™). This includes results on how to choose the smoothing parameter in (2) a priori (see the
remarks after Corollary 3.4).

The reproducing kernel of a Hilbert space H of continuous functions is uniquely determined
by the inner product. On the other hand, every kernel @ defines a Hilbert space of continuous
functions for which it is the reproducing kernel (see for example [20]). Hence, from now on we
will use the following relaxed definition.

Definition 1.1. Let (H, || - |l3) be a RKHS of functions defined on S" with reproducing kernel
®. We will say that @ : S" x S" — R is also a reproducing kernel of H, if it generates the same
space ‘H and the induced norm is equivalent to the original one.

_ In the case of Sobolev spaces this definition means that the Fourier coefficients of the kernel
@ have to satisfy a certain decay condition, which is determined by the smoothness index of the
Sobolev space. Since this is rather standard we omit the details here.

We will derive our results by means of charts. Hence, in the next section we will state rele-
vant results on subsets of R”. In the final section we will deal with the results derived for the
sphere. We will start that section with a short review of Sobolev spaces on the sphere by means
of charts.
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2. Results for the Euclidean case

In this section, we will let Q C R” be a bounded domain satisfying an interior cone condition
and having a Lipschitz boundary. We will need various Sobolev spaces; details may be found
in [2]. The Sobolev space W; (Q), k € Ny, consists of those distributions u with distributional
derivatives D*u € L,(Q), |o| <k. Associated with these spaces are the (semi-)norms

1/p 1/p

lulwiy = [ D 1D} o and ullwgoy = | Y 1D%ull] g
o=k lo| <k

The case p = oo is defined in the obvious way

|ot|=k [oc

‘ \

For fractional order Sobolev spaces, we use the norms below. Let | <p < 00, k>0, k € Z, and
let 0 <5 < 1, then

1
. |D“u(x> D u(y)|? v
|M|W§+.Y(Q) = E ik T dxdy ,

=l

1/p
||u||wg+;(g):=(||uu (Q)+|u|wk+y(g)) :

We define the fractional order Sobolev spaces W;f“ (Q) to be all u for which the last norm is
finite.

Error estimates for scattered data approximation problems are usually given in terms of the
mesh norm or fill distance. For a finite set X C Q, we define the mesh norm (or fill distance) of
Xin Qto be

hx o= sup min |lx —x;>.
reQ Xj€X

We will also need two additional geometric quantities, the separation radius qx and the mesh

ratio py = px q- They are defined by

1 .
qx = mm lxi —xjll2,  px =pxa="xalqx.

To shorten our presentation we collect several global assumptions on the indices that we will
employ throughout the rest of the paper.

Assumption 2.1. Lett = k+s withk € N,0<s < 1, 1<p < 00, I <g<oo,m € Ny with
k>m+4n/pifp>1lork>m+n/pifp=1.

The following results were established in [15, Theorems 2.12 and 2.13] and [21, Theorem 2.6].
We will need them in the sequel. However, the assumption in those papers differs from our
Assumption 2.1 in the following way. In those papers the number s was supposed to satisfy
0 < s < 1. Here, we use the improved form 0<s < 1. While this seems to be minor at first sight,
it gives the “correct” condition t > m + n/p for integer t. This change in assumption has been
justified in [16].
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Theorem 2.2. Suppose Q C R" is a bounded domain satisfying an interior cone condition and
having a Lipschitz boundary. Let X C Q be a discrete set with sufficiently small mesh norm
h = hx q. Under the Assumption 2.1, for each u € W; (Q) we have that

ulwpien <C (B VP71 ulyye ) + h" ul X o)
where C > 0 is a constant independent of u and h, and (x)4+ = max{x, 0}.

The next result is for the discrete least-squares problem (4). To measure the error in this case,
we will employ a discrete norm, which is defined as

1/q
| M
lulle, ) = { (3 L1 i) ™ for 1< < os,
max; < j<um lu(y;)|  forg = oo,

for a discrete set of points ¥ = {yy, ..., yp} C Q. Derivatives can also be included, for example,
ifuecC k(Q) is given, we define

1/q 1/q

luluiry = | D 1D%ullf ) and Nullyrry = | Do ID%ll] )] - O
|or|=k lo] <k

With this notation in hand, the required result on R”" is the following one:

Theorem 2.3. Suppose Q C R" is a bounded domain satisfying an interior cone condition and
having a Lipschitz boundary. Let X C Q be a discrete set with sufficiently small mesh norm h =
hx.LetY = {y1, ..., ym} be a second discrete set, with hy <h. Under the general Assumption
2.1,ifu € W; (Q) satisfies u|X = 0, then

|M|w;;’(Y) < Cpr;/th—m—n(l/p—l/qn |M|W;(Q)’

where C > 0 is a constant independent of X, Y and u. In particular, if m = 0 and p = q = 2,
then

2
lluelley (v <C,0';// R lulws -
3. Application to the sphere

The unit sphere S” in R"*! will serve as an example of how to treat a compact manifold.

To introduce Sobolev spaces on the sphere, one can either express functions in spherical har-
monics or use charts. Here, we will follow the latter approach [6,18].

Let A= {Uj,y j};f’: , be an atlas of n-dimensional charts for S", i.e. the open sets U; C S"
cover the sphere S" and the mappings y; are homeomorphic mappings from U to the open unit
ball B(0, 1) C R", such that for two charts y; and y; having U; N U; # { the composition

Yioy W (UiN U — (Ui N U

is C*. With such an atlas, we always have an associated family {y; : S" — R}'}’Zl of C*

functions forming a partition of unity with respect to the open covering {U; };.”:1 , 1.e. they satisfy
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%j =0, supp(y;) < Uj and ZT:] 7 = 1 on S". Next, for a function f : S" — R we introduce
the projections 7;(f) : R* — Rby

{ foyi'®, xeB@),
0,

otherwise.

i (f)x) = (6)

We then use both the projections and the partition of unity to define the Sobolev space W;(S”)
via

WE(S") = {f € Ly(S") i 7j(1;f) € WER") for j = 1, m}
This space can be equipped with the norm
m 1/p
17w s = 2; 175 G )Wy oy
j=

for 1 < p < oo. The case p = oo is defined in a similar manner.

It is important to know that even if the norm depends on the chosen atlas, the space does not.
Moreover, all norms provided by different choices of atlas are equivalent.

Hence, in the rest of the paper, we can and will restrict ourselves to a specific atlas, one consisting
only of the following two charts. Let 2 = (0,...,0, DT, § = (0,0, ..., —1)T be the north and
south pole of §”, respectively. We denote the spherical cap with radius 0 € (0, 7) and center z by

G(z,0):={teS":d(z & < 0},

where d(z, &) = arccos(z - &) denotes the usual geodesic distance. Next, we fix an angle 0y €
(m/2,2m/3) and consider the following two specific spherical caps:

Uy =G0, 0p), Uy=G(@S,0p).

The homeomorphic mappings ¥, : Uy — B(0, 1) and , : U2 — B(0, 1) associated with these
caps are defined by

— 1 T
l/jl(é) - tan(Ho/Z)(l + én+l)(élv I én) 5

and

1
Yo (&) = (CERPAL
25 an(o/2)(1 — &) "
Except for the scaling factor, these are simply stereographic projections (cf. [8]).
The following result is easily established. It relates the Euclidean distance between two points
to the Euclidean distance between their images under the charts.

Lemma 3.1. foru,v € Uj, j = 1,2, we have
sin(0o) 1y (u) — ¢ () l2< llu — vll2<2 tan(0o/2) Y () — ¥ (V) 2.

Proof. The relation
2 tan(0o/2) 1Y/ ; () — ;)2
(1 + tan?(00/2) [ ; ) [13) /2 (1 + tan?(0o/2) [y ; () [13)1/?

lu—vl2 =
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follows from a similar one for the stereographic mapping (see [8]). Since ¥/ jm) € B(0, 1) forall
u € Uj, this yields the upper bound and the lower bound, after a few more steps. []

From now on, let Cy, = sin(0p)~!. Since the shortest path between two points in R™*! is the
line, we can conclude that

;@) — ¥ ; (012 < Coy llu — vll2< Copd (. v)

for j = 1,2 and u, v € U;. This allows us to relate the mesh norm on lpj(Uj) = B(0, 1) to the
mesh norm on the sphere. The latter, of course, is now defined using the geodesic distance:

hy st := sup min d(x,x;).
’ xeS" )CjEX

Proposition 3.2. With the previous notations we have for j = 1,2
hy xaup ., wp) <3Cohx s

Proof. We can conclude from the definitions that

hy (xnUH.p.U;) = Sup min lx —xll2
lpj( j)’wj( /) XEW (U ) xlel// (XﬂU,

= sup min ;) = )l
xeU; xeX

< su min Cpy.d(x, x,

= XEZI])I' x€XNU; Oo ( D

< Cophxnu,,u;-
Finally, suppose x € U; is given. Then, we can connect this x with the corresponding pole of U
by a great circle and choose a y on this great circle with d(x, y) <2hx sn. To this y there exists
anx; € X withd(y, x;) <hy s, and so x; € U;. Since the triangle inequality yields that

d(x, x))<d(x,y) +d(y, xi) <3hy s
we can finally conclude
hXﬂU_/,Uj < 3C90hX,§" ,

which settles our statement. [

With this relation at hand, the results corresponding to Theorem 2.2 can easily be established
for the sphere. However, if we are considering functions u which do not vanish at X and derivative
estimates, we need actually also an estimate of the form hl/, (XNUY ;U ) =chy s» which is
equivalent to an estimate of the form hxny;,u; =2 chy s Unfortunately, such an estimate can be
wrong if the mesh norm on one of the U; is much smaller than on the other one. On the other
hand, it is quite natural to assume additionally that the points are similarly distributed on both
spherical caps.

Theorem 3.3. Suppose that Assumption 2.1 on © = k + s, p, q, and m holds, and also that
X c S" ! is finite and has a sufficiently small mesh norm h = hy s If u € W,(S") satisfies
u|X = 0 then the following estimate holds

—m—n(l/p—1
||u||W(11n(§n)§ChT m—n(l/p /q)+||M||W;(§")
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Finally, if we assume that in case of m > 0 the mesh norms on both caps Ui, j = 1,2 are
comparable to the mesh norm on S", then for any u € W;(S"), we have

el csm <€ (BP0 e oy + h " ul X o)

Proof. With the abbreviation u; = m;j(y;u), j = 1,2, and Minkowski’s inequality we get

— q q 1/
”M”Wg"(S") = (HMIHW{;"(B(O,I)) + ”uZHWj]”(B(O,l))) 1
< lluiliwye .y + luzllwezo.1))-

Applying Theorem 2.2 to both summands on the right-hand side, setting X ; = j(XNUj)and
hj = hx; B(.1) and using |uj(1//j(x))| <|u(x)| yields

—m—n(l/p—1 7

llujllwmso.) < C (h: m-n(l/p /q)+|l/tj|W,§(B(0,l)) +hjm||uj|Xj||oo>
—m—n(1/p—1 _

<C (h;gn PV s b0y + iy ||u|X||oo)

by Proposition 3.2. Finally, by definition we have ||u ||W;( B(0,1)) < |lull W(S™)- This leads to the
desired estimates. [

Hence, for the solution s;, >0, of (1) and (2) with H = W;(S") we have the following
corollary:

Corollary 3.4. Under the assumptions of Theorem 3.3 the following error estimate holds for all
f e Wi (§"):

If - S/l||W('1"(§”) <C (hr—m—n(l/2—l/fI)+ + h—mﬁ) “f”WzT(S”)‘

Proof. For 1 = 0 this follows immediately from the norm-minimal interpolation property of sg.
For 4 > 0 simply note that

N
max{([(f = s)IXT, 25205 gn) < Z% Lf ) = 526D + 2215 e,
j:

1 2
<A f s

by using s = f as an upper bound to the quadratic form. The rest follows from Theorem 3.3.

This again gives a priori information on a good choice of 4 > 0. For example, setting g = oo,
p = 2, and m = 0 leads to the error estimate

If —sillp.sm<C (hf’"/z + ﬁ) £ lwzsm-
Hence, in this situation, a choice of the form
y) < Ch2‘t—n

is necessary to keep the optimal approximation order.
Another consequence of this result is that we now also have an error bound on the L-best
approximation error.
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Corollary 3.5. Let s* be the solution of the continuous L(S™) least-squares problem (3), where
X C S", @ is the reproducing kernel of W;(S"), and f € W;(S"). Then, the error can be
bounded by

I1Lf = 5% lLysm) SCRE N fllwz(smy-
Proof. Simply use || f — s*|1,(s") <II.f — Sollz,(s") and then Corollary 3.4. [J

This settles the case of continuous least-squares approximation. However, we are also in the
situation to bound the error for the discrete least-squares problem (4). To this end we remind the
reader of the separation distance gx and the mesh ratio py, which are now accordingly defined
to be

= %Ilralﬁl? d(xi,xj), px =pxs =hxs/qx,
respectively. Theorem 2.3 yields the following result, which is proven like Theorem 3.3.

Theorem 3.6. Under the general Assumption 2.1 let X C S" be a discrete set with mesh norm
h =hyxsn. LetY = {y1, ..., yu} be another discrete set on the unit sphere with hy s» <h. If
u e W; (S") satisfies u|X = 0 then

||u||w§1"(Y) g Cp')l//th—nz—n(l/P—l/q)Jr ||M|| W;(Sn)

with a constant C > 0 independent of u and X.
As a consequence, we have error estimates for discrete least-squares approximation.

Corollary 3.7. Under the assumptions of Theorem 3.6 let s* be the discrete least-squares solution
of 4) to f € W(S"), where @ is the reproducing kernel of W5 (S"), then there is a constant C
independent of s* and X, Y such that

2
1Lf = 5™ llear) SCPY sl £ lwg -
Proof. Simply use the previous result foru = f —s9.x. U

It remains to remark that, when working with conditional positive definite functions of finite
smoothness (i.e. mainly functions of thin-plate spline kind) all results remain valid.
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