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a b s t r a c t

In this paper, we introduce a numerical method for the solution of two-dimensional Fred-
holm integral equations. The method is based on interpolation by Gaussian radial basis
function based on Legendre–Gauss–Lobatto nodes and weights. Numerical examples are
presented and results are compared with the analytical solution to demonstrate the valid-
ity and applicability of the method.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we are concerned with Gaussian radial basis function (RBF) method for the two-dimensional Fredholm
integral equations of the second kind,

u(τ , µ) = f (τ , µ) +

∫ b

a

∫ d

c
K(τ , µ, λ, η, u(λ, η))dλdη, (τ , µ) ∈ D (1.1)

where f (τ , µ) and K(τ , µ, λ, η, u) are given continuous functions defined, respectively on D = [a, b] × [c, d], E =

D × D × (−∞, ∞) and u is unknown on D.
A few number of methods for the solution of the Fredholm integral equations have been given in the literature [1]. The

Galerkin and collocation methods are the two commonly used methods for the numerical solutions of the two-dimensional
integral equations. The analysis for convergence of thesemethods is well documented in the literature [2–7]. In [8], Han and
Wang approximated the two-dimensional Fredholm integral equations by the Galerkin iterative method. In [9], Hadizadeh
and Asgary by using the bivariate Chebyshev collocation method solved the linear Volterra–Fredholm integral equations of
the second kind.

In this paper, we approximate the solution of the two-dimensional Fredholm integral equation using Gaussian radial
basis function. Also we approximate its corresponding integral by the Legendre–Gauss–Lobatto (LGL) points and weights.

2. Introduction to RBFs

RBFs were introduced in [10] and they form a primary tool for multivariate interpolation. They are also receiving
increased attention for solving PDE in irregular domains. Hardy [11] showed thatmultiquadrics RBF is related to a consistent
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solution of the biharmonic potential problem and thus has a physical foundation. Buhmann and Micchelli [12] and Chiu
et al. [13] have shown that RBF are related to prewavelets (wavelets that do not have orthogonality properties). Also Alipanah
and Dehghan [14], used RBF for the solution of a nonlinear integral equation in one dimensional case. A radial basis function
(RBF) interpolant of multivariate data ((xk, yk), zk), k = 1, 2, . . . ,N is as follows

F(x, y) =

N−
k=1

ckφ(‖(x, y) − (xk, yk)‖), (2.1)

where ‖(x, y)−(xk, yk)‖ = ((x−xk)2+(y−yk)2)
1
2 . Hereφ(r) is some radial basis function, and coefficients ck are determined

in such a way that

F(xk, yk) = zk, k = 1, 2, . . . ,N,

i.e. as the solution to the linear system


A
 

c1
c2
...
cN

 =


z1
z2
...
zN


where the entries of the matrix A are Ai,j = φ(‖(xi, yi) − (xj, yj)‖), i, j = 1, 2, . . . ,N .

Here φ(r) is some positive definite functions [11]. Numerous choices for φ(r) have been used in the past. Table 1 shows
a few cases for which existence and uniqueness of the interpolants f (x) have been discussed in the literature; see for
e.g. [15,16,11,17,18]. For many of the radial functions in Table 1, existence and uniqueness are ensured for arbitrary point
distributions. However, there are some that require the form of (1.1) to be augmented by some low-order polynomial terms.

3. Strictly positive definite functions

Definition. A function φ on X is said to be positive definite on X , if for any set of points x1, x2, . . . , xN in X the N ×N matrix
Aij = φ(xi − xj) is nonnegative definite, i.e.

V TAV =

N−
i=1

N−
j=1

vivjAij ≥ 0,

for all nonzero V ∈ RN . If V TAV > 0whenever the points xi are distinct and V ≠ 0, thenwe say that φ(r) is a strictly positive
definite function [19,16].

If φ(r) be strictly positive definite function on a linear space, then the eigenvalues and determinant of A are positive.
Therefore we can use a linear combination translation of φ(r) to interpolate [16].

Definition. A function f (r) is said to be completely monotone on [0, ∞), if for any t > 0 we have that

1. f ∈ C∞
[0, ∞), 2. (−1)kf (k)(t) ≥ 0.

A real-valued function F on an inner-product space is said [16] to be radial if F(x) = F(y) whenever ‖x‖ = ‖y‖. Now we
present a theorem that introduce a large number of strictly positive definite or radial basis functions.

Theorem (Bochner’s Theorem [16]). Let f be a nonnegative Borel function on R, if 0 <

R f < ∞, then f̂ is strictly positive

definite, where f̂ is the Fourier transform of function f , which

f̂ (x) =

∫
+∞

−∞

f (y)eixydy.

We can find many strictly positive definite functions by using this theorem. In Table 1 we give some positive definite functions
(RBFs) by using Bochner’s Theorem.

Thus for any set of distinct points x0, x1, . . . , xN on [a, b], the matrix Aij = f̂ (‖xi − xj‖2) is strictly positive definite.

4. Legendre–Gauss–Lobatto nodes and weights

Let LN(x) be the shifted Legendre polynomial of order N on [0, 1]. Then the Legendre–Gauss–Lobatto nodes are

x0 = 0 < x1 < · · · < xN−1 < xN = 1, (4.1)

and xm, 1 ≤ m ≤ N − 1 are the zeros of L̇(x), where L̇(x) is the derivative of LN(x) with respect to x ∈ [0, 1]. No explicit
formulas are known for the points xm, and so they are computed numerically using subroutines [20].
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Table 1
Strictly positive definite functions that satisfy Bochner’s Theorem.

f1(x) =
1

π(1+x2)
f̂1(x) = e−|x|

f2(x) =
e−|x|

2 f̂2(x) =
1

1+x2

f3(x) = π−
1
2 e−x2 f̂3(x) = e−

x2
4

f4(x) =
1+x−2

2π f̂4(x) = |x|−1(1 − e−|x|)

f5(x) = sech(πx) f̂5(x) = sech( x
2 )

f6(x) =
1−x csch(x)

2x2
f̂6(x) = log(1 + e−

π
|x| )

Also we approximate the integral of f on [0, 1] as∫ 1

0
f (x)dx =

N−
i=0

wif (xi), (4.2)

where xi are the Legendre–Gauss–Lobatto nodes in Eq. (4.1) and the weights wi given in [20, p. 76]

wi =
2

N(N + 1)
·

1
[LN(xi)]2

, i = 0, 1, . . . ,N. (4.3)

It is well known [20] that the integration in Eq. (4.2) is exact whenever f (x) is a polynomial of degree ≤ 2N + 1.

5. Discretizing the two-dimensional Fredholm integral equations

Changing the variables τ = (b − a)x + a, µ = (d − c)y + c, λ = (b − a)t + a and η = (d − c)s + c , Eq. (1.1) can be
written as

u(x, y) = f1(x, y) + (b − a)(d − c)
∫ 1

0

∫ 1

0
K1(x, y, t, s, u(t, s))dtds, (x, y) ∈ D, (5.1)

where f1(x, y) = f ((b− a)x+ a, (d− c)y+ c), K1(x, y, t, s, u(t, s)) = K((b− a)x+ a, (d− c)y+ c, (b− a)t + a, (d− c)s+
c, u((b − a)t + a, (d − c)s + c)) and D = [0, 1] × [0, 1].

Let φ(r) be a strictly positive definite function or RBF and we approximate u(x, y) with interpolation by function φ(r)
i.e.,

u(x, y) ≃

N−
i=0

M−
j=0

cijφij(x, y) = CTΨ (x, y), (5.2)

where

φij = φij(x, y) = φ(‖(x, y) − (xi, yj)‖),

Ψ (x, y) = [φ00, φ10, . . . , φN0; φ01, φ11, . . . , φN1; · · · ;φ0M , φ1M , . . . , φNM ]
T ,

and

CT
= [c00, c10, . . . , cN0; c01, c11, . . . , cN1; . . . ; c0M , c1M , . . . , cNM ] .

Also (xi, yj) are the Legendre–Gauss–Lobatto nodes. Now by substituting Eq. (5.1) in Eq. (1.1) we have that

CTΨ (x, y) = f1(x, y) + (b − a)(d − c)
∫ 1

0

∫ 1

0
K1(x, y, t, s, CTΨ (t, s))dtds.

For obtaining cij, i = 0, 1, . . . ,N, j = 0, 1, . . . ,M in the above equation, by collocating at the points (x, y) = (xi, yj) for
i = 0, 1, . . . ,N, j = 0, 1, . . . ,M we have that

CTΨ (xi, yj) = f1(xi, yj) + (b − c)(d − c)
∫ 1

0

∫ 1

0
K1(xi, yj, t, s, CTΨ (t, s))dtds. (5.3)

By applying numerical integration method given in Eq. (4.2), we can approximate the integral in Eq. (5.1) and hence the
above equation can be written as follow

CTΨ (xi, yj) = f1(xi, yj) + (b − a)(d − c)
N−

r1=0

M−
r2=0

wr1wr2K1

xi, yj, tr1 , sr2 , C

TΨ (tr1 , sr2)

, (5.4)

for i = 0, 1, . . . ,N, j = 0, 1, . . . ,M and wr are given in Eq. (4.3).
This is a nonlinear system of equations that can be solved via Newton’s iteration method to obtain unknown vector CT .
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Table 2
Numerical results for different RBFs of Example 1.

N λ =
1
2 λ = 1 λ = 2

2 4.1 × 10−2 8.0 × 10−2 1.2 × 10−1

3 1.2 × 10−2 3.0 × 10−2 1.0 × 10−1

4 2.1 × 10−3 6.0 × 10−3 3.0 × 10−2

5 5.1 × 10−4 1.4 × 10−3 1.0 × 10−2

6 1.1 × 10−5 2.5 × 10−4 3.0 × 10−3

7 1.6 × 10−6 7.2 × 10−5 8.0 × 10−4

8 3.1 × 10−7 3.2 × 10−6 1.0 × 10−5

Error

N

2. 3. 4. 6. 8.

1e–06

1e–05

.1e–3

.1e–2

.1e–1

.1

Fig. 1. Circle, box and cross are respectively for λ =
1
2 , 1 and 2 using Gaussian RBFs of Example 1.

6. Numerical examples

We used the method presented in this paper using Gaussian radial basis function φ(r) = e−λ2r2 for solving the two-
dimensional Fredholm integral equation given in [4,5]. Ourmethod differs from themethods given in [4,5], since thismethod
is simple and involve less computation. In all examples, we use the Gaussian RBFs for λ = 1, λ = 2 and λ =

1
2 , also we use

the maximum errors for different N which is given as

E∞ = max

u(x, y) −

N−
i=0

M−
j=0

cijφij(x, y)

 : (x, y) ∈ [0, 1] × [0, 1]


.

6.1. Example 1

Firstly, consider the following Fredholm nonlinear integral equation [7,8],

u(x, y) =
1

(1 + x + y)2
−

x
6(1 + y)

+

∫ 1

0

∫ 1

0

x
1 + y

(1 + t + s)u2(t, s)dtds,

(x, y) ∈ [0, 1] × [0, 1],

whose exact solution is u(x, y) =
1

(1+x+y)2
.

Errors for the numerical solution by RBFs for different values of N = M are given in Table 2 and Fig. 1.



5346 A. Alipanah, Sh. Esmaeili / Journal of Computational and Applied Mathematics 235 (2011) 5342–5347

Table 3
Numerical results of different RBFs for Example 2.

N λ =
1
2 λ = 1 λ = 2

2 6.0 × 10−2 1.1 × 10−2 8.0 × 10−2

3 1.2 × 10−2 5.3 × 10−2 9.0 × 10−2

4 5.0 × 10−3 5.0 × 10−3 8.0 × 10−2

5 9.0 × 10−5 1.1 × 10−3 8.0 × 10−2

6 1.2 × 10−6 2.5 × 10−4 2.0 × 10−2

7 1.2 × 10−6 3.0 × 10−5 9.0 × 10−3

8 2.3 × 10−10 9.8 × 10−6 8.0 × 10−3

Error

2. 3. 4. 6. 8.

N

1e–08

1e–07

1e–06

1e–05

.1e–3

.1e–2

.1e–1

Fig. 2. Circle, box and cross are respectively for λ =
1
2 , 1 and 2 using Gaussian RBF of Example 2.

6.2. Example 2

Consider linear Fredholm integral equation given in,

5u(x, y) =

∫ √
π

0

∫ √
π

0
u(t, s) cos(xt) cos(sy)dsdt + 5 −

sin
√

πy

sin

√
πx


xy

(6.1)

which the exact solution is u(x, y) = 1.
Errors of the numerical results are given in Table 3 and Fig. 2.

7. Conclusion

In this paper, we have investigated the application of interpolation by radial basis function for solving the nonlinear
Fredholm integral equations. This technique is very simple and involves less computation. Also we can expand this method
to higher dimensional problems and other classes of integral equations such as integro-differential and nonlinear equations.
Note that the final system extracted from the nonlinear equations will be nonlinear and a proper technique such Newton
method could be applied.
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